Ips что это в телевизоре
Я надеюсь, что эта статья сможет помочь таким же, как я — тем людям, которые выбирают телевизор, но не очень-то владеют тонкими техническими вопросами в этой области. Хотел бы поделиться с вами своими размышлениями и практическими выводами по-поводу выбора большого и качественного телевизора.
Последние 3 года я смотрел 42" ЖК-CCFL (это когда изображение формируется поляризованных светом от люминесцентных ламп, пропущенным через светофильтры). В 2009-м году еще не было 3D, а тонкие телевизоры с LED-подсветкой только появлялись и стоили нечестных денег. Куплен он был без особых мук выбора за $1400.
За пару лет созерцания я понял, что мне чего-то не хватает в изображении. Чего — я не мог описать, так как не владел нужными познаниями в этой области. Я точно знал, что хочу бОльшую диагональ и более глубокий черный.
После изучения матчасти я прояснил некоторые моменты.
I Тип формирования изображения.
На сегодняшний день есть 3 типа формирования изображения на современных телевизорах:
1 LCD.
Самый распространенный вид телевизоров. Изображения в таких телевизора получается при помощи поляризованного света, нескольких светофильтров и управляемых жидких кристаллов.
1.1 Типы подсветок LCD-телевизоров.
Так как изображение, которое мы видим на экране LCD-телевизора, получается в результате прохождения поляризованного света от источника подсветки, необходимо обозначить 2 типа подсветки:
a) CCFL, она же — холодный катод. Подвид тонких люминисцентных ламп, располагающихся за матрицей.
Преимущества: равномерность подсветки.
Недостатки: большая толщина, энергопотребление, невозможность локального управления подсветкой.
b) LED — светоизлучающие диоды. В настоящее время практически полностью вытеснили телевизоры с холодным катодом.
Преимущества: возможно сделать очень тонкие телевизоры, низкое энергопотребление, возможность локального управления подсветкой.
Про локальное управление подсветкой и подразделение LED-подсветки нужно сказать пару слов. LED-подсветка разделяется на 2 типа: краевая (она же EDGE-LED, когда светодиоды расположены по краям матрицы, их свет попадает на диффузор и рассеивается) и ковровая (Full HD LED, LED Pro). Так как ЖК-пикселы сами по себе не излучают свет, им необходима подсветка (о чем сказано выше), которая включена всегда. Закрытые кристаллы все равно пропускают свет, поэтому добиться низкого уровня черного (чем ниже — тем лучше) и контрастных переходов в системах с краевой подсветкой невозможно. В телевизорах самого высокого уровня используется ковровая подсветка (когда светодиоды располагаются непосредственно за матрицей). Это позволяет повысить равномерность подсветки и внедрить сегментированное управление подсветкой, когда отдельные диоды, отвечающие за области на экране, могут приглушать яркость в зависимости от сцены на экране. На самом деле, ковровую подсветку имеют это всего 2 серии — 9-я серия Philips и 9-я серия Sony. В 9-й серии LG тоже есть ковровая подсветка, но ее реализация хуже, чем краевая у конкурентных решений.
Неравномерность подсветки.
Из-за того, что светодиоды располагаются с определенной периодичностью (свое влияние вносит рассеивание и много других факторов), практически в 100% случаев LCD телевизоры с LED-подсветкой имеют неравномерность подсветки (clouding) — когда области, которые должны оставаться черными имеют другую градацию серого.
Проблема частично решается сегментированной светодиодной подсветкой.
1.2 Типы матриц LCD-телевизоров с LED-подсветкой.
Не буду вдаваться в подробности формирования изображения разными типами матриц, а вкратце опишу их основные преимущества и недостатки.a) IPS (сейчас производит только LG). Матрицы, которые, по-моему мнению, идеально подходят для ТВ низкого и среднего уровня.
Преимущества: большие углы обзора.
Недостатки: высокий уровень черного (
2. Плазма.
С этим словом связано очень много мифов и заблуждений. Любой несведущий продавец обязательно скажет вам, что плазма устарела. Это связано с набором стереотипов и проблем, имевших место быть.
Изображение формируется при помощи свечения люминофора под действием УФ-лучей.
Каждая плазменная ячейка является независимым источником света, поэтому телевизор не требует подсветки. Ранее плазменные телевизоры имели очень большую толщину и размер ячейки, поэтому были очень громоздкими и диагонали Full HD начинались с 50—60". Теперь толщина современных плазменных телевизоров не превышает 3—4 см, а диагонали начинаются с 42".
У плазменных телевизоро нет различных типов матриц с маркетинговыми названиями, но есть поколения панелей (самое совершенное — 15-е).
Сейчас плазма почти вытеснена LCD-телевизорами и ее производством занимается всего 3 компании: Panasonic, Samsung и LG (причем, собственные разработки имеют только первые 2). Связано это с убыточностью производства, конкуренцией со стороны ЖК-телевизоров и их популяризацией. Но плазма держит первые позиции в больших диагоналях.
3. OLED.
Органические светодиоды. Что-то среднее, между первыми 2-мя технологиями. Изображение формируется при помощи самоизлучающих диодов, которые светятся под воздействием электрического тока. Как и в плазме, каждая ячейка является самостоятельным источником света. Пока имеются только несколько серийных образцов таких телевизоров по очень высоким ценам. Разработками в этой области занимаются LG и Samsung.
Есть и другие типы телевизоров, например проеционные лазерные телевизоры, но их разработка уже прекращена.
Кратко о преимуществах и недостатках каждой технологии:
LCD:
Преимущества:
— относительно невысокая цена производства, что позволяет производителям получать достаточно высокую прибыль и инвестировать в производство.
— Статический метод формирования изображения (без дизеринга) хорош для отображения изображений и фотографий.
— Отлично подходит для статичного изображения и не боится его.
— LCD-телевизоры имеют высокую яркость и низкое энергопотребление
Недостатки
— Высокий уровень черного (от 0.02 нит в UV²А-матрице с ковровой подсветкой до 0.2 нит в IPS).
— Большое время отклика
— Отсутствие объема и и глубины изображения
— Динамическое разрешение без искусственных ухищрений 300 — 700 линий.
Плазма
Преимущества
— Общая глубина изображения. В целом, при подаче качественного контента, изображение на плазме заметно отличается от такового в LCD: обладает большей глубиной и насыщенностью цветов, имеет ярко выраженный эффект объема.
— Низкий уровень черного (0.008 нит в моделях Panasonic 2012 года).
— Имеют динамическое разрешение без искусственных ухищрений 1080 линий.
— Отлично подходят для динамического изображения (фильмы), хорошо раскрывают высококачественный контент.
— Фактически отсутствует время отклика.
— Свободнейшие углы обзора
Недостатки
— Совершенно не подходят для подключения к компьютеру из-за остаточного изображения
— Хуже показывают фотографии (так как градации получаются при помощи дизеринга)
— Большое энергопотребление, не все модели имеют высокую яркость.
— Высокая цена производства, низкая маржа — производителям все сложнее удержаться на плаву.
OLED
Самая новая технология формирования изображения в телевизорах. Используются самоизлучающие органические светодиоды. Как и плазма, это дисплеи с самоэмиссией света, не требующие подсветки.
Сейчас выпущено всего несколько серийных образцов по цене в десяток раз превосходящей аналогичные LCD и плазменные телевизоры, но LG обещает, что через 3 года OLED-телевизоры аналогичных LCD и плазма-диагоналям будут стоить в 1.5 раза дороже.
Преимущества:
— низкое время отклика и высокий контраст, как и у плазмы, т. к. нет механически поворачивающихся молекул и постоянной подсветки, как в LCD.
— экономичность
— широкие углы обзора.
Недостатки:
— различная деградация пикселов со временем (так же, как у плазмы, что приводит в остаточным изображениям и выгоранию пикселов). Сейчас это пытаются компенсировать программно.
— Низкое время службы: около 10 000 часов (к примеру, у LCD — 60 000 часов, у плазмы — 100 000 тысяч часов).
II Характеристики изображения
Выбирая новый телевизор я пришел к выводу, что некоторые характеристики изображения можно изменить, некоторые нельзя.Измеряемые характеристики:
— Уровень черного (MLL, Minimum luminescence level) — тот уровень черного, который показывает телевизор при подаче сигнала 0. [нит]
— Яркость — тот уровень яркость, который показывает телевизор, когда на него подается сигнал 255.
Эти 2 характеристики измеряются вместе, когда на телевизор выводится «шахматная доска» (метод ANSI) — чередование черных и белых участков. Вычисляется яркость каждого участка, среднее арифметическое яркостей черных и белых областей.
— Контраст. Разница между средним арифметическим черных и белых областей, когда черные области приняты за единицу.
ANSI-контраст IPS матриц составляет
1000:1, S-PVA — 3500:1, UV²А — 5000:1, плазма — 12000:1.
— Точность цветопередачи (DeltaE, отклонение от эталона). Подается сигнал на входе, измеряется сигнал на выходе. Чем больше отклонение — тем менее точная цветопередача. Считается, что невооруженный глаз неспособен заметить отклонение DeltaE < 3, а нулем обозначается идеальная цветопередача.
— Углы обзора. Чем меньше угол обзора матрицы, тем больше искажается цвет. Наименьшие углы имеют LCD S-PVA матрицы. Наибольшие — плазменные панели.
— Динамическое разрешение. Как известно, практически все телевизоры имеют статическое разрешение 1080 линий (1920x1080 точек), но динамическое разрешение (то, что телевизор показывает, когда на экране происходит движение) часто отличается. Именно для этого в LCD-телевизорах вводится мерцание подсветки, интерполяция кадров и другие ухищрения.
Субъективные характеристики
К таковым можно отнести объемность изображения, которая формируется сочетанием уровня черного и цветонасыщенности, «киношность» изображения, эффект присутствия.
Спасибо за внимание.
Если статья покажется интересной, в следующей части я напишу о выборе диагонали, типах 3D, их практическом различии, об интерполяции изображения и попытаюсь развенчать некоторые мифы.
ТЕХНОЛОГИЯ IPS
Для того, чтобы понять устройство технологии IPS, необходимо начать непосредственно с самой ЖК-панели. Она объединяет два модуля: LED-подсветку и матрицу, состоящую из жидких кристаллов, которая и создает изображение.
Принцип работы такой панели построен на изменении интенсивности света. Поступая от модуля задней подсветки и проходя между двумя пластинами из поляризованного стекла, свет меняет свою интенсивность в кристаллической матрице в зависимости от степени напряжения электрического разряда. Фактически жидкие кристаллы раскручиваются под определенным углом и пропускают через стеклянную пластину и цветной фильтр только необходимое количество света. Это и обеспечивает отображение той картинки, которую мы видим на экране телевизора.
Общее устройство ЖК-панелей довольно похожее, но различия начинаются, когда мы говорим именно о нюансах поляризации света, проходящего через жидкие кристаллы. Характеристики матрицы – например, углы обзора – зависят от способа ориентации кристаллов в пространстве.
ЖК-панель
IPS (от англ. In-Plane Switching)
Технология создания жидкокристаллических панелей, в которых кристаллы работают в одной и той же плоскости между подложкой и поляризатором. В состоянии покоя кристаллы «закрыты» и демонстрируют черный цвет, а при подаче напряжения (E) они поворачиваются на определенный угол (до 90 градусов) и пропускают необходимое количество света. Поскольку поворот происходит в одной плоскости, ЖК-панель IPS стабильно выглядит под разным углом.
Применение
На сегодняшний день технология IPS чрезвычайно популярна, она применяется в дисплеях повсеместно. Ее можно встретить в экранах телевизоров, мониторов, ноутбуков, мобильной техники – практически везде, где нужен качественный цветной дисплей с широкими углами обзора. Особенный статус технология IPS получила у графических дизайнеров, поскольку обеспечивает стабильные характеристики цветопередачи в не зависимости от положения зрителя относительно экрана.
ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ
Широкие углы обзора
Низкое время отклика
Типовая жидкокристаллическая матрица IPS использует подложку на тонкопленочных транзисторах (TFT) для управления пикселями. Каждый пиксель содержит три светофильтра RGB, которые выделяют необходимый цвет из белой светодиодной подсветки. В некоторых моделях к обычным светофильтрам могут добавляться квантовые точки, выделяющие более широкий спектр RGB. Получаемое на IPS цветное изображение может иметь глубину до 10 бит на цветовой канал.
Сравнительная характеристика
Цветные дисплеи на ЖК-панелях IPS имеют определенные преимущества по сравнению с другими разновидностями ЖК-дисплеев. Главное свойство IPS – способность демонстрировать стабильную картинку под разным углом за счет того, что жидкие кристаллы работают в одной плоскости. Изображение остается ясным и разборчивым независимо от положения зрителя относительно экрана, обеспечивая оптимальную цветопередачу.
По времени отклика технология IPS приближается к самым быстрым ЖК-панелям, поэтому в динамичном изображении нет шлейфов или других артефактов. Другое преимущество IPS – высокий коэффициент пропускания света, когда кристаллы находятся в «открытом» состоянии. За счет этого более эффективно используется мощность подсветки. При одинаковом уровне подсветки изображение на IPS становится более ярким, чем у других технологий LED LCD, а значит, телевизор потребляет меньше энергии.
Врожденных недостатков у IPS не так уж много: стоимость таких ЖК-панелей несколько выше других разновидностей, поэтому они не встречаются в бюджетной технике. Также глубина черного цвета на панелях IPS не является пределом для технологии, поскольку закрытые кристаллы допускают некоторую утечку подсветки. Это является обратной стороной хорошего светопропускания. В той или иной мере это касается всех ЖК-панелей, и тут они принципиально уступают технологии OLED. Именно технология OLED позволяет избавиться от «паразитного» свечения на черном цвете, поскольку каждый пиксель становится самостоятельным источником света – подсветка там просто не нужна.
ТЕХНОЛОГИЯ IPS
Для того, чтобы понять устройство технологии IPS, необходимо начать непосредственно с самой ЖК-панели. Она объединяет два модуля: LED-подсветку и матрицу, состоящую из жидких кристаллов, которая и создает изображение.
Принцип работы такой панели построен на изменении интенсивности света. Поступая от модуля задней подсветки и проходя между двумя пластинами из поляризованного стекла, свет меняет свою интенсивность в кристаллической матрице в зависимости от степени напряжения электрического разряда. Фактически жидкие кристаллы раскручиваются под определенным углом и пропускают через стеклянную пластину и цветной фильтр только необходимое количество света. Это и обеспечивает отображение той картинки, которую мы видим на экране телевизора.
Общее устройство ЖК-панелей довольно похожее, но различия начинаются, когда мы говорим именно о нюансах поляризации света, проходящего через жидкие кристаллы. Характеристики матрицы – например, углы обзора – зависят от способа ориентации кристаллов в пространстве.
ЖК-панель
IPS (от англ. In-Plane Switching)
Технология создания жидкокристаллических панелей, в которых кристаллы работают в одной и той же плоскости между подложкой и поляризатором. В состоянии покоя кристаллы «закрыты» и демонстрируют черный цвет, а при подаче напряжения (E) они поворачиваются на определенный угол (до 90 градусов) и пропускают необходимое количество света. Поскольку поворот происходит в одной плоскости, ЖК-панель IPS стабильно выглядит под разным углом.
Применение
На сегодняшний день технология IPS чрезвычайно популярна, она применяется в дисплеях повсеместно. Ее можно встретить в экранах телевизоров, мониторов, ноутбуков, мобильной техники – практически везде, где нужен качественный цветной дисплей с широкими углами обзора. Особенный статус технология IPS получила у графических дизайнеров, поскольку обеспечивает стабильные характеристики цветопередачи в не зависимости от положения зрителя относительно экрана.
ТЕХНИЧЕСКАЯ ИНФОРМАЦИЯ
Типовая жидкокристаллическая матрица IPS использует подложку на тонкопленочных транзисторах (TFT) для управления пикселями. Каждый пиксель содержит три светофильтра RGB, которые выделяют необходимый цвет из белой светодиодной подсветки. В некоторых моделях к обычным светофильтрам могут добавляться квантовые точки, выделяющие более широкий спектр RGB. Получаемое на IPS цветное изображение может иметь глубину до 10 бит на цветовой канал.
Сравнительная характеристика
Широкие углы обзора
Цветные дисплеи на ЖК-панелях IPS имеют определенные преимущества по сравнению с другими разновидностями ЖК-дисплеев. Главное свойство IPS – способность демонстрировать стабильную картинку под разным углом за счет того, что жидкие кристаллы работают в одной плоскости. Изображение остается ясным и разборчивым независимо от положения зрителя относительно экрана, обеспечивая оптимальную цветопередачу.
По времени отклика технология IPS приближается к самым быстрым ЖК-панелям, поэтому в динамичном изображении нет шлейфов или других артефактов. Другое преимущество IPS – высокий коэффициент пропускания света, когда кристаллы находятся в «открытом» состоянии. За счет этого более эффективно используется мощность подсветки. При одинаковом уровне подсветки изображение на IPS становится более ярким, чем у других технологий LED LCD, а значит, телевизор потребляет меньше энергии.
Низкое время отклика
Врожденных недостатков у IPS не так уж много: стоимость таких ЖК-панелей несколько выше других разновидностей, поэтому они не встречаются в бюджетной технике. Также глубина черного цвета на панелях IPS не является пределом для технологии, поскольку закрытые кристаллы допускают некоторую утечку подсветки. Это является обратной стороной хорошего светопропускания. В той или иной мере это касается всех ЖК-панелей, и тут они принципиально уступают технологии OLED. Именно технология OLED позволяет избавиться от «паразитного» свечения на черном цвете, поскольку каждый пиксель становится самостоятельным источником света – подсветка там просто не нужна.
В отличие от разрешения экрана или диагонали дисплея, технология изготовления матрицы зачастую уходит на второй план при выборе монитора: аббревиатуры IPS, TN и VA не несут в себе значимой информации для среднего покупателя.
Что такое IPS матрица?
История жидкокристаллических матриц берет свое начало с появления технологически простых TN-дисплеев, основанных на явлении поляризации. Скрученные в спираль кристаллы такой матрицы не позволяли достичь высокой контрастности и комфортных углов обзора, и на основе методики Гюнтера Баура в 1996 году японской компанией Hitachi была изготовлена модернизированная версия существующей технологии.
В альтернативной схеме жидкие кристаллы располагаются в несколько слоев параллельно друг другу, благодаря чему в отсутствие напряжения экран передает куда более контрастный черный цвет, а также достигается больший угол обзора в ущерб энергопотреблению и скорости отклика.
Новый подход в производстве дисплеев со временем вытеснил TN-матрицы, за исключением бюджетного и игрового сегмента, где критически важно максимальное быстродействие, которым пока не может похвастаться технология IPS и ее производные.
Какие встречаются типы IPS матриц?
Под общим названием IPS объединяется целая технология производства матриц, а ее развитие со временем породило модифицированные решения от крупных компаний-производителей. На рынке сейчас основу составляют AH-IPS, E-IPS и ряд других типов матриц.
Существующие ветвления призваны совместить преимущества технологий IPS, TN и VA, однако достичь по-настоящему универсального решения производителям по-прежнему так и не удалось.
Подсветка IPS матрицы
LED-подсветка способствует как повышению контрастности и четкости картинки, так и более комфортной работе для человеческого глаза. Светодиодная подсветка в свою очередь может быть исполнена в одном из двух вариантов:
В первом случае возможность локального выключения LED-лампочек позволяет передавать более глубокий черный цвет, повышая тем самым контрастность изображения.
В случае IPS-матриц однако более распространен именно Edge-LED тип подсветки в силу дешевизны и слабовыраженного эффекта локального затемнения на IPS панелях.
Особенности IPS-матриц
Когда дело доходит до выбора технологии изготовления матрицы, дисплеи сравнивают прежде всего по ряду наиболее характерных параметров: углы обзора, быстродействие, цветопередача, глубина цветовой гаммы и контрастность.
Углы обзора
Пожалуй, главным преимуществом мониторов IPS является то, что картинка выглядят одинаково, вне зависимости от того, под каким углом смотреть на монитор.
Матрицы TN в этом плане существенно уступают: при взгляде на монитор сверху, снизу или сбоку, цвета начнут меняться и даже могут полностью инвертироваться. Яркость экрана также меняется при движении, а иногда даже при еле-заметных сдвигах. По этой причине возникает неверное восприятие изображения, что приводит к несогласованности, если вы работаете с фотографиями или цифровой графикой.
Мониторы IPS хоть и не идеальны в этом отношении и могут также искажать картинку при взгляде сбоку, однако такой эффект сведен к минимуму. Для резкого изменения цвета требуется взгляд с экстремально большого угла, близкого к 178°, что позволяет забыть о необходимости центрирования по всем направлением, как это бывает в случае TN-матриц.
Время отклика
Этот недостаток IPS матриц на самом деле не имеет значения для графических дизайнеров, поскольку обычно в процессе работы нет динамических сцен и быстро движущихся объектов на экране. Однако это может стать принципиальным фактором в пользу TN мониторов, если дело касается, например, сверхдинамичных игр, где промедление даже в доли миллисекунды может оказаться критичным.
Цветопередача
Цветовая гамма
В тех случаях, когда в работе над графикой требуется как можно большая глубина оттенков, IPS-матрица по-настоящему незаменима. Несмотря на то, что на рынке нет мониторов, способных отображать всю цветовую гамму, которую может различать человеческий глаз, дисплеи с IPS матрицей в разы превосходят полноту палитры экранов, выполненных по другой технологии.
Под заявлениями производителей о «100% цветового пространства sRGB» или «98% цветового пространства AdobeRGB», как правило, имеется в виду подмножество цветов, которые мониторы могут отображать. Предпочтительна в свою очередь более широкая гамма, поскольку она увеличивает диапазон цветов, который может быть изображен в ходе работы с графикой.
Контрастность
Мониторы с лучшим коэффициентом контрастности позволяют различать больше деталей в темной области дисплея с большей тональностью в тенях. Это очень важно для фотографии и графического дизайна, где вы потенциально можете иметь дело с еле-заметными различиями в темных областях изображения.
Мониторы IPS почти всегда имеют лучший коэффициент контрастности, чем сопоставимые панели TN, даже несмотря на то, что их догоняют новые усовершенствованные TN-матрицы. Третий же тип дисплеев, мониторы VA, часто имеют лучший коэффициент контрастности из всех, однако они, как правило, уступают по точности цветопередачи, поэтому фотографы в большинстве своем придерживаются именно IPS-мониторов.
Что выбрать: TN или IPS
Делая выбор между двумя принципиально разными технологиями, стоит еще раз обратить внимание на сильные и слабые стороны каждого решения.
Tn Матрица плюсы и минусы
Классические TN-матрицы, продолжающие однако модифицироваться, по сей день пользуются спросом за счет ряда преимуществ:
- Доступная цена;
- Низкий уровень потребления энергии;
- Лучшее время отклика и частота обновления.
С другой стороны, достоинства TN-дисплеев нивелируются существенными недостатками, если монитор используется в работе с графикой и некоторых повседневных задачах:
- Небольшие углы обзора: не более 160-170 градусов;
- Плохая цветопередача;
- Низкая контрастность.
IPS матрица плюсы и минусы
- Отличная цветопередача;
- Высокая контрастность;
- Широкие углы обзора;
- Лучшая видимость при солнечном свете;
- Более длительный срок службы.
Однако же претендовать на универсальность IPS-матрицы по-прежнему не могут в силу существующих недостатков:
- Увеличенное время отклика: от 2 до 5 мс, но встречаются и более дорогие варианты с 1 мс
- Дороговизна в сравнении с TN-мониторами;
- Повышенное энергопотребление.
Стоит ли покупать IPS монитор?
Для профессиональных же решений, нужно подходить индивидуально, исходя из сферы деятельности и задач. Например, графическим дизайнерам и профессиональным фотографам очень важна натуральность цвета и далеко не каждый IPS монитор такое сможет дать.
Времена, когда на рынке были представлены мониторы для ПК лишь с двумя типами жидкокристаллических матриц (TN и IPS) давно прошли. Сейчас на выбор покупателя предлагается чуть ли не десяток разновидностей экранов, причем многие из них при, казалось бы, созвучных названиях (MVA, WVA, SVA) кардинально отличаются качеством изображения. Для разных задач (фильмы, игры, профессиональная работа) лучше подходит та или иная разновидность ЖК-матрицы. А еще от типа матрицы может зависеть дополнительная функциональность монитора, например изогнутый или поворотный экран (не все типы матриц для этого подходят).
Классификация ЖК-экранов
IPS (In-Plane Switching) — почти полная противоположность TN. Самый большой цветовой охват или, проще говоря, сочные цвета; естественная цветопередача, что требуется для фотографов; широкие углы обзора до 178 градусов. Но самый медленный отклик (аппаратно 5 – 8 мс, но можно улучшить программно) и вместо черного цвета — темно-фиолетовый. Важно учитывать, что качество IPS-матриц может сильно варьировать от бюджетных (вплоть до легкого выцветания под углом) мультимедийных мониторов до профессиональных для работы с графикой (цветовой охват sRGB 135 % или больше).
PLS (Plane-to-Line Switching) — давний и уже постепенно исчезающий из продажи конкурент IPS. Главное достоинство PLS заключается в большей плотности пикселей, благодаря чему меньше заметна сетка. Цветовой охват и углы обзора примерно на одном уровне с IPS.
ADS (Advanced Dimension Switch) — новый и потому пока что редкий конкурент IPS. При столь же широких углах обзора, ADS стоит значительно меньше, чем IPS, но и немного проигрывает ему по цветовому охвату. Получается некое промежуточное звено между совсем уж дешевыми и тусклыми TN-мониторами и дорогостоящими IPS.
MVA (Multi-domain Vertical Alignment) или же просто VA (Vertical Alignment) — самая активно развивающаяся технология ЖК-матриц. Изначально выделяющаяся лишь широкими углами и глубоким черным цветом технология теперь не уступает, а временами даже превосходит по цветовому охвату IPS. Отклик же медленнее чем у TN, но быстрее чем у IPS (3 – 4 мс). Именно VA-матрицы чаще всего используются в изогнутых мониторах.
WVA (Wide Viewing Angles), SVA (Super Viewing Angles), EWV (Enhanced Wide Viewing) — несмотря на похожие названия, эти три технологии не имеют ничего общего с радующей глаз MVA. На самом деле это всего-лишь отборные TN-матрицы с чуть лучшими углами обзора, но, как правило, все такой же тусклой цветопередачей. В мониторах они встречаются редко, а вот в моноблочных ПК и ноутбуках — все чаще. Причем производители хитро указывают их в характеристиках как «IPS-Like» или «IPS-Style», так что будьте внимательны при покупке.
Читайте также: