Из чего выращивают клетки кожи
Лечить тяжелые повреждения кожи, например, сильные ожоги призвана научная разработка Института биологии развития РАН имени Н. К. Кольцова.
Об этом корреспондент НТВ Гарри Княгницкий.
У пациента ожоги 70% тела. 260 дней он пролежал в больнице. Потом мужчине трансплантировали эквиваленты кожи, выращенные в лабораторных условиях. Общая площадь два квадратных метра. Через полтора месяца пациент выписался из клиники: .
Андрей Васильев, директор Института биологии развития РАН имени Н. К. Кольцова: «Верхний слой кожи эпидермис, который мы хорошо знаем. Наверху дифференцированные клетки. Нужно создать условия, чтобы они росли. Они довольно капризны».
Условия для роста создают в лаборатории в Институте биологии развития. недели, и готов целый лоскут. Вообще кожные трансплантаты бывают двух типов. Первый искусственно выращенный из донорской клетки, он нужен как временная защита раны от воспаления и прочих обычно фатальных неприятностей.
Екатерина Воротеляк, заведующая лабораторией клеточной биологии: «Ожоговые больные, например, прежде всего погибают от обезвоживания и инфицирования. И поэтому временное покрытие для них спасающее жизнь».
И пока пациент, что называется, прикрыт, для него выращивают уже постоянную кожу. Причем практически любого размера. По уже обкатанной технологии. В этом и состоит прорыв, которого добились российские врачи.
Андрей Васильев, директор Института биологии развития РАН имени Н. К. Кольцова: «Можно вырастить там 10 квадратных сантиметров, и этим гордиться. Можно провозгласить, что я умею. Но правда заключается в том, что есть пациент, и ему нужен метр. Можете сделать метр с сохранением свойств за три недели? Тогда хорошо».
Над выращиванием клеток кожи у нас начали работать еще 30 лет назад. И вечно не хватало. Сначала нормального оборудования, потом денег, затем юридического статуса. Частные компании и рады были инвестировать в проект, но с точки зрения закона он был вроде как не совсем легальным. Трансплантация и выращивание клеток вопрос тонкий.
Сергей Краевой, заместитель министра здравоохранения РФ: «А здесь очень важно, у кого получают клеточные продукты, как их готовят, как их хранят, как их транспортируют, как их используют. Как их утилизируют. Это целый пласт проблем и требований».
1 января 2017 года вступит в силу закон о биомедицинских клеточных продуктах. Можно будет зарегистрировать технологию и начать клинические исследования. Пересадка искусственно выращенной кожи станет общедоступной, лишь когда будет полная гарантия безопасности процедуры.
Организм человека можно спокойно сравнивать с очень сложным и порой запутанным механизмом, к которому не прилагалась инструкция, посему ученым приходится самим во всем разбираться. В нашем теле много систем, от нервной до иммунной, каждая из которых выполняет свои определенные функции и связывается с другими системами, что позволяет организму эффективно функционировать. В научно-исследовательском сообществе львиная доля внимания приходится на нервную систему. Всех тянет раскрыть секреты нашего мозга, который так часто сравнивают по загадочности с Вселенной. Но другие системы не менее интересны, сложны и важны. Сегодня мы с вами рассмотрим исследование, объединившее в себе математику, биохимию и много любопытства. А целью сего исследования является эпидермис, то бишь кожа человека. Как математика помогла ученым понять чего им не хватало в процессе выращивания кожи и что у них получилось в результате? На эти и другие вопросы мы попытаемся ответить с помощью доклада исследовательской группы. Поехали.
Пожизненная «броня»
Кожа человека не так проста, как может показаться на первый взгляд. Кто-то может считать ее просто оболочкой, а кто-то и вовсе «мешком для костей». Но оставим в сторонке высказывания самого аморального робота в мире по имени Бендер и углубимся в структуру кожи человека.
Во-первых, кожа это самый большой орган человеческого тела (других существ не будем затрагивать, учитывая рассматриваемое исследование), состоящий из трех основных подсистем: эпидермис (внешний слой), дерма (соединительная ткань между верхним слоем кожи и органами) и подкожно-жировая клетчатка (терморегулирующий и защитный слой с функцией «хранилища» питательных веществ).
Строение кожи человека.
Поскольку в исследовании ученые «колдуют» над эпидермисом, мы рассмотрим этот слой подробнее.
Эпидермис человека, если вы одинаково любите анатомию и кулинарию, напоминает торт Наполеон, ибо состоит из пяти слоев. В каждом из слоев имеются клетки, которые являются главными «испытуемыми» в рассматриваемом нами исследовании — кератиноциты. В эпидермисе они вообще занимают львиную долю — порядка 90% от всех клеток.
Функции кератиноцитов разнятся в зависимости от принадлежности к определенному слою:
- базальный — самый близкий к дерме слой, в котором такие клетки как кератиноциты именуются базальными, что вполне логично. Эти клетки в сопряжении со стволовыми занимаются важным процессом — регенерацией эпидермиса. Также в цитоплазме кератиноцитов имеются меланосомы — гранулы меланина, полученные от меланоцитов (клеток), которые защищают нас от воздействия ультрафиолетового излучения.
- шиповатый слой получил свое колючее название за счет необычной структуры клеток кератиноцитов, имеющих шипообразные отростки для соединения друг с другом. В цитоплазме местных кератиноцитов происходит синтез кератина, участвующего в формировании волос и ногтей. С биологической точки зрения, кератин уступает по физической прочности только хитину. Помимо этого тут есть и кератиносомы, которые делают нашу кожу гидрофобной.
- зернистый слой — кератиноциты также обладают кератиносомами, то есть препятствуют обезвоживанию кожи. Также кератиноциты в данном слое синтезируют некоторые белки.
- блестящий слой назван так, поскольку при микроскопии не выявляются клетки, а сам слой похож на однородную полоску розового цвета. Так оно и есть — ядра, органеллы и межклеточные соединения кератиноцитов в данном слое разрушаются. При этом имеется вещество, связывающее кератиноциты (или то, что от них осталось). Это делает кожу прочной.
- роговой — наружный слой эпидермиса, контактирующий с окружающей средой. А еще его можно назвать самым настоящим клеточным кладбищем, ибо образован он из мертвых кератиноцитов (именуемых роговыми чешуйками), которые постоянно обновляются. Это обеспечивает эффективную защиту от внешних факторов.
Клетка кератиноцита
Стоит также упомянуть и тот факт, что кератиноциты участвуют и в заживлении ран. При повреждении кожи клетки кератиноцитов начинают активно делиться и мигрировать к области травмы, где происходит эпителизация, то есть ранка начинает зарастать.
Как мы можем понять по этим слоям, кератиноцитов много и они выполняют разные функции, когда работают совместно с клетками другого типа. Универсальные солдаты среди клеток эпидермиса, никак иначе.
В чем же проблема исследования, спросите вы? А в том, что нормальный слой эпидермиса человека примерно 100 мкм в толщину, а вот искусственный (созданный посредством пассирования кератиноцитов) всего лишь 10 мкм.
Пассирование клеток* — отбор необходимого числа клеток для их дальнейшего выращивания на субстрате (например, в чашке Петри).
Такой эпидермис попросту будет неэффективен, как танк из папье-маше. И вот тут может помочь математика, а именно математическая модель. О ней и поговорим далее.
Основа исследования
Ученые и раньше использовали математические модели в качестве основы процесса создания человеческого эпидермиса. В данном же исследовании была разработана новая методика эпидермального гомеостаза, в основе которой лежит именно математическая модель распределяемых в базальном слое кератиноцитов, полученных из стволовых клеток. Стоит отметить, что в модели также учитывались динамические процессы в эпидермисе (миграция и дифференцировка клеток кожи) и внутриклеточные процессы, связанные с Ca 2+ .
Данная математическая модель позволила понять, что важнейшую роль в синтезе эпидермиса необходимой толщины и структуры играет распределение стволовых клеток и структура базальных мембран, отделяющих соединительную ткань от эпителия.
Если же более конкретно говорить о таком показателе как толщина, то именно базальные мембраны играют главную роль. Для достижения необходимого результата ученые применили синусоидальную модуляцию для формы базальной мембраны, изменяя амплитуду и длину волны. В результате чего было обнаружено, что для стабильной структуры эпидермиса необходимой толщины требуется волнистые базальные мембраны с большой амплитудой и короткой длиной волны. То есть волнообразность папиллярного слоя, расположенного над дермой и под эпидермисом, является критически важной для создания модели эпидермиса, приближенной к реальным физиологическим показателям.
Помимо толщины и прочности кожа человека обладает еще и гидрофобностью, которая зависит от толщины рогового слоя. Соответственно, толщина этого слоя также должна учитываться в экспериментальной модели для более реалистичного воссоздания эпидермиса.
Объединив все желаемое и необходимое, ученые спроектировали модель для демонстрации возможности создания приближенного к реальности эпидермиса, включающего в себя роговой слой и межклеточную пластинчатую липидную структуру. Реализация всего этого осуществлялась путем посева пассированных кератиноцитов на волнистой поверхности полиэфирной основы в открытых чашках Петри.
Результаты были весьма успешны, чем подтвердили не только полноценность и корректность данного метода выращивания, но и важность использования математических моделей, как инструментов прогнозирования процессов.
Результаты исследования
Изображение №1
На изображениях выше показаны результаты моделирования и результаты выращивания эпидермиса на основе этого моделирования.
Исследователи обращают наше внимание на два очень показательных изображения (1А и 1В). В первом случае имеется плоская базальная мембрана, во втором — синусоидальная, которая и позволила увеличить толщину и прочность эпидермиса.
Но это лишь модель, хоть и с очень заманчивыми результатами, для получения которых необходимо установить какие параметры должна иметь основа для посева (полиэфир). Для этого была проанализирована структура паппилярного слоя, толщина которого у человека составляет 51 мкм, а интервал «волнистости» — 105 мкм (анализировалась кожа на брюшной полости, средний возраст участников исследования — 36.3 года).
Коротенький вывод — волнообразная основа для посева приводит к увеличению числа живых клеток эпидермиса и к его утолщению и уплотнению, что приближает выращенный образец по показателям к реальному человеком эпидермису.
Изображение №2
Филаггрин (2А), лорикрин (2В) и ZO-1 (2С) были экспрессированы в верхнем слое эпидермиса. А экспрессия клаудина 1 прошла в клеточной мембране по всей плоскости эпидермиса (2D).
Обратите внимание на изображение 2G, на котором черной стрелкой и знаком «*» отмечен определенный слой — роговой. Это говорит о том, что данный синтезированный эпидермис имеет хорошие защитные (от внешних факторов) характеристики.
Изображение №3
Исследователи также проверили белок CSPG4, который играет очень важную роль во взаимодействии клетки и субстрата. Анализ показал наличие данных клеток на волокнах основы (3D, белые стрелки), что говорит о наличии на волокнах клеток, часть которых имеет пролиферирующие свойства.
Следующим испытуемым стал белок YAP, который участвует в регуляции транскрипции (синтеза РНК в клетках за счет ДНК). В контрольном образце YAP был локализован исключительно на базальном слое (3Е). А вот в тестовом образце YAP присутствовал вокруг волокон (3F, красные стрелки).
Применение малых интерферирующих РНК в процессе анализа активности белка YAP привел к дестабилизации трехмерной структуры (3G и 3H).
В контрольном образце с применением малых интерферирующих РНК белок YAP был экспрессирован вокруг волокон (3I), а в тестовом образце экспрессия была незначительна (3J). Но, несмотря на это, применение малых интерферирующих РНК никак не повлияло на пролиферацию кератиноцитов.
Для более детального ознакомления с нюансами и подробностями исследования настоятельно рекомендую заглянуть в доклад исследовательской группы и дополнительные материалы к нему.
Данное исследование совместило в себе биохимию и математику. Конечно, эти две науки очень часто ходят парой, если ученые намерены получить достоверные и адекватные результаты. Применение математического моделирования в данном случае помогло понять важность волнообразности основы для выращивания эпидермиса, что значительно увеличивает число живых клеток и, как следствие, толщину и прочность образца.
Сей труд по большей степени был нацелен на проверку работоспособности именно математической модели, а не самой техники выращивания эпидермиса. Те трудности, с которыми сталкивались исследователи ранее, более не будут мешать им продолжать более детальное изучение способов синтеза клеток и выращивания эпидермиса в таком виде, который будет максимально приближен к реальному.
Результаты этого труда вполне могут в дальнейшем стать достаточно важным шагом вперед как для трансплантологии, так и для исследований кожи человека в целом, а также подтолкнуть других исследователей более активно применять математическое моделирование как инструмент первоочередной важности.
Благодарю за внимание, оставайтесь любопытствующими и отличной всем рабочей недели, ребята.
Спасибо, что остаётесь с нами. Вам нравятся наши статьи? Хотите видеть больше интересных материалов? Поддержите нас оформив заказ или порекомендовав знакомым, 30% скидка для пользователей Хабра на уникальный аналог entry-level серверов, который был придуман нами для Вас: Вся правда о VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps от $20 или как правильно делить сервер? (доступны варианты с RAID1 и RAID10, до 24 ядер и до 40GB DDR4).
VPS (KVM) E5-2650 v4 (6 Cores) 10GB DDR4 240GB SSD 1Gbps до весны бесплатно при оплате на срок от полугода, заказать можно тут.
Многие из анатомии знают, что кожа выступает как «защитная оболочка» организмов людей и животных. Она состоит из двух частей – эпидермиса (верхняя многослойная поверхность эпителия) и дермы (соединительнотканная часть, которая объединяет эпидермис и мышечные ткани организма). Кожа занимает большую площадь на теле человека. У взрослых людей она достигает 1,5-2,3 м 2 . Её главная задача - в защите тела от широкого спектра внешних воздействий. Клетки кожи, как и органы дыхания, принимают внутрь кислород, которым обогащают свою деятельность в организме. При различных травмоопасных ситуациях (например, ожогах и крупных порезах) человек может лишатся своей «защитной оболочки». На заживление и восстановление кожного покрова требуется большое количество времени. Поэтому, чтобы облегчить этот процесс и помочь коже приобрести здоровый вид, учёными были разработаны варианты искусственной человеческой кожи, которая ускорит заживления на теле.
Построение искусственной кожи выглядит следующим образом – на коллагеновый гель (основу искусственной кожи), который содержит дермальные клетки – фибробласты (это аналог дермы, имеющий большое количество коллагена и фибробластов), выкладывают верхним слоем эпителиальные клетки – кератиноциты, которые точь-в-точь похожи на эпидермис – верхний слой кожи. Таким образом, искусственная кожа состоит из двух слоёв, как и настоящая человеческая кожа. На рану накладывается готовое изделие той же структуры, что и кожа пациента, и начинается процесс заживления.
Хотя сама искусственная кожа приживается лишь на время, входящие в ее состав клетки активно секретируют различные ростовые факторы, которые стимулируют собственные клетки пациента к делению и миграции в область раны. Благодаря этому рана начинает быстрее затягиваться по краям. Кожа восстанавливается. Клетки донора постепенно замещаются вновь образованными клетками самого больного. Конечно, в качестве источника кожи можно использовать и собственную кожу пациента с неповреждённых участков, но при ожогах большой площади этого, как правило, не хватает. Так как искусственная кожа по своей структуре напоминает настоящую человеческую кожу, то её также используют и для бионических протезов с сохранением чувствительности.
В России новый материал был разработан в ходе получения смеси из латекса и биоактивных растительных компонентов. Искусственная ткань плотно прилегает к ране, защищает её в дальнейшем от внешних воздействий и выполняет лечебный процесс. Учёные отмечают, что самые сложные повреждения с новой «кожей» затягиваются в течение двух дней. В Институте теоретической и экспериментальной биофизики РАН было создано идеальное раневое покрытие, которое защищает больное место от механических повреждений и вредоносных инфекций. Кроме того, искусственная кожа создает оптимальные условия для роста клеток, пропускает воздух и водные пары, чтобы рана под таким покрытием не высыхала и не мокла. Когда тончайшая пленка накладывается на рану, клетки начинают переходить в нее, смешиваясь с клетками пациента, и активизируют выработку коллагена для зарастания раны и образования рубца. Латексная «подложка» после этого просто отсоединяется, и медикам нет необходимости мучить пациентов бесконечными перевязками. Причем после выписки пациент может самостоятельно использовать лечебные мази, нанося их на латексную пленку, которая имеет микропоры, как обычная кожа.
Эксперимент с использованием 3D-биопринтера на животном
В 2019 году ученые впервые создали 3D-биопринтер, который печатает кожу в два слоя собственной кожи пациента прямо на ране. Над этим исследованием работали специалисты из Института регенеративной медицины (США). Принтер использует «чернила», которые состоят из клеток пациента, чтобы минимизировать риск отторжения. Вначале делается биопсия здоровой кожи пациента и выращивается большое количество клеток, после чего их смешивают с гидрогелем для образования "чернил" 3D-биопринтера. Точнее создаются два типа "чернил" – для внутреннего слоя (из клеток-фибропластов) и внешнего (из клеток-кератиноцитов). После удачных экспериментов, проведенных на мышах, был получен отличный результат, который в дальнейшем позволит проводить клинические испытания на людях.
3D-принтер печатает искусственную кожу с сосудами (Living Skin Can Now be 3D-Printed With Blood Vessels Included/ Теперь живую кожу можно напечатать на 3D-принтере, включая кровеносные сосуды)
После изобретения 3D-биопринтера, печатающего искусственную кожу, идентичную коже пациента, было принято решение усовершенствовать разработку, так как просто полученная кожа могла подойти не каждому пациенту. Основная причина в этом - отсутствие кровеносных сосудов, которые нужны для коммуникации трансплантированного участка с окружающими тканями. Ученые из Политехнического института Ренсселера (Нью Йорк, США) выяснили, что если в биочернила добавить эндотелиальные клетки человека, которые выстраиваются внутри кровеносных сосудов, и клетки перицита человека, обволакивающих вокруг эндотелиальных клеток, вместе с животным коллагеном и другими структурными клетками, то в течение нескольких недель они начинают формировать сосуд. Так, в ходе исследований ученые пересадили участок искусственной кожи мышке. Он удачно прижился на животном и не вызвал отторжения. Кроме того, его сосуды благополучно соединились с кровеносной системой мыши и начали снабжать клетки ткани кровью.
Искусственная кожа с эффектом чувствительности
В сентябре прошлого года исследователи Университета RMIT в Мельбурне представили электронную искусственную кожу, которая чувствует боль и прикосновения. Считается, что новая технология успешно найдет своё применение в протезировании, робототехнике и кожной трансплантации. Данное изобретение может показывать ощущение боли. Устройство имитирует почти мгновенную обратную связь и способно реагировать на боль с той же скоростью, с какой нервные сигналы поступают в мозг. Учёные отмечают, что эта разработка стала значительным прогрессом в области биомедицинских технологий и интеллектуальной робототехники следующего поколения. В будущем такая искусственная кожа может стать вариантом неинвазивных кожных трансплантатов, особенно в случаях, когда традиционный подход нежизнеспособен или не работает.
Возможность вырастить человеческий орган в пробирке и пересадить его человеку, нуждающемуся в пересадке — мечта трансплантологов. Ученые по всему миру работают над этим и уже научились делать ткани, небольшие работающие копии органов, и до полноценных запасных глаз, легких и почек нам на самом деле осталось совсем немного.
Легкие. Ученые из Техасского университета вырастили легкие человека в биореакторе. Правда, без кровеносных сосудов такие легкие не функциональны. Однако команда ученых из Медицинского центра Колумбийского университета (Columbia University Medical Center, New York) недавно впервые в мире получили функциональное легкое с перфузируемой и здоровой сосудистой системой у грызунов ex vivo.
Ткани сердечной мышцы. Биоинженерам из университета Мичигана удалось вырастить в пробирке кусок мышечной ткани. Правда, полноценно сердце из такой ткани пока работать не сможет, она вдвое слабее оригинала. Тем не менее пока это самый сильный образец сердечной ткани.
Кости. Израильская биотехнологическая компания Bonus BioGroup использовалат трехмерные сканы для создания гелеобразного каркаса кости перед посевом стволовыми клетками, взятыми из жира. Кости, получившиеся в результате, они успешно пересадили грызунам. Уже планируются эксперименты по выращиванию человеческих костей по этой же технологии.
Ткани желудка. Ученым под руководством Джеймса Уэллса из Детского медицинского клинического центра в Цинциннати (Огайо) удалось вырастить «в пробирке» трехмерные структуры человеческого желудка при помощи эмбриональных стволовых клеток и из плюрипотентных клеток взрослого человека, перепрограммированных в стволовые. Эти структуры оказались способны вырабатывать все необходимые человеку кислоты и пищеварительные ферменты.
Японские ученые вырастили глаз в чашке Петри. Искусственно выращенный глаз содержал основные слои сетчатки: пигментный эпителий, фоторецепторы, ганглионарные клетки и другие. Трансплантировать его целиком пока возможности нет, а вот пересадка тканей — весьма перспективное направление. В качестве исходного материала были использованы эмбриональные стволовые клетки.
Ученые из корпорации Genentech вырастили простату из одной клетки. Молекулярным биологам из Калифорнии удалось вырастить целый орган из единственной клетки.
Ученым удалось найти единственную мощную стволовую клетку в простатической ткани, которая способна вырасти в целый орган. Таких клеток оказалось чуть меньше 1% от общего числа. В исследовании 97 мышам трансплантировали такую клетку под почку и у 14 из них выросла полноценная простата, способная нормально функционировать. Точно такую же популяцию клеток биологи нашли и в простате человека, правда, в концентрации всего 0,2%.
Сердечные клапаны. Швейцарские ученые доктор Саймон Хоерстрап (Simon Hoerstrup) и Дорта Шмидт (Dorthe Schmidt) из университета Цюриха (University of Zurich) смогли вырастить человеческие сердечные клапаны, воспользовавшись стволовыми клетками, взятыми из околоплодной жидкости. Теперь медики смогут выращивать клапаны сердца специально для неродившегося еще ребенка, если у него еще в зародышевом состоянии обнаружатся дефекты сердца.
Ушная раковина. Используя стволовые клетки, ученые вырастили ухо человека на спине крысы. Эксперимент был проведен исследователями из Университета Токио (University of Tokyo) И Университета Киото (Kyoto University) под руководством Томаса Сервантеса (Thomas Cervantes).
Кожа. Ученые из Цюрихского университета (Швейцария) и университетской детской больницы этого города впервые сумели вырастить в лаборатории человеческую кожу, пронизанную кровеносными и лимфатическими сосудами. Полученный кожный лоскут способен почти полностью выполнять функцию здоровой кожи при ожогах, хирургических дефектах или кожных болезнях.
Поджелудочная железа. Ученые впервые создали васкуляризованные островки поджелудочной железы, способные вырабатывать инсулин. Еще одна попытка вылечить диабет I типа.
Почки. Ученые из австралийского университета Квинсленда научились выращивать искусственные почки из стволовых клеток кожи. Пока это лишь маленькие органоиды размером 1 см, но по устройству и функционированию они практически идентичны почкам взрослого человека.
Печень. Биологи сразу нескольких стран заявили о том, что смогли вырастить полноценный аналог печени, способный очищать кровь от токсинов и выполнять другие функции этого органа. Для этого ученые использовали стволовые клетки и «заготовки» из стволовых клеток. Эти разработки параллельно велись в Японии, Америке и России.
Мочевой пузырь. Группа американских ученых под руководством Энтони Аталы (Anthony Atala) вырастила в лаборатории человеческие мочевые пузыри, полностью готовые к пересадке, из образцов собственных тканей пациентов. Те же ученые вырастили мочеиспускательные каналы для пациентов, у которых они были повреждены.
Кроме того, ученые уже научились выращивать хрящевые ткани, ткани скелетных мышц и костей, ткани гипофиза, тимуса, а также ткани, функционирующие аналогично тканям человеческого мозга.
Американским ученым удалось вырастить клетки-предшественники сперматозоидов из клеток кожи взрослых мужчин. Клетки-предшественники сперматозоидов были получены из стволовых клеток напрямую, без генетических модификаций. Новая экспериментальная методика также дает возможность подробного изучения процесса сперматогенеза.
Американским ученым удалось вырастить клетки-предшественники сперматозоидов из клеток кожи, сообщает The Telegraph. Результаты совместной работы группы исследователей из нескольких университетов опубликованы в журнале Cell.
В работе были использованы клетки кожи взрослых мужчин, в которых ученые вызвали усиленную экспрессию определенных генов, в результате чего клетки кожи были преобразованы в индуцированные плюрипотентные стволовые клетки (hiPSCs). В эксперименте также были задействованы эмбриональные стволовые клетки (hESCs). И те, и другие клетки являются плюрипотентными – они могут дифференцироваться в клетки любого типа.
Несколько лет назад было доказано, что hESCs и hiPSCs могут дифференцироваться в первичные половые клетки (гоноциты), но, по словам авторов работы, "никому еще не удавалось получить сперматозоиды из плюрипотентных стволовых клеток".
Ученым удалось создать методику, благодаря которой можно это осуществить. Они получили клетки-предшественники сперматозоидов из стволовых клеток напрямую, без генетических модификаций. Для этого к культурам hESCs и hiESCs, выращенным в питательной среде, они добавляли белки, аминокислоты и питательные вещества в различных концентрациях.
В результате культивирования двух типов стволовых клеток были получены такие клетки-предшественники сперматозоидов, как сперматогонии и сперматиды - они развиваются на различных стадиях сперматогенеза. Образование клеток-предшественников подтверждало наличие белков, которые присутствуют только в сперме или сперматидах. "Полученные результаты являются доказательством, что мужские индуцированные плюрипотентные стволовые клетки могут напрямую дифференцироваться в линию развитых сперматозоидов", - делают вывод авторы работы.
Доктор Чарльз Изли (Charles Easley), один из соавторов исследования, считает, что результаты этого эксперимента в будущем помогут обрести право на отцовство тысячам бесплодных мужчин. Особенно это касается тех представителей сильного пола, которые стали бесплодными до наступления полового созревания, например, в результате лечения рака. "Существует процедура сбора тканей яичек до начала противораковой терапии, но мужчины, по разным причинам лишенные такой возможности, навсегда остаются бесплодными. В настоящее время этот вид бесплодия неизлечим", - отметил Изли.
По словам исследователей, разработанная ими экспериментальная методика также дает уникальную возможность подробного изучения самого процесса сперматогенеза, что в будущем может открыть новые пути для лечения мужского бесплодия.
В мае 2012 года израильские ученые опубликовали результаты исследования, в ходе которого они вырастили здоровые клетки сердца из клеток кожи пожилых пациентов.
Читайте также: