Как делятся клетки кожи митоз
• Все клетки образуются в процессе деления себе подобных; этот процесс носит название митоз
• Митоз наступает после репликации хромосом. В митозе хромосомы разделяются на равные группы, и затем клетка делится с образованием двух новых клеток по линии, проходящей между ними
• Ошибки митоза носят катастрофический характер, и в клетке существуют механизмы, обеспечивающие точность его протекания
Наиболее фундаментальной характеристикой клеток, по-видимому, является самовоспроизведение: жизнь зависит от их способности к делению. Для одноклеточных организмов деление значит размножение. В сложных многоклеточных организмах деление необходимо не только для образования клеток в процессе развития, но и для замещения погибающих.
Название клетка было предложено в 1665 г. Робертом Гуком, который использовал его для обозначения мельчайших полых ячеек, видных в срезе кусочка пробки под микроскопом. Потребовалось 175 лет дальнейших работ с микроскопом для того, чтобы Шлейден и Шванн в своей «Клеточной теории» назвали клетку фундаментальной биологической единицей жизни. После признания этого основного научного достижения XIX в. возник следующий логичный вопрос: каким образом возникают новые клетки?
Хотя некоторые считали, что новые клетки образуются самопроизвольно, в 1855 г. немецкий врач Вирхов выдвинул однозначный принцип omnis cellula е cellula — каждая клетка происходит из предсуществующей родительской клетки.
В конце XIX в. в связи с разработкой и широким использованием сложных световых микроскопов произошел быстрый прогресс в изучении событий, происходящих при клеточном делении. В 1879 г. немецкий анатом Вальтер Флемминг предложил термин митоз для обозначения структуры, напоминающей двойные нити (от греч. mitos — нити), видимых внутри ядра делящейся клетки саламандры, и описал серию изменений, которые они претерпевают.
Эти нити, состоящие из ядерного материала, который Флемминг назвал хроматин, сейчас известны под названием хромосомы (от греч. chroma — цвет; soma — тело). Флемминг обнаружил, что на ранних стадиях митоза каждая хромосома состоит из двух одинаковых нитей или хроматид, примыкающих друг к другу по длине. У высших организмов каждая хромосома содержит небольшую, но заметную область сужения, известную как первичная перетяжка или центромера. Каждая клетка организма обладает одинаковым числом хромосом, которое для всех представителей данного вида одинаково. Однако у разных видов число хромосом на клетку различается — у одних видов хромосом в несколько раз больше, чем у других.
На верхнем рисунке изображено только ядро. На остальных представлена вся клетка.
После образования веретена два его полюса располагаются в центре прозрачной области цитоплазмы в верхнем левом и нижнем правом участках клетки.
Еще в 1880 г. Флемминг высказал утверждение, что все клетки воспроизводятся через «превращение ядерного вещества в нити». В 1883 г. наблюдения за процессом оплодотворения яиц морского ежа показали, что яйцеклетка и сперматозоид передают эмбриону по одинаковому числу хромосом. Двумя годами позже было обнаружено, что все ядра клеток организма образуются при повторных делениях эмбрионального ядра, которое возникло при слиянии яйцеклетки с ядром сперматозоида. Так, в 1885 г. стало очевидным, что каждая клетка содержит хромосомы от обоих родителей. Это наблюдение связало Клеточную теорию Шлейдена и Шванна с Теорией эволюции Дарвина.
Природа этой связи была установлена позже, когда обнаружилось, что хромосомы содержат клеточные гены, элементарные единицы, которые переносят признаки от поколения к поколению.
За исключением сперматозоидов и яйцеклеток, все остальные клетки организма являются диплоидными (di = 2), т. е. каждая хромосома у них присутствует в двух копиях: одна копия наследуется с яйцеклеткой от матери, а другая со сперматозоидом — от отца (клетки человека содержат 23 пары хромосом, т. е. всего 46 хромосом). Цель митоза заключается в сохранении диплоидного набора хромосом в образующихся поколениях клеток, Поскольку сперматозоиды и яйцеклетки являются гаплоидными, т. е. содержат только половинный набор хромосом по сравнению с клетками тканей организма, они не могут образовываться за счет митоза. Вместо этого такие специализированные клетки (называемые гаметы) образуются за счет процесса, называемого мейоз.
При мейозе из одной клетки-предшественника образуются четыре гаплоидных клетки, каждая из которых содержит только одну копию каждой хромосомы. Это уменьшение числа хромосом происходит за счет деления клетки дважды после репликации хромосом, а не после однократного деления, как в митозе. В отличие от митоза, цель мейоза состоит в поддержании диплоидного количества хромосом в поколениях клеток организма. Практически митоз и мейоз характеризуются многими общими чертами — основное различие между ними заключается в способе организации хромосом в начале процесса.
В статьях на сайте будут рассмотрены вопросы, связанные с функционированием митотического процесса у высших животных, главным образом у позвоночных. Хотя, в зависимости от организма, детали митоза могут различаться, основные его черты для всех клеток одинаковы. На рисунке ниже представлены фазы митоза. У высших животных первым видимым признаком приближающегося митоза является появление в ядре реплицированных хромосом. В процессе конденсации хромосом оболочка, окружающая ядро, распадается, что приводит к их высвобождению в цитоплазму. На следующем этапе хромосомы присоединяются к структуре, называемой веретено, потому, что она по форме напоминает два конуса, соединенных своими основаниями.
Это веретено или митотический аппарат генерирует усилия, необходимые для перемещения хромосом, а также указывает на то место в клетке, куда они должны двигаться. После присоединения хромосомы постепенно выстраиваются поперек середины веретена, которое играет роль экватора. Видеосъемка, первая рамка которой представлена на рисунке ниже, показывает всю последовательность событий от момента конденсации хромосом до их выстраивания.
После того как все хромосомы выстроились, каждая из них расщепляется вдоль (т. е. происходит разделение хроматид), и образующиеся две независимые группы хромосом отходят друг от друга к противоположным концам веретена, которые называются полюсами веретена деления. Наконец, хромосомы в каждой из двух отдельных групп деконденсируются, и вокруг каждой группы образуется новая оболочка. Многочисленные мелкие ядра, образующиеся на полюсах, сливаются между собой, образуя два отдельных дочерних ядра.
На протяжении многих лет определение митоза расширилось и стало включать такое понятие, как цитокинез, т. е. серию событий, в результате которых после деления ядра происходит деление цитоплазмы клетки.
Несмотря на то что сегрегация хромосом происходит с высокой точностью, иногда случаются ошибки. Ошибки в митозе или мейозе возникают на нескольких стадиях процесса и могут вызывать появление клеток, содержащих слишком мало или слишком много хромосом. Это состояние называется анеуплоидия, и его последствия зависят от организма и от времени, когда произошла ошибка. Когда оно развивается при образовании гамет (мейоз), то приводит к появлению эмбриона с синдромом дефекта рождения, когда все его клетки обладают, по меньшей мере, одной лишней или отсутствующей хромосомой.
Примером анеуплоидии у человека является синдром Дауна, при котором все клетки индивидуума содержат лишнюю копию хромосомы 21. Однако в большинстве случаев анеуплоидия у эмбриона приводит к смерти еще до завершения процесса развития. Напротив, когда это состояние возникает в момент развития, образуется мозаичный организм, различные ткани которого состоят из клеток, содержащих различное количество хромосом. Наконец, существуют убедительные доказательства в пользу того, что образование анеуплоидных клеток во взрослом организме провоцирует онкологические заболевания.
Поскольку равномерное распределение хромосом необходимо для поддержания жизнеспособности организма, митоз включает специальные процессы, обеспечивающие его безошибочность. У всех организмов точность процесса сегрегации хромосом увеличивается за счет контрольных точек проверки. В этих точках осуществляется биохимическая регуляция, которая останавливает или задерживает клеточное деление до момента окончания или коррекции определенного события в жизни клетки. Необходимость обеспечения большой точности процесса отражается в существовании множественных путей для достижения одной и той же цели, независимо от того, будет ли это образование веретена или перемещение хромосом.
Хотя митоз всегда проходит через последовательность описанных событий, для того чтобы завершить критический процесс, существует несколько различных путей. Такое дублирование механизмов митоза, которое было обнаружено лишь недавно, добавляет еще один уровень сложности ко всему процессу, но придает ему гибкость, позволяющую противостоять обстоятельствам, способным вызвать ошибки.
На вставке представлена целая метафазная хромосома в живой клетке тритона.
На основной фотографии представлена область первичной перетяжки еще одной метафазной хромосомы.
На обеих фотографиях стрелками отмечены пары сестринских хроматид (DIC — дифференциальная интерференционная микроскопия, один из методов световой микроскопии). На вставке представлены несколько целых метафазных хромосом в живой клетке тритона.
Каждое сужение представляет собой уникальную точку, которая называется первичной перетяжкой.
На фотографии в электронном микроскопе показана первичная перетяжка хромосомы при большом увеличении. Последовательность событий мейоза включает два клеточных деления.
При первом делении происходит разделение гомологичных хромосом,
при втором разделяются индивидуальные хроматиды (каждой хромосомы).
При митозе происходит только разделение хроматид. Первый видеокадр, показывающий хромосомы в начальных стадиях митоза. Митотические хромосомы клетки, полученной от больного с синдромом Дауна.
Разные хромосомы различаются по положению первичной перетяжки, по величине и по характерному расположению темных и светлых поперечных полос.
Видны три копии маленькой хромосомы 21, но только по две копии остальных хромосом.
Видео процесс и фазы митоза
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Делящиеся и неделящиеся клетки. Митоз. Дифференцировка и специализация клеток. Этапы жизненного цикла специализированной клетки. Некроз и апоптоз. Регуляция численности клеток в организме.
До сих пор много тайн клетки остаются неразгаданными. Загадочным во многом остается и запрограммированный генетически алгоритм ее жизни, названный жизненным циклом клетки (клеточным циклом). Жизненный цикл клетки (рисунок 1.3.14) начинается с момента ее образования после деления родительской клетки и заканчивается либо новым делением, либо превращением в специализированную клетку.
Рисунок 1.3.14. Жизненный цикл клетки:
1 - интерфаза; 2 - митоз; 3 - дифференцировка; 4 - функционирование специализированной клетки
Большинство клеток продолжает делиться. Им свойственен клеточный цикл, состоящий из периодически повторяющихся стадий: так называемой интерфазы (1) – этапа подготовки к делению и непосредственно процесса деления – митоза (2). К этапам дифференцировки (3) и функционирования специализированной клетки (4) мы вернемся чуть позже.
На стадии подготовки к делению происходит удвоение генетического материала (редупликация ДНК). Масса клетки во время интерфазы увеличивается до тех пор, пока она примерно вдвое не превысит начальную. Отметим, что сам процесс деления намного короче этапа подготовки к нему: митоз занимает примерно 1/10 часть клеточного цикла.
Цикличность (периодическое повторение) стадий интерфазы и митоза можно проиллюстрировать на примере фибробластов – одного из видов клеток соединительной ткани (рисунок 1.3.15). Так, нормальные фибробласты эмбриона человека размножаются приблизительно 50 раз. Каков генетически запрограммированный предел возможных делений клетки – это одна из неразгаданных тайн биологии.
Рисунок 1.3.15. Цикличность стадий интерфазы и митоза:
1 - интерфаза, стадия подготовки к митозу; 2 - митоз (деление клетки)
Хотя все клетки появляются путем деления предшествующей (материнской) клетки (“Всякая клетка от клетки”), не все они продолжают делиться. Клетки, достигшие некоторой стадии развития при дифференцировке, могут терять способность к делению.
Дифференцировка – возникновение различий в процессе развития первоначально одинаковых клеток, приводящее к их специализации. Процесс дифференцировки заключается в последовательном считывании и использовании наследственной информации, что обеспечивает синтез различных белков (в первую очередь ферментов), характерных для данного вида клеток. Другими словами, различия между клетками определяются набором белков, синтезируемых в клетках определенного вида.
При дифференцировке набор хромосом в клетке не меняется, изменяется лишь соотношение активных и неактивных генов, кодирующих различные белки.
Существуют два типа регуляции экспрессии (активации или блокирования) генов:
- Кратковременная адаптивная активация (реже блокирование), зависящая, в частности, от концентрации вещества, включающегося в обмен веществ (исходного вещества или продукта метаболизма). Этот механизм выработался эволюционно как приспособительная реакция и особенно ярко проявляется у животных (например, быстрый синтез пигментов у хамелеона в зависимости от условий).
- Длительное (в течение всей жизни клетки и/или многих генераций клеток!) блокирование или активация гена, возникающее в ходе клеточной дифференцировки. Например, в ДНК любой клетки желудка есть ген, отвечающий за синтез белков, из которых состоит ноготь. Но он необратимо блокирован гистонами и другими белками (этот участок ДНК плотно упакован), что никогда не позволит считывать с него информацию. Поэтому в желудке не растут ногти; а гены, ответственные за синтез гемоглобина, функционируют только у молодых форм эритроцитов, но не действуют в зрелых эритроцитах или других клетках.
На рисунке 1.3.14 цифрами 3 и 4 отмечены этапы дифференцировки и активного функционирования специализированной клетки.
Нервные клетки мозга, однажды возникнув, уже не делятся. В течение жизни число нейронов постепенно уменьшается. Поврежденные ткани мозга неспособны восстанавливаться путем регенерации. Однако изначально число нейронов в мозге настолько велико, что до конца жизни человека они способны поддерживать необходимые связи в нервной системе.
В качестве примера клеток, неспособных к делению, можно рассмотреть эритроциты. Как известно, эритроциты в процессе специализации теряют ядро, следовательно, не имеют в своем составе ДНК. Возникают эритроциты из так называемой стволовой клетки костного мозга. Клеткой-предшественницей (стволовой клеткой) называют клетки кроветворной ткани, которые на протяжении всей жизни человека сохраняют способность делиться и, тем самым, поставлять дочерние клетки, которые в дальнейшем будут специализироваться в одном направлении и замещать погибшие клетки. Срок жизни и активного функционирования эритроцитов невелик (около 4 месяцев), затем они разрушаются, в основном в селезенке.
Этапы жизни специализированной клетки, неспособной к делению (нейрона, эритроцита), условно можно изобразить на оси времени линией, разделенной на несколько отрезков (рисунок 1.3.16). Эти отрезки дают представление о временном соотношении периодов жизни такой клетки: рождения, созревания и активного функционирования, угасания (старения) и естественной гибели.
Рисунок 1.3.16. Этапы жизненного цикла специализированной клетки:
1 - рождение в процессе деления материнской клетки; 2 - созревание и дифференцировка; 3 - активное функционирование; 4 - угасание (старение); 5 - запрограммированная клеточная гибель
Время протекания каждого этапа и продолжительность жизненного цикла для однотипных клеток в нормальных условиях практически одинаковы.
Например, эритроциты живут 90-125 дней, а тромбоциты – всего 4 суток. Это говорит о том, что клетки используют для отсчета времени своей жизни некий механизм, алгоритм, заложенный в них природой. И в каждый момент жизни клетка строго следует законам, продиктованным этим алгоритмом.
На всех этапах клеточного цикла варьируют значения некоторых параметров жизнедеятельности клетки, и, в частности, отмечается различная скорость и интенсивность протекания процессов метаболизма (рисунок 1.3.17). Это обусловлено, в первую очередь, непрерывно меняющейся активностью ферментов, благодаря которым протекают все реакции в клетке. Ферменты могут синтезироваться в клетке “по мере надобности”, активироваться, временно блокироваться или полностью разрушаться (подробнее о ферментах будет сказано в разделе 1.4.3).
Рисунок 1.3.17. Интенсивность метаболизма на различных этапах жизни клетки:
1 - рождение; 2 - созревание и дифференцировка; 3 - активное функционирование; 4 - угасание (старение); 5 - запрограммированная клеточная гибель
Рассмотрим подробнее наиболее характерные процессы, происходящие на каждом из этапов клеточного цикла.
Рождение. Отправным моментом жизни любой клетки (кроме половой, для которой характерен мейоз) считают деление материнской клетки с образованием двух идентичных дочерних – митоз (от греческого mitos – нить). Во время митоза основная задача материнской клетки – поровну передать равноценный в количественном и качественном отношении генетический материал дочерним клеткам.
Митоз часто называют “танцем хромосом”. Каждая следующая фигура в этом танце не случайна, здесь нет ни одного лишнего или бессмысленного “па” – это еще один четкий, выверенный природой алгоритм. В. Дудинцев в романе “Белые одежды” так описывает процесс деления клетки: “Хромосомы шевелились, как клубок серых червей, потом вдруг выстроились в строгий вертикальный порядок. Вдруг удвоились – теперь это были пары. Тут же какая-то сила потащила эти пары врозь, хромосомы подчинились, обмякли, и что-то повлекло их к двум разным полюсам.”
Деление клетки на две идентичные (митоз) характеризуется сменой нескольких морфологически и физиологически различающихся стадий (рисунок 1.3.18). На первой стадии митоза хроматин плотно упаковывается (этот процесс называется суперспирализацией хроматина) с образованием хромосом (1). Каждая хромосома состоит из двух идентичных половинок (хроматид) – будущих дочерних хромосом. Затем при сокращении так называемого веретена деления (2), представляющего собой комплекс микротрубочек и микрофибрилл, дочерние хромосомы расходятся, буквально подтягиваются нитями веретена деления к противоположным полюсам клетки. После окончательного расхождения дочерние хромосомы вновь раскручиваются, превращаясь в длинные и тонкие нити хроматина (3). Веретено деления исчезает, хроматин в дочерних клетках окружается ядерной оболочкой, и между дочерними клетками образуется поперечная перетяжка (4) из клеточных мембран.
Рисунок 1.3.18. Последовательность стадий митоза (схема):
1 - хромосомы; 2 - веретено деления; 3 - хроматин; 4 - поперечная перетяжка
Хромосомы, как мы уже говорили, представляют собой максимально плотно упакованные нити ДНК, с которых на этапе деления невозможно считывание информации. Соответственно, на этапе деления не происходит биосинтеза белка, интенсивность процессов метаболизма минимальна, транспорт веществ в клетку и из нее практически равен нулю. Все процессы в делящейся клетке направлены на выполнение главнейшей задачи – максимально точно, без искажения, передать генетическую информацию дочерним клеткам, – в ущерб второстепенным (на данном этапе!) функциям.
Созревание. В этот период происходит дифференцировка клеток и становление ключевых ферментных систем. Клетка готовится выполнять предназначенные природой функции, постепенно активизируя свой обмен веществ.
Активное функционирование. Интенсивность реакций метаболизма и сопряженного с ним энергетического обмена в это время максимальны.
Процессы в клетке направлены на обеспечение постоянства внутренней среды и выполнение специфических функций: нейрон воспринимает и передает нервный импульс, эритроцит переносит кислород и так далее.
Угасание (старение). Этот процесс запрограммирован генетически и, в первую очередь, проявляется уменьшением выработки и активности ферментов в клетке. При этом замедляются биохимические реакции, тормозится метаболизм и энергетический обмен.
Стареющие клетки, как правило, имеют неудвоенное количество ДНК, но сохраняют жизнеспособность и некоторую метаболическую активность в течение определенного времени.
Естественная гибель клетки (апоптоз). К сожалению, до сих пор процесс естественной гибели клеток до конца не изучен.
Известно, что в клетке из-за блокирования ферментов прекращается синтез белка, а нет белка – нет и жизни. Морфологически апоптоз характеризуется разрушением ядра и цитоплазмы. “Осколки” погибшей клетки поглощаются и перерабатываются специальными клетками иммунной системы – фагоцитами. Но ведь клетки могут погибнуть и под воздействием случайных факторов (механических, химических и любых других). Случайная гибель клеток (а также ткани, органа) в биологии называется некрозом. Важно то, что естественная клеточная гибель (апоптоз) в отличие от некроза не вызывает воспаления в окружающих тканях.
В организме запрограммированная клеточная гибель выполняет функцию, противоположную митозу, и, тем самым, регулирует общее число клеток в организме. Апоптоз играет важную роль в защите организма при вирусных инфекциях. В частности, иммунодефицит при ВИЧ-инфекции определяется нарушениями в контроле апоптоза.
Теперь, когда мы рассмотрели все этапы жизненного цикла клеток, коротко остановимся на процессах регуляции численности клеток в организме. Во время эмбриогенеза (первого этапа внутриутробного развития) число клеток постоянно возрастает, причем в геометрической прогрессии (рисунок 1.3.19).
Рисунок 1.3.19. Увеличение численности клеток на этапе эмбриогенеза
Зигота, образовавшаяся после слияния яйцеклетки и сперматозоида, делится с образованием двух дочерних клеток. Затем, в результате последовательных делений, образуются четыре, восемь, шестнадцать клеток и так далее. Параллельно с увеличением численности на этапе эмбриогенеза происходит дифференцировка клеток – так образуются ткани (смотри раздел 1.5.1).
Во взрослом организме общая численность клеток стабильна, она остается практически неизменной на протяжении многих лет (рисунок 1.3.20).
Рисунок 1.3.20. Поддержание постоянства общей численности клеток во взрослом организме
Это происходит за счет уравновешивания процессов возникновения новых клеток (митоза) и гибели клеток, естественной (апоптоза) или случайной (некроза). При смещении равновесия, например, гибели большого количества клеток в результате травмы или другого негативного воздействия, включаются механизмы регенерации (увеличение интенсивности деления клеток для замещения погибших), о которых уже было сказано. Таким образом, общая численность клеток поддерживается практически на постоянном уровне.
С момента появления клетки и до ее смерти в результате апоптоза (программируемой клеточной гибели) непрерывно продолжается жизненный цикл клетки.
Здесь и в дальнейшем мы будем пользоваться генетической формулой клетки, где "n" - число хромосом, а "c" - число ДНК (хроматид). Напомню, что в состав каждой хромосомы может входить как одна молекула ДНК (одна хроматида) (nc), либо две (n2c).
Клеточный цикл включает в себя несколько этапов: деление (митоз), постмитотический (пресинтетический), синтетический, постсинтетический (премитотический) период. Три последних периода составляют интерфазу - подготовку к делению клетки.
-
Пресинтетический (постмитотический) период G1 - 2n2c
Интенсивно образуются органоиды (рибосомы и другие), синтезируется белки, АТФ и все виды РНК, ферменты, клетка растет.
Длится 6-10 часов. Важнейшее событие этого периода - удвоение ДНК, вследствие которого к концу синтетического периода каждая хромосома состоит из двух хроматид. Происходит удвоение центриолей (репликация центриолей). Активно синтезируются структурные белки ДНК - гистоны.
Короткий, длится 2-6 часов. Это время клетка тратит на подготовку к последующему процессу - делению клетки, синтезируются белки (тубулин для веретена деления) и АТФ, делятся митохондрии и хлоропласты.
Митоз (греч. μίτος - нить)
Митоз является непрямым способом деления клетки, наиболее распространенным среди эукариотических организмов. По продолжительности занимает около 1 часа. К митозу клетка готовится в период интерфазы путем синтеза белков, АТФ и удвоения молекулы ДНК в синтетическом периоде.
Митоз состоит из 4 фаз, которые мы далее детально рассмотрим: профаза, метафаза, анафаза, телофаза. Напомню, что клетка вступает в митоз с уже удвоенным (в синтетическом периоде) количеством ДНК. Мы рассмотрим митоз на примере клетки с набором хромосом и ДНК 2n4c.
- Бесформенный хроматин в ядре начинает собираться в четкие оформленные структуры - хромосомы - происходит это за счет спирализации ДНК (вспомните мой пример ассоциации хромосомы с мотком ниток)
- Оболочка ядра распадается, хромосомы оказываются в цитоплазме клетки
- Центриоли перемещаются к полюсам клетки, образуются центры веретена деления
ДНК максимально спирализована в хромосомы, которые располагаются на экваторе клетки. Каждая хромосома состоит из двух хроматид, соединенных центромерой (кинетохором). Нити веретена деления прикрепляются к центромерам хромосом (если точнее, прикрепляются к кинетохору центромеры).
Самая короткая фаза митоза. Хромосомы, состоящие из двух хроматид, распадаются на отдельные хроматиды. Нити веретена деления тянут хроматиды (синоним - дочерние хромосомы) к полюсам клетки.
- Начинается процесс деспирализации ДНК, хромосомы исчезают и становятся хроматином (вспомните ассоциацию про раскрученный моток ниток)
- Появляется ядерная оболочка, формируется ядро
- Разрушаются нити веретена деления
В телофазе происходит деление цитоплазмы - цитокинез (цитотомия), в результате которого образуются две дочерние клетки с набором 2n2c. В клетках животных цитокинез осуществляется стягиванием цитоплазмы, в клетках растений - формированием плотной клеточной стенки (которая растет изнутри кнаружи).
Образовавшиеся в телофазе дочерние клетки 2n2c вступают в постмитотический период. Затем в синтетический период, где происходит удвоение ДНК, после чего каждая хромосома состоит из двух хроматид - 2n4c. Клетка с набором 2n4c и попадает в профазу митоза. Так замыкается клеточный цикл.
- В результате митоза образуются дочерние клетки - генетические копии (клоны) материнской.
- Митоз является универсальным способом бесполого размножения, регенерации и протекает одинаково у всех эукариот (ядерных организмов).
- Универсальность митоза служит очередным доказательством единства всего органического мира.
Попробуйте самостоятельно вспомнить фазы митоза и описать события, которые в них происходят. Особенное внимание уделите состоянию хромосом, подчеркните сколько в них содержится молекул ДНК (хроматид).
Мейоз
Мейоз (от греч. μείωσις — уменьшение), или редукционное деление клетки - способ деления клетки, при котором наследственный материал в них (число хромосом) уменьшается вдвое. Мейоз происходит в ходе образования половых клеток (гамет) у животных и спор у растений.
В результате мейоза из диплоидных клеток (2n) получаются гаплоидные (n). Мейоз состоит из двух последовательных делений, между которыми практически отсутствует пауза. Удвоение ДНК перед мейозом происходит в синтетическом периоде интерфазы (как и при митозе).
Как уже было сказано, мейоз состоит из двух делений: мейоза I (редукционного) и мейоза II (эквационного). Первое деление называют редукционным (лат. reductio - уменьшение), так как к его окончанию число хромосом уменьшается вдвое. Второе деление - эквационное (лат. aequatio — уравнивание) очень похоже на митоз.
-
Профаза мейоза I
Помимо типичных для профазы процессов (спирализация ДНК в хромосомы, разрушение ядерной оболочки, движение центриолей к полюсам клетки) в профазе мейоза I происходят два важнейших процесса: конъюгация и кроссинговер.
Конъюгация (лат. conjugatio — соединение) - сближение гомологичных хромосом друг с другом. Гомологичными хромосомами называются такие, которые соответствуют друг другу по размерам, форме и строению. В результате конъюгации образуются комплексы, состоящие из двух хромосом - биваленты (лат. bi - двойной и valens - сильный).
После конъюгации становится возможен следующий процесс - кроссинговер (от англ. crossing over — пересечение), в ходе которого происходит обмен участками между гомологичными хромосомами.
Кроссинговер является важнейшим процессом, в ходе которого возникают рекомбинации генов, что создает уникальный материал для эволюции, последующего естественного отбора. Кроссинговер приводит к генетическому разнообразию потомства.
Биваленты (комплексы из двух хромосом) выстраиваются по экватору клетки. Формируется веретено деления, нити которого крепятся к центромере (кинетохору) каждой хромосомы, составляющей бивалент.
Нити веретена деления сокращаются, вследствие чего биваленты распадаются на отдельные хромосомы, которые и притягиваются к полюсам клетки. В результате у каждого полюса формируется гаплоидный набор будущей клетки - n2c, за счет чего мейоз I и называется редукционным делением.
Происходит цитокинез - деление цитоплазмы. Формируются две клетки с гаплоидным набором хромосом. Очень короткая интерфаза после мейоза I сменяется новым делением - мейозом II.
Мейоз II весьма напоминает митоз по всем фазам, поэтому если вы что-то подзабыли: поищите в теме про митоз. Главное отличие мейоза II от мейоза I в том, что в анафазе мейоза II к полюсам клетки расходятся не хромосомы, а хроматиды (дочерние хромосомы).
В результате мейоза I и мейоза II мы получили из диплоидной клетки 2n4c гаплоидную клетку - nc. В этом и состоит сущность мейоза - образование гаплоидных (половых) клеток. Вспомнить набор хромосом и ДНК в различных фазах мейоза нам еще предстоит, когда будем изучать гаметогенез, в результате которого образуются сперматозоиды и яйцеклетки - половые клетки (гаметы).
Сейчас мы возьмем клетку, в которой 4 хромосомы. Попытайтесь самостоятельно описать фазы и этапы, через которые она пройдет в ходе мейоза. Проговорите и осмыслите набор хромосом в каждой фазе.
Помните, что до мейоза происходит удвоение ДНК в синтетическом периоде. Из-за этого уже в начале мейоза вы видите их увеличенное число - 2n4c (4 хромосомы, 8 молекул ДНК). Я понимаю, что хочется написать 4n8c, однако это неправильная запись!) Ведь наша исходная клетка диплоидна (2n), а не тетраплоидна (4n) ;)
- Поддерживает постоянное число хромосом во всех поколениях, предотвращает удвоение числа хромосом
- Благодаря кроссинговеру возникают новые комбинации генов, обеспечивается генетическое разнообразие состава гамет
- Потомство с новыми признаками - материал для эволюции, который проходит естественный отбор
Бинарное деление надвое
Митоз и мейоз возможен только у эукариот, а как же быть прокариотам - бактериям? Они изобрели несколько другой способ и делятся бинарным делением надвое. Оно встречается не только у бактерий, но и у ряда ядерных организмов: амебы, инфузории, эвглены зеленой.
При благоприятных условиях бактерии делятся каждые 20 минут. В случае, если условия не столь благоприятны, то больше времени уходит на рост и развитие, накопление питательных веществ. Интервалы между делениями становятся длиннее.
Амитоз (от греч. ἀ - частица отрицания и μίτος - нить)
Способ прямого деления клетки, при котором не происходит образования веретена деления и равномерного распределения хромосом. Клетки делятся напрямую путем перетяжки, наследственный материал распределяется "как кому повезет" - случайным образом.
Амитоз встречается в раковых (опухолевых) клетках, воспалительно измененных, в старых клетках.
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Кожа - самый большой по площади орган человека. Кожа образует наружный покров, отделяющий внутренние органы и ткани от окружающей среды.
Состоит кожа из эпидермиса (от греч. epi – над и derma – кожа) - наружного слоя, и дермы (собственно кожи) - внутреннего соединительно-тканного слоя. Ниже кожи расположена гиподерма (греч. hypo — вниз), представленная жировой тканью.
Эпидермис
Эпидермис кожи представлен многослойным ороговевающим эпителием. В эпидермисе различают (снизу вверх) 5 слоев: базальный, шиповатый, зернистый, блестящий и роговой. В базальном слое клетки интенсивно делятся митозом, по мере перемещения клеток к поверхности они отмирают и ороговевают. Ороговение связано с накоплением клетками особого вещества - кератина.
Роговой (самый верхний) слой эпидермиса полностью обновляется за 7-11 суток. Благодаря такому обновлению эпидермис весьма устойчив к действию механических и химических факторов, является барьером для микробов - бактерий, непроницаем для воды.
В базальном слое расположены меланоциты (от греч. melanos - чёрный) - клетки, которые накапливают пигмент черного цвета - меланин. Синтез этого пигмента усиливается при длительном нахождении на солнце, что и является причиной появления на коже "загара".
На самом деле загар представляет защитную реакцию организма на вредное воздействие ультрафиолетовых лучей, которая препятствует их прохождению через кожу во внутренние ткани и органы.
Дерма
Под эпидермисом расположена дерма (собственно кожа), в которой можно обнаружить потовые и сальные железы, а также волосяные фолликулы (лат. folliculus - мешочек). В дерме расположены кровеносные и лимфатические сосуды, нервы, мышечные волокна.
В дерме различают два слоя:
Образован рыхлой соединительной тканью в виде сосочков, вдающимися в нижние слои эпидермиса. Именно сосочковый слой определяет уникальный рисунок кожи человека. Здесь расположены кровеносные и лимфатические сосуды, нервные окончания.
Образован плотной волокнистой соединительной тканью. Структурные белки - коллаген и эластин (вместе с гиалуроновой кислотой) - придают этому слою (и коже в целом) прочность и эластичность. В сетчатом слое локализуются потовые и сальные железы, волосяные фолликулы.
Мы приступаем к изучению придатков кожи: сальных, потовых желез, волос и ногтей. Термин придатки ни в коем случае не преуменьшает значимость этих образований, он лишь подчеркивает, что все они - производное (образовались из) эпидермиса кожного покрова.
Потовые железы - трубчатые экзокринные железы, протоки которых открываются на поверхность кожи порами. Выделяют секрет - пот, в составе которого присутствует вода, мочевина, мочевая кислота, соли. Потовые железы находятся почти по всей поверхности кожи.
Функции потовых желез:
- Выделительная - удаляют из организма мочевину, мочевую кислоту
- Участие в водном и солевом обмене - с потом выделяются вода и соли для поддержания гомеостаза
- Терморегуляционная - при испарении пота кожа охлаждается, избавляясь от избытка тепла
Сальные железы расположены, в отличие от потовых, более поверхностно. Их выводные протоки могут открываться как в волосяную сумку, так и на поверхность кожи. Секрет сальных желез - кожное сало, которое предотвращает развитие на коже микробов, препятствует высыханию кожи, смягчает ее поверхность и является смазкой для придатков кожи - волос.
Волос - производное эпидермиса, состоящее из корня и стержня. Корень волоса заканчивается волосяной луковицей, в которую снизу входит волосяной сосочек с сосудами и нервами. Рост волос происходит за счет деления клеток волосяной луковицы. Снаружи корень волоса окружен волосяной сумкой, к которой крепится мышца, поднимающая волос.
Проток сальной железы открывается в волосяную воронку - место перехода корня волоса в стержень. Стержень состоит из мозгового и коркового вещества, представленного ороговевшими клетками. К старости количество пигмента в ороговевших клетках (чешуях) снижается, а количество пузырьков газа - увеличивается, что и является причиной поседения волос.
Волосы у человека по сравнению со многими другими животными - крошечные и не могут выполнять функцию термоизоляции. Ресницы, брови, волосы носа и уха выполняют защитную функцию. Брови служат для недопущения попадания пота, раздражителя, в глаза.
Ногти - производные эпидермиса, представляющие собой выпуклые роговые пластинки, расположенные в ногтевом ложе. Ногтевое ложе состоит из росткового эпителия и соединительной ткани, богато нервными окончаниями и кровеносными сосудами. Рост ногтя происходит за счет деления клеток росткового эпителия.
В нижней части ногтевое ложе окружено плотным кожистым валиком - кутикулой, которая предохраняет ростковую зону ногтя от попадания в нее бактерий, инородных частиц. Функция ногтя - защита чувствительной части пальца от механических повреждений и создание для нее опоры.
Кожа - орган терморегуляции
Вы уже знаете, что за счет испарения пота кожа может охлаждаться, тем самым выполняя терморегуляционную функцию. Однако, это не единственный механизм терморегуляции. В коже расположены сети кровеносных сосудов.
Во время жары сосуды расширяются, кровь заполняет их - теплоотдача увеличивается, таким образом, организм отдает лишнее тепло окружающей среде.
Во время холода сосуды сужаются, крови в них становится меньше (теплоотдача уменьшается), она устремляется во внутренние органы (печень), чтобы организм как можно дольше смог поддерживать оптимальную температуру.
Кожа - орган осязания
В коже находятся нервные окончания (рецепторы), воспринимающие различные раздражители: холод, тепло, давление, боль. Холодовые рецепторы находятся у поверхности кожи, тепловые - залегают в дерме (собственно коже). Боль воспринимается с помощью свободных нервных окончаний.
Кожа - место синтеза витамина D
Кожа активно участвует в синтезе витамина D. В ней содержится вещество предшественник витамина D - эргостерин, который под ультрафиолетовыми лучами (вот почему полезно бывать на солнце) преобразуется в витамин D.
У детей при недостатке солнечного облучения (инсоляции) может развиваться рахит - размягчение костной ткани, так как витамин D участвует в усвоении кальция.
Функции кожи
Защищает внутренние органы и ткани от механических повреждений, покрыта кожным салом, которое препятствует развитию болезнетворных микроорганизмов.
При попадании в кожу чужеродных веществ (антигенов) происходит их распознавание и уничтожение, удаление. Воспаление кожи называется дерматит (от др.-греч. δέρμα, δέρματος — кожа + лат. itis — воспаление).
Терморегуляция осуществляется за счет потовых желез, кровеносных сосудов и подкожно-жировой клетчатки, которая выполняет теплоизоляцию внутренних органов и тканей.
Благодаря работе потовых желез из организма удаляется мочевая кислота, мочевина - побочные продукты обмена веществ.
При наполнении сосудов кожи в них может депонироваться до 1 л крови.
В коже располагаются температурные, холодовые, болевые рецепторы, а также рецепторы давления. Все они обеспечивают осязательную функцию кожи.
За счет работы потовых желез кожа принимает участие в водно-солевом обмене, а за счет образования витамина D во время инсоляции (солнечного облучения).
Заболевания
Раздел медицины, изучающий кожу, называется - дерматология. Известно тяжелое наследственное заболевание кожи - ихтиоз (греч. «ихтис» — рыба). Характеризуется нарушением ороговения кожи: образуются чешуйки, напоминающие рыбью чешую. Порой ороговение выражено настолько сильно, что несовместимо с жизнью.
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Митотический цикл клетки. Фазы клеточного цикла
Существует два типа деления клеток — митоз и мейоз. Митоз — обычное деление соматических клеток, благодаря которому организм растет, развивается и регенерирует ткани. Митотическое деление в норме заканчивается появлением двух дочерних клеток, каждая из которых содержит набор хромосом и генов, идентичных родительской клетке. В течение жизни соматических клеток возможны десятки и даже сотни последовательных митозов.
В отличие от этого, мейоз происходит только в половых клетках. Мейоз заканчивается образованием половых клеток или гамет, которые имеют только 23 хромосомы — по одной из каждой пары аутосом и Х- или Y-хромосому. Таким образом, соматические клетки имеют диплоидный (diploos, двойное количество) или 2п-набор хромосом (т.е. 46 хромосом), а гаметы имеют гаплоидный (haploos, единственный) или n-набор хромосом (т.е. 23 хромосомы). Клинически значимые аномалии числа или структуры хромосом могут возникать в ходе деления как в соматических, так и в половых клетках.
Клеточный цикл
Человек начинает свое существование как оплодотворенная яйцеклетка (зигота) — диплоидная клетка, из которой происходят все клетки организма (приблизительно около 100 трлн в течение жизни), полученные в ходе десятков и сотен последовательных митозов. Очевидно, что митоз критически важен для роста и дифференцировки, но он занимает только небольшую часть жизненного цикла клетки. Период между двумя последующими митозами называют интерфазой, это состояние, в котором проходит основная часть жизни клетки.
Сразу же после митоза клетка входит в фазу G1, в которой не происходит синтез ДНК. Некоторые клетки проходят этот этап в течение нескольких часов; другие тратят на него гораздо больше: дни и даже годы. Фактически некоторые типы клеток, например эритроциты и нейроны, вообще не делятся после завершения дифференцировки. Таким образом они навсегда остаются в фазе G1, называемой в этом случае G0. Другие клетки, например печеночные, могут входить в стадию G0, но в случае повреждения органа возвращаются в фазу G1 и продолжают клеточный цикл.
Хотя молекулярные механизмы, управляющие клеточным циклом, понятны не до конца, ясно, что существует целая серия контрольных точек, которые определяют время каждой стадии митоза. Кроме того, эти контрольные точки управляют точностью синтеза ДНК, а также формированием и прикреплением сложной сети микротрубочек, обеспечивающих расхождение хромосом. Если обнаружен дефект генома на контрольных точках, клеточный цикл останавливается до восстановления повреждения, а в случае, если это невозможно, запускается программа смерти клетки (процесс, называемый апоптозом).
В течение фазы G1 каждая клетка содержит одну диплоидную копию генома. Вслед за фазой G1 наступает фаза S, стадия синтеза ДНК, при котором каждая хромосома, представленная в G1 единственной молекулой ДНК, удваивается и становится двойной хромосомой, состоящей из двух сестринских хроматид, каждая из которых содержит идентичную копию исходной двойной спирали линейной ДНК. Концы хромосомы (или хроматиды) представлены теломерами, состоящими из специализированных повторяющихся последовательностей ДНК, которые сохраняют целостность хромосомы в течение деления.
К концу S фазы содержание ДНК в клетке удваивается, и каждая клетка теперь содержит две копии диплоидного генома. После фазы S клетка входит в короткую фазу G2. В ходе всего клеточного цикла происходит продукция рибонуклеиновых кислот и белков, клетка постепенно увеличивается, в конечном счете практически удваивая общий объем перед следующим митозом, которым и заканчивается фаза G2. Митоз наступает, когда отдельные хромосомы начинают конденсироваться и становятся видимыми под микроскопом как тонкие нити, что детально описано далее.
Фазы G1, S и G2 составляют интерфазу. В типичных делящих клетках человека эти три фазы занимают в общей сложности от 16 до 24 ч, в то время как митоз продолжается только 1-2 ч. Тем не менее существует значительная вариабельность в продолжительности клеточного цикла, от нескольких часов у быстро делящихся клеток, например эпидермиса кожи или слизистой оболочки кишечника, до многих месяцев у других типов клеток.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Читайте также: