Как кодируются действительные числа в компьютере
Целые числа кодируются двоичным кодом достаточно просто — достаточно взять целое число и делить его пополам до тех пор, пока в остатке не образуется ноль или единица. Совокупность остатков от каждого деления, записанная справа налево вместе с последним остатком, и образует двоичный аналог десятичного числа.
Таким образом, 19(10)
1011(2). Для кодирования целых чисел от О до 255 достаточно иметь 8 разрядов двоичного кода (8 бит). Шестнадцать бит позволяют закодировать целые числа от О до 65535, а 24 бита — уже более 16,5 миллионов разных значений. Для кодирования действительных чисел используют 80-разрядное кодирование. При этом число предварительно преобразуется в нормализованную форму:
123 456 789 = 0,123456789 • 10^10
Первая часть числа называется мантиссой, а вторая характеристикой. Большую часть из 80 бит отводят для хранения мантиссы (вместе со знаком) и некоторое фиксированное количество разрядов отводят для хранения характеристики (тоже со знаком).
Кодирование звуковой информации
Приемы и методы работы со звуковой информацией пришли в вычислительную технику наиболее поздно. К тому же, в отличие от числовых, текстовых и графических данных, у звукозаписей не был столь же длительной и проверенной истории кодирования. В итоге методы кодирования звуковой информации двоичным кодом
далеки от стандартизации. Множество отдельных компаний разработали свои корпоративные стандарты, но если говорить обобщенно, то можно выделить два основных
направления. Метод FM (Frequency Modulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов
разных частот, каждый из которых представляет собой правильную синусоиду, а следовательно, может быть описан числовыми параметрами, то есть кодом. В природе звуковые сигналы имеют непрерывный спектр, то есть являются аналоговыми. Их
разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства — аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного
числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). При таких преобразованиях неизбежны потери информации, связанные с методом кодирования, поэтому качество звукозациси обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окрасом, характерным для электронной музыки. В то же время,
данный метод кодирования обеспечивает весьма компактный код, и потому он нашел применение еще в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.
Метод таблично-волнового (Wave-Table) синтеза лучше соответствует современному уровню развития техники. Если говорить упрощенно, то можно сказать, что где-то в заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментов (хотя не только для них). В технике такие образцы называют сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения,
некоторые параметры среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, то качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.
Кодирование графических данных
Если рассмотреть с помощью увеличительного стекла черно-белое графическое изображение, напечатанное в газете или книге, то можно увидеть, что оно состоит из мельчайших точек, образующих характерный узор, называемый/рдс/тгрол/ (рис. 1.3).
Рис. 1.3. Растр — это метод кодирования графической информации, издавна принятый в полиграфии
Поскольку линейные координаты и индивидуальные свойства каждой точки (яркость) можно выразить с помощью целых чисел, то можно сказать, что растровое кодирование позволяет использовать двоичный код для представления графических данных. Общепринятым на сегодняшний день считается представление черно-белых иллюстраций в виде комбинации точек с 256 градациями серого цвета, и, таким образом, для кодирования яркости любой точки обычно достаточно восьмиразрядного
двоичного числа. Для кодирования цветных графических изображений применяется принцип декомпозиции
смешения этих трех основных цветов. Такая система кодирования называется системой RGB по первым буквам названий основных цветов. Если для кодирования яркости каждой из основных составляющих использовать по 256 значений (восемь двоичных разрядов), как это принято для полутоновых черно-белы х изображений, то на кодирование цвета одной точки надо затратить
24 разряда. При этом система кодирования обеспечивает однозначное определение 16,5 млн различных цветов, что на самом деле близко к чувствительности человеческого глаза. Режим представления цветной графики с использованием 24 двоичных
цвет, то есть цвет, дополняющий основной цвет до белого. Нетрудно заметить, что
для любого из основных цветов дополнительным будет цвет, образованный суммой пары остальных основных цветов. Соответственно, дополнительными цветами являются: голубой С), пурпурный и желтый ( Yellow, У). Принцип
декомпозиции произвольного цвета на составляющие компоненты можно применять не только для основных цветов, но и для дополнительных, то есть любой цвет можно представить в виде суммы голубой, пурпурной и желтой составляющей.
двоичными числами называется режимом High Color. При кодировании информации о цвете с помощью восьми бит данных можно передатьтолько 256 цветовых оттенков. Такой метод кодирования цвета называется индексным. Смысл названия в том, что, поскольку 256 значений совершенно недостаточно,
воспроизведения информации на экране или бумаге (то есть, воспользоваться, конечно можно, но из-за неполноты данных полученная информация не будет адекватной: листва на деревьях может оказаться красной, а небо — зеленым).
Основные структуры данных
Работа с большими наборами данных автоматизируется проще, когда дднные упорядочены, то есть образуют заданную структуру. Существует три основных типа структур данных: линейная, иерархическая и табличная. Их можно рассмотреть на примере
обычной книги. Если разобрать книгу на отдельные листы и перемешать их, книга потеряет свое назначение. Она по-прежнему будет представлять набор данных, но подобрать адекватный
метод для получения из нее информации весьма непросто. (Еще хуже дело будет обстоять, если из книги вырезать каждую букву отдельно, — в этом слое вряд ли вообще найдется адекватный метод для ее прочтения). Если же собрать все листы книги в правильной последовательности, мы получим простейшую структуру данных — линейную. Такую книгу уже можно читать, хотя для поиска нужных данных ее придется прочитать подряд, начиная с самого начала,
что не всегда удобно. Для быстрого поиска данных существует иерархическая структура. Так, например, книги разбивают на части, разделы, главы, параграфы и т. п. Элементы структуры более низкого уровня входят в элементы структуры более высокого уровня: разделы состоят из глав, главы из параграфов и т. д.
Для больших массивов поиск данных в иерархической структуре намного проще, чем в линейной, однако и здесь необходима навигация, связанная с необходимостью просмотра. На практике задачу упрощают тем, что в большинстве книг есть вспомогательная
перекрестная таблица, связывающая элементы иерархической структуры с элементами линейной структуры, то есть связывающая разделы, главы ипараграфы с номерами страниц. В книгах с простой иерархической структурой,рассчитанных на последовательное чтение, эту таблицу принято называть оглавлением,
а в книгах со сложной структурой, допускающей выборочное чтение, ее называют -содержанием.
При создании любой структуры данных надо решить два вопроса: как разделять элементы данных между собой и как разыскивать нужные элементы.
В журнале посещаемости, например, это решается так: каждый новый элемент списка заносится с новой строки, то есть разделителем является конец строки. Тогда нужный
элемент можно разыскать по номеру строки.
N п/п Фамилия, Имя, Отчество
1 Аистов Александр Алексеевич
2 Бобров Борис Борисович
3 Воробьева Валентина Владиславовна
27 Сорокин Сергей Семенович
28 Глава 1. Информация и информатика
Разделителем может быть и какой-нибудь специальный символ. Нам хорошо известны разделители между словами — это пробелы. В русском и во многих европейских языках общепринятым разделителем предложений является точка. В рассмотренном
нами классном журнале в качестве разделителя можно использовать
любой символ, который не встречается в самих данных, например символ «*». Тогда список выглядел бы так:
Аистов Александр Алексеевич * Бобров Борис Борисович * Воробьева Валентина
Владиславовна *. * Сорокин Сергей Семенович
В этом случае для розыска элемента с номером п надо просмотреть список начиная с самого начала и пересчитать встретившиеся разделители. Когда будет отсчитано n-i разделителей, начнется нужный элемент. Он закончится, когда будет встречен
следующий разделитель. Еще проще можно действовать, если все элементы списка имеют равную длину. В этом случае разделители в списке вообще не нужны. Для розыска элемента с номером п надо просмотреть список с самого начала и отсчитать а символ, где
а — длина одного элемента. Со следующего символа начнется нужный элемент. Его длина тоже равна а, поэтому его конец определить нетрудно. Такие упрощенные списки, состоящие из элементов равной длины, называют векторами данных. Работать
с ними особенно удобно. Таким образом, линейные структуры данных (списки) — это упорядоченные структуры, в которых адрес элемента однозначно определяется его номером. Табличные структуры (таблицы данных, матрицы данных) С таблицами данных мы тоже хорошо знакомы, достаточно вспомнить всем известную
таблицу умножения. Табличные структуры отличаются о списочных тем, что элементы данных определяются адресом ячейки, который состоит не из одного параметра, как в списках, а из нескольких. Для таблицы умножения, например, адрес ячейки определяется номерами строки и столбца. Нужная ячейка находится на их
пересечении, а элемент выбирается из ячейки. При хранении табличных данных количество разделителей должно быть больше,
чем для данных, имеющих структуру списка. Например, когда таблицы печатают в книгах, строки и столбцы разделяют графическими элементами — линиями вертикальной
и горизонтальной разметки (рис. 1.4). Если нужно сохранить таблицу в виде длинной символьной строки, используют
Для розыска элемента, имеющего адрес ячейки (т, гг), надо просмотреть набор данных с самого начала и пересчитать внешние разделители. Когда будет отсчитан т-1 разделитель, надо пересчитывать внутренние разделители. После того как будет
найден п-\ разделитель, начнется нужный элемент. Он закончится, когда будет встречен любой очередной разделитель.
В ЭВМ применяется двоичная система счисления, т.е. все числа в компьютере представляются с помощью нулей и единиц, поэтому компьютер может обрабатывать только информацию, представленную в цифровой форме.
Для преобразования числовой, текстовой, графической, звуковой информации в цифровую необходимо применить кодирование.
Кодирование – это преобразование данных одного типа через данные другого типа. В ЭВМ применяется система двоичного кодирования, основанная на представлении данных последовательностью двух знаков: 1 и 0, которые называются двоичными цифрами (binary digit – сокращенно bit).
Целые числа кодируются двоичным кодом довольно просто (путем деления числа на два). Для кодирования нечисловой информации используется следующий алгоритм: все возможные значения кодируемой информации нумеруются и эти номера кодируются с помощью двоичного кода.
Кодирование чисел
Есть два основных формата представления чисел в памяти компьютера. Один из них используется для кодирования целых чисел, второй (так называемое представление числа в формате с плавающей точкой) используется для задания некоторого подмножества действительных чисел.
Кодирование целых чисел производиться через их представление в двоичной системе счисления: именно в этом виде они и помещаются в ячейке. Один бит отводиться при этом для представления знака числа (нулем кодируется знак "плюс", единицей – "минус").
Для кодирования действительных чисел существует специальный формат чисел с плавающей запятой. Число при этом представляется в виде: , где M – мантисса, p – порядок числа N, q – основание системы счисления. Если при этом мантисса M удовлетворяет условию , то число N называют нормализованным.
Кодирование координат
Закодировать можно не только числа, но и другую информацию, например, о том, где находится некоторый объект. Величины, определяющие положение объекта в пространстве, называются координатами. В любой системе координат есть начало отсчёта, единица измерения, масштаб, направление отсчёта, или оси координат. Примеры систем координат – декартовы координаты, полярная система координат, шахматы, географические координаты.
Кодирование текста
Для представления текстовой информации используется таблица нумерации символов или таблица кодировки символов, в которой каждому символу соответствует целое число (порядковый номер). Восемь двоичных разрядов могут закодировать 256 различных символов.
Существующий стандарт ASCII (сокращение от American Standard Code for Information Intercange – американский стандартный код для обмена информацией; 8 – разрядная система кодирования) содержит две таблицы кодирования – базовую и расширенную. Первая таблица содержит 128 основных символов, в ней размещены коды символов английского алфавита, а во второй таблице кодирования содержатся 128 расширенных символов.
Так как в этот стандарт не входят символы национальных алфавитов других стран, то в каждой стране 128 кодов расширенных символов заменяются символами национального алфавита. В настоящее время существует множество таблиц кодировки символов, в которых 128 кодов расширенных символов заменены символами национального алфавита.
Так, например, кодировка символов русского языка Widows – 1251 используется для компьютеров, работающих под ОС Windows. Другая кодировка для русского языка – это КОИ – 8, которая также широко используется в компьютерных сетях и российском секторе Интернет.
В настоящее время существует универсальная система UNICODE, основанная на 16 – разрядном кодировании символов. Эта 16 – разрядная система обеспечивает универсальные коды для 65536 различных символов, т.е. в этой таблице могут разместиться символы языков большинства стран мира.
Кодирование графической информации
В видеопамяти находится двоичная информация об изображении, выводимом на экран. Почти все создаваемые, обрабатываемые или просматриваемые с помощью компьютера изображения можно разделить на две большие группы – растровую и векторнуюграфику.
Растровые изображения представляют собой однослойную сетку точек, называемых пикселями (pixel, от англ. picture element). Код пикселя содержит информации о его цвете.
Для описания черно-белых изображений используются оттенки серого цвета, то есть при кодировании учитывается только яркость. Она описывается одним числом, поэтому для кодирования одного пикселя требуется от 1 до 8 бит: чёрный цвет – 0, белый цвет – N = 2 k -l, где k – число разрядов, которые отводятся для кодирования цвета. Например, при длине ячейки в 8 бит это 256-1 = 255. Человеческий глаз в состоянии различить от 100 до 200 оттенков серого цвета, поэтому восьми разрядов для этого вполне хватает.
Цветные изображения воспринимаются нами как сумма трёх основных цветов – красного, зелёного и синего. Например, сиреневый = красный + синий; жёлтый = красный + зелёный; оранжевый = красный + зелёный, но в другой пропорции. Поэтому достаточно закодировать цвет тремя числами – яркостью его красной, зелёной и синей составляющих. Этот способ кодирования называется RGB (Red – Green – Blue). Его используют в устройствах, способных излучать свет (мониторы). При рисовании на бумаге действуют другие правила, так как краски сами по себе не испускают свет, а только поглощают некоторые цвета спектра. Если смешать красную и зелёную краски, то получится коричневый, а не жёлтый цвет. Поэтому при печати цветных изображений используют метод CMY (Cyan – Magenta – Yellow) – голубой, сиреневый, жёлтый цвета. При таком кодировании красный = сиреневый + жёлтый; зелёный = голубой + жёлтый.
В противоположность растровой графике векторное изображение многослойно. Каждый элемент такого изображения – линия, прямоугольник, окружность или фрагмент текста – располагается в своем собственном слое, пиксели которого устанавливаются независимо от других слоев. Каждый элемент векторного изображения является объектом, который описывается с помощью специального языка (математических уравнения линий, дуг, окружностей и т.д.) Сложные объекты (ломаные линии, различные геометрические фигуры) представляются в виде совокупности элементарных графических объектов.
Объекты векторного изображения, в отличие от растровой графики, могут изменять свои размеры без потери качества (при увеличении растрового изображения увеличивается зернистость).
Как всякий звук, музыка является не чем иным, как звуковыми колебаниями, зарегистрировав которые достаточно точно, можно этот звук безошибочно воспроизвести. Нужно только непрерывный сигнал, которым является звук, преобразовать в последовательность нулей и единиц. С помощью микрофона звук можно превратить в электрические колебания и измерить их амплитуду через равные промежутки времени (несколько десятков тысяч раз в секунду). Каждое измерение записывается в двоичном коде. Этот процесс называется дискретизацией. Устройство для выполнения дискретизации называется аналогово-цифровым преобразователем (АЦП). Воспроизведение такого звука ведётся при помощи цифро-аналогового преобразователя (ЦАП). Полученный ступенчатый сигнал сглаживается и преобразуется в звук при помощи усилителя и динамика. На качество воспроизведения влияют частота дискретизации и разрешение (размер ячейки, отведённой под запись значения амплитуды). Например, при записи музыки на компакт-диски используются 16-разрядные значения и частота дискретизации 44 032 Гц.
Описанный способ кодирования звуковой информации достаточно универсален, он позволяет представить любой звук и преобразовывать его самыми разными способами. Но бывают случаи, когда выгодней действовать по-иному.
Издавна используется достаточно компактный способ представления музыки – нотная запись. В ней с помощью специальных символов указывается высота и длительность, общий темп исполнения и как сыграть. Фактически, такую запись можно считать алгоритмом для музыканта, записанным на особом формальном языке. В 1983 г. ведущие производители компьютеров и музыкальных синтезаторов разработали стандарт, определивший такую систему кодов. Он получил название MIDI (Musical Instrument Digital Interface). При таком кодировании запись компактна, легко меняется инструмент исполнителя, тональность звучания, одна и та же запись воспроизводится как на синтезаторе, так и на компьютере.
Конечно, такая система кодирования позволяет записать далеко не всякий звук, она годится только для инструментальной музыки. Но есть у нее и преимущества: чрезвычайно компактная запись, естественность для музыканта (практически любой MIDI-редактор позволяет работать с музыкой в виде обычных нот), легкость замены инструментов, изменения темпа и тональности мелодии.
Есть и другие форматы записи музыки. Среди них – формат MP3, позволяющий с очень большим качеством и степенью сжатия кодировать музыку, при этом вместо 18 – 20 музыкальных композиций на стандартном компакт-диске (CDROM) помещается около 200. Одна песня занимает примерно 3,5 Mb, что позволяет пользователям сети Интернет легко обмениваться музыкальными композициями.
Для автоматизации работы с данными, относящимися к различным типам, очень важно унифицировать их форму представления – для этого обычно используется прием кодирования, то есть выражение данных одного типа через данные другого типа. Естественные человеческие языки – это не что иное, как системы кодирования понятий для выражения мыслей посредством речи. К языкам близко примыкают азбуки (системы кодирования компонентов языка с помощью графических символов). История знает интересные, хотя и безуспешные попытки создания «универсальных» языков и азбук.
Та же проблема универсального средства кодирования достаточно успешно реализуется в отдельных отраслях техники, науки и культуры. В качестве примеров можно привести систему записи математических выражений, телеграфную азбуку, морскую флажковую азбуку, систему Брайля для слепых и многое другое.
Своя система существует и в вычислительной технике – она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называются двоичными цифрами, по-английски – binary digit, или, сокращенно, bit (бит).
Когда известно, сколько будет событий, можно выбрать необходимое количество ячеек для их хранения. Для восьми событий надо 3 ячейки, т.к. 2 3 = 8. Для 16 событий надо 4 ячейки, т.к. 2 4 = 16.
Если для кодирования применить одноразрядную схему, то получится только два символа (рис. 2.1.). Разряд – количество цифр в числе.
Рис.2.1. Одноразрядная схема кодирования
Если использовать двухразрядную схему, то можно закодировать уже четыре символа (рис. 2.2).
А |
Б |
В |
Г |
Рис. 2.2. Двухразрядная схема кодирования
Трехразрядная последовательность имеет также вдвое больше значений - 000, 001, 010, 011, 100, 101, 110, 111, - чем двухразрядная, и т.д. Добавление одного разряда увеличивает число значений вдвое, это позволяет составить таблицу информационной емкости чисел (см. табл.2.1).
Число разрядов |
Количество различных значений |
Более внимательные на этом месте соображают, что можно вывести общую формулу количества возможных кодируемых двумя цифрами символов в зависимости от разрядности:
N=2 k , где к — число разрядов.
Процесс получения двоичной информации об объектах исследования называют кодированием информации. Кодирование информации перечислением всех возможных событий очень трудоемко. Поэтому на практике кодирование осуществляется более простым способом. Он основан на том, что один разряд последовательности двоичных цифр имеет уже вдвое больше различных значений – 00, 01, 10, 11, – чем одноразрядная последовательность (0 и 1).
Для кодирования целых чисел от 0 до 255 достаточно иметь 8 разрядов двоичного кода (8 бит).
Шестнадцать бит позволяют закодировать целые числа от 0 до 65 535, а 24 бита – уже более 16,5 миллионов разных значений.
Для кодирования действительных чисел используют 80-разрядное кодирование. При этом число предварительно преобразуется в нормализованную форму:
3,1415926 = 0,31415926 · 10 1
300 000 = 0,3 · 10 6
123 456 789 = 0,123456789 · 10 9 .
Первая часть числа называется мантиссой, а вторая – характеристикой (порядком). Большую часть из 80 бит отводят для хранения мантиссы (вместе со знаком) и некоторое фиксированное количество разрядов отводят для хранения характеристики (тоже со знаком).
Представление числовых данных в памяти ЭВМ
Для представления информации в памяти ЭВМ (как числовой, так и не числовой) используется двоичный способ кодирования.
Элементарная ячейка памяти ЭВМ имеет длину 8 бит (байт). Каждый байт имеет свой номер (его называют адресом ). Наибольшую последовательность бит, которую ЭВМ может обрабатывать как единое целое, называют машинным словом . Длина машинного слова зависит от разрядности процессора и может быть равной 16, 32, 64 битам и т.д.
Кодирование символов
Двоично-десятичное кодирование
Представление целых чисел в дополнительном коде
Вообще, разряды нумеруются справа налево, начиная с 0. Ниже показана нумерация бит в двухбайтовом машинном слове.
15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
Дополнительный код положительного числа совпадает с его прямым кодом . Прямой код целого числа может быть получен следующим образом: число переводится в двоичную систему счисления, а затем его двоичную запись слева дополняют таким количеством незначащих нулей, сколько требует тип данных, к которому принадлежит число.
Например, если число 37 (10) = 100101 (2) объявлено величиной типа Integer ( шестнадцатибитовое со знаком ), то его прямым кодом будет 0000000000100101, а если величиной типа LongInt ( тридцатидвухбитовое со знаком ), то его прямой код будет 00000000000000000000000000100101. Для более компактной записи чаще используют шестнадцатеричное представление кода. Полученные коды можно переписать соответственно как 0025 (16) и 00000025 (16) .
Дополнительный код целого отрицательного числа может быть получен по следующему алгоритму:
Например, запишем дополнительный код числа -37, интерпретируя его как величину типа LongInt (тридцатидвухбитовое со знаком):
- прямой код числа 37 есть 00000000000000000000000000100101;
- инверсный код 11111111111111111111111111011010;
- дополнительный код 11111111111111111111111111011011 или FFFFFFDB(16).
При получении числа по его дополнительному коду прежде всего необходимо определить его знак. Если число окажется положительным, то просто перевести его код в десятичную систему счисления. В случае отрицательного числа необходимо выполнить следующий алгоритм:
- вычесть из кода числа 1;
- инвертировать код;
- перевести в десятичную систему счисления. Полученное число записать со знаком минус.
Примеры. Запишем числа, соответствующие дополнительным кодам:
- 0000000000010111. Поскольку в старшем разряде записан нуль, то результат будет положительным. Это код числа 23.
- 1111111111000000. Здесь записан код отрицательного числа. Исполняем алгоритм: 1) 1111111111000000(2) - 1(2) = 1111111110111111(2); 2) 0000000001000000; 3) 1000000(2) = 64(10).
Ответ: -64.
Кодирование вещественных чисел
Несколько иной способ применяется для представления в памяти персонального компьютера действительных чисел. Рассмотрим представление величин с плавающей точкой.
Покажем преобразование действительного числа для представления его в памяти ЭВМ на примере величины типа Double.
Как видно из таблицы, величина это типа занимает в памяти 8 байт. На рисунке ниже показано, как здесь представлены поля мантиссы и порядка (нумерация битов осуществляется справа налево):
S | Смещенный порядок | Мантисса |
63 | 62..52 | 51..0 |
Можно заметить, что старший бит, отведенный под мантиссу, имеет номер 51, т.е. мантисса занимает младшие 52 бита. Черта указывает здесь на положение двоичной запятой. Перед запятой должен стоять бит целой части мантиссы, но поскольку она всегда равна 1, здесь данный бит не требуется и соответствующий разряд отсутствует в памяти (но он подразумевается). Значение порядка хранится здесь не как целое число, представленное в дополнительном коде. Для упрощения вычислений и сравнения действительных чисел значение порядка в ЭВМ хранится в виде смещенного числа, т.е. к настоящему значению порядка перед записью его в память прибавляется смещение. Смещение выбирается так, чтобы минимальному значению порядка соответствовал нуль. Например, для типа Double порядок занимает 11 бит и имеет диапазон от 2 -1023 до 2 1023 , поэтому смещение равно 1023(10) = 1111111111(2). Наконец, бит с номером 63 указывает на знак числа.
Таким образом, из вышесказанного вытекает следующий алгоритм для получения представления действительного числа в памяти ЭВМ:
Пример. Запишем код числа -312,3125.
- Двоичная запись модуля этого числа имеет вид 100111000,0101.
- Имеем 100111000,0101 = 1,001110000101 × 2 8 .
- Получаем смещенный порядок 8 + 1023 = 1031. Далее имеем 1031(10) = 10000000111(2).
- Окончательно
1 10000000111 0011100001010000000000000000000000000000000000000000 63 62..52 51..0
Очевидно, что более компактно полученный код стоит записать следующим образом: C073850000000000(16).
Другой пример иллюстрирует обратный переход от кода действительного числа к самому числу.
Читайте также: