Флотатор для узв своими руками
Наш канал посвящён теме аквакультуры и технологии УЗВ.
Из материалов данной статьи Вы узнаете, что необходимо для строительства установки замкнутого водообмена, какие требования к помещению фермы и какую рыбу можно выращивать в УЗВ.
Что нужно, чтобы построить УЗВ?
Удобного расположения и достаточной площади, чтобы построить ферму. К участку должна быть проложена подъездная дорога.
В УЗВ требуется ежесуточная подпитка порядка 10-15% от объема бассейнов. Эта вода уходит безвозвратно на промывку фильтров и испарение.
Оптимальный источник водоснабжения – скважина, т.к. вода в ней круглый год не меняется ни по составу, ни по температуре. Также можно использовать водопровод, реку или пруд.
В результате работы установки УЗВ образуются сточные воды (10-15% в сутки), загрязненные фекалиями рыбы, чешуей и остатками недоеденного корма. Такую воду необходимо очищать и отводить с участка. Для этого устанавливают септик или копают биопруд. Очищенную воду отводят с участка, используя рельеф местности (в ливневую канаву / реку / ручей / овраг).
Так как УЗВ требует одинаковой температуры круглый год, то в большинстве случаев в обязательном порядке требуется отопление рыбной фермы. Идеально для этого подходит магистральный газ, но в случае его отсутствия также возможно отапливать углем, древесными пеллетами, сжиженным газом, иногда дровами и даже мазутом. Электроэнергию в качестве источника отопления используют реже из-за её дороговизны.
Помещение для УЗВ
Ферма УЗВ должна располагаться в утепленном здании. Оптимальный вариант - теплый ангар с высотой потолков не менее 3 метров и бетонным полом, освещение искусственное (лампы). К ангару должны быть подведены:
• Вода (скважина или водопровод)
Новое здание или существующее здание?
- Стоимость (будет, скорее всего, выше, чем адаптировать готовое помещение)
- Необходимость подведения коммуникаций (электричество, отопление, вода)
- Скорее всего, адаптация готового помещения под ферму обойдется дешевле
- Если уже подведены коммуникации (вода, электроэнергия, отопление), то экономия времени и денег на подведении
Какую рыбу можно выращивать в УЗВ?
Преимущества установки в её универсальности: в ней Вы можете выращивать целый ряд различных видов рыб (в один момент в бассейнах должен находиться только один вид, так как каждая рыба имеет свои требования по параметрам воды).
Существуют общие принципы, по которым Вы можете выбрать правильный вид рыб на первое зарыбление:
1) Доступность посадочного материала (малька от 10 грамм) в радиусе 300 км
2) Предпочтения Ваших потенциальных клиентов в радиусе 100 км (можете провести простой опрос 20-30 человек, какую рыбу они были бы готовы у вас купить)
3) Простота выращивания
4) Срок выращивания
Возможно, есть смысл попробовать начать с более простой рыбы, а следующее зарыбление произвести другим видом (после того, как Вы получите первичный опыт).
Приведём общие плюсы и минусы различных популярных для выращивания видов рыб:
Осётр – самый дорогой, премиальный и маржинальный в реализации. Лучше выращивать его в тех регионах с высоким уровнем достатка населения или же у клиента уже заранее есть налаженный канал сбыта осетрины. Чаще всего, в сбыте осётр подходит для супермаркетов и ресторанов. При соблюдении технологий, проблем с выращиванием не возникает. Осётр вырастает до 1,5 кг за 1 год (12 месяцев), при выращивании от малька 3-5 гр. Наиболее популярным видом осетровых является Стерлядь, ее позитивное отличие от остальных в том, что её можно продавать уже в навеске от 500 г. Остальные виды осетровых начинают продавать только при достижении 1,2-1,5 кг (меньше там просто нечего есть – голова и хвост).
В отличие от сома, при выращивании требует чистый кислород.
Плотность посадки – 35кг/м3 при аэрации (АФ-800), до 50 кг/м3 при кислороде на малых установках (АФ-2500, 5000, 1000), до 70 кг/м3 в промышленных установках (АФ-25000 ПРО и больше)
Средняя себестоимость выращивания 200-250 руб/кг
Самая прибыльная рыба, но при этом ее несколько сложнее продавать по сравнению с форелью (при этом, как правило, на малых установках до 5 тонн в год никаких проблем не возникает – расходится по своей базе клиентов).
Посадочный материал в виде малька доступен, как правило, по всей России, кроме крайнего севера и дальнего Востока. Если нет поставщиков малька вокруг – ставить инкубаторы и привозить самолетом оплодотворенную икру.
• Оптимальная температура – 22-24 оС
• Основные подвиды – сибирский, русский, белуга, стерлядь, гибриды (бестер, русско-ленский)
• Срок выращивания – 1 год (от малька до 1,5-2кг)
• Срок выращивания на икру – в среднем 4-5 лет в зависимости от вида (стерлядь 3 года)
• Высокая стоимость продажи (до 1000 рублей/кг)
• Доступность посадочного материала
Потребность человечества в морепродуктах растёт вместе с населением, а ценные виды рыб находятся на пределе максимально возможного улова. Традиционное рыбоводство требует избытка водных ресурсов. Растущее загрязнение мирового океана сказывается на качестве даров моря. Всё это способствуют популярности УЗВ (установок замкнутого водоснабжения), позволяющих выращивать экологически чистую рыбу в небольшом количестве воды.
УЗВ, позволяющие выращивать экологически чистую рыбу, набирают все большую популярность
Принцип работы УЗВ
В качестве системы жизнеобеспечения водных организмов в рециркуляционных аквакультурах незаменимы установки замкнутого водоснабжения, позволяющие использовать ежедневно не менее 90% восстановленной после жизнедеятельности рыб воды.
Как правило, УЗВ предназначены для интенсивных аквакультур с высокой продуктивностью на единицу объёма воды.
Верхний предел плотности рыбы в УЗВ на основе атмосферного воздуха составляет около 50 грамм на литр воды. В установках с использованием жидкого кислорода этот показатель может быть выше. Содержание такого количества живой рыбы в столь ограниченном объёме воды требует качественного проектирования и исполнения УЗВ. Как правило, рыба умирает от перенаселения, потому что:
- задохнулась;
- отравилась азотистыми отходами собственной жизнедеятельности.
УЗВ предназначены для активных аквакультур
Соответственно, верно функционирующая система циркуляции должна достаточно аэрировать воду, добавляя в неё кислород, и, наоборот, выводить диоксид углерода и аммиак.
Последний рыба выделяет в качестве продукта катаболизма белка. Для того чтобы эти процессы производились эффективно, необходимо предварительно отделять твёрдые экскременты и остатки корма.
Таким образом, восстановление воды включает в себя три процесса:
- Удаление твёрдых отходов.
- Газовый обмен.
- Денитрификация.
Последние два могут проводиться одновременно или в любой последовательности. Восстановление воды невозможно эффективно провести в самом аквариуме. Жидкость необходимо изымать для очистки и возвращать обратно, перемещая её с помощью насосов.
Устройство УЗВ может отличаться деталями от указанного на схеме
Устройство УЗВ от изображённого на схеме может отличаться наличием дополнительных модулей: фильтров, насосов, обеззараживателей, блока регулировки кислотности, нагревателей, кислородного генератора, измельчителей, автоматики, отстойников и т. п. Крупные фермы наращиваются умножением однотипных блоков. Основные преимущества систем рециркуляционной аквакультуры перед искусственными прудами и водоёмами:
- не наносят ущерб окружающей среде;
- дают возможность полного управления производственными процессами;
- позволяют круглогодично выращивать рыбу;
- не зависят от природных факторов;
- помогают осуществлять полный контроль заболеваний;
- работают в зонах экстремальных климатических условий.
Проектирование замкнутых аквакультур
В действующей системе все компоненты должны работать слаженно, иначе её продуктивность будет ограничена производительностью самого слабого блока.
Например, нет смысла в мощном нитрификаторе, если за его работой не успевает модуль газообмена. Прогноз нагрузок на каждый узел — единственно верный способ проектирования компонентов.
Правильной точкой отсчёта будет количество рыбы, планируемое к выращиванию. Этот показатель поможет разобраться с необходимым объёмом пищи, что, в свою очередь, позволит рассчитать, сколько кислорода понадобится для метаболизма этого корма. Другие вычисления дадут мощность установки для аэрации и т. п. Косвенные и прямые расчёты продолжают до тех пор, пока не будет разработан проект системы, теоретически поддерживающий предполагаемую нагрузку без избыточных мощностей каждого из блоков.
Точкой отсчета в сборке УЗВ является планируемое количество рыбы
Непромышленные УЗВ для выращивания рыбы своими руками для домашних хозяйств могут проектироваться на основании иных начальных условий. Доступность материалов и наличие свободного места в этом случае важнее производительности. Компоненты для таких систем могут изготавливаться из самых различных материалов, но должны быть обязательно инертными и не вступать в реакцию с водой. Оцинкованные и медные трубы для инсталляции в этом случае непригодны, так как могут быть токсичны по отношению к обитателям системы. Установка замкнутого водоснабжения для выращивания рыбы, исполненная из пластиковых ёмкостей, труб и фитингов — идеальный вариант.
Стеклопластиковые или полиэтиленовые резервуары химически нейтральны, легко чистятся и стерилизуются. Круглые ёмкости обладают преимуществом в сравнении с квадратными. Оно заключается в способности таких сосудов к самоочистке: если воду напорно подавать в радиальный аквариум под углом, то установится круговое движение.
Слив, организованный в центре, позволяет отходам и остаткам корма самостоятельно уходить в отверстие.
Простейшая самодельная установка
Из элементов, доступных в любом строительном магазине, и с помощью инструментов домашнего мастера можно за несколько часов изготовить мини-УЗВ своими руками. Чертёж установки из недорогих компонентов:
УЗВ можно собрать из недорогих материалов своими руками
Основа системы — две бочки, желательно предназначенные для пищевых целей. Одна из них служит аквариумом для рыбы, из нижней части которого при помощи насоса вода перемещается в пластиковое ведро, вмонтированное в верхнюю часть второй бочки. Оно является ёмкостью для механического фильтра, отделяющего остатки корма и твёрдые фекалии. Механически очищенная жидкость через стояк попадает на дно биофильтра для переработки азотистых отходов, а затем снова попадает в аквариум по возвратной трубе.
Подбор сантехнических компонентов зависит от максимальной мощности насоса, производительность которого можно регулировать шаровым краном на перегонном трубопроводе.
Подбор элементов УЗВ зависит от технических условий помещения
Механические фильтры можно сделать из хозяйственных губок или мебельного поролона. В качестве денитрификатора лучше использовать специальную плавающую биозагрузку для УЗВ. Воздушный компрессор низкого давления, нагнетающий воздух на дно аквариума, послужит аэратором.
Технические и биологические основы рециркуляционных аквакультур хорошо изучены. Накопленный опыт позволяет проектировать и изготавливать УЗВ любой сложности и масштабов. Единственный ограничивающий фактор, препятствующий бурному развитию замкнутых систем рыбоводства — экономика. Рыба из УЗВ дороже пойманной в открытом водоёме. Самые успешные рециркуляционные аквакультуры производят дорогие морепродукты для нишевых рынков или расположены в экстремальных климатических зонах. Эта технология пока не позволяет накормить весь мир, но её вклад в улучшение экологии водных бассейнов трудно переоценить.
Одним из наиболее эффективных способов очищения канализационных стоков от мельчайших примесей является флотационный метод, осуществляемый за счет флотатора для очистки сточных вод. О том, что собой представляет данный способ, и как он осуществляется, расскажет эта статья.
Что это такое?
Принцип работы и что нужно знать
Флотация представляет собой метод очистки загрязненных стоков от примесей мусора, осуществляемый за счет их всплытия на поверхность.
Во время этого процесса в стоки добавляется специальный деспергированный воздух, под воздействием которого все мельчайшие частицы примесей проявляют гидрофильные или гидрофобные свойства.
Принцип действия флотатора выглядит следующим образом:
- в специальном устройстве (электрофлотаторе) стоки проходят через рабочую камеру;
- одновременно с этим стоки насыщаются диспергированным воздухом;
- осуществляется контакт примесей с пузырьками кислорода (гидрофобные частицы приближаются к пузырьку воздуха, водная прослойка между ними постепенно истончается и исчезает, вследствие чего образуется комплекс гидрофобной частицы с пузырьком газа);
- в результате взаимодействия на поверхности воды образуется пенный слой;
- по мере образования пенный слой удаляется с поверхности очищаемой жидкости специальным грабельным устройством.
В большинстве случаев флотационный метод очистки используется для очищения стоков от примесей растворимых жиров, нефтепродуктов, любых волокнистых примесей, ПАВ и тому подобного.
Устройство
Примерная схема устройства флотатора выглядит так:
Преимущества и недостатки
Как и любой другой метод очистки сточных вод, флотационный способ имеет как свои достоинства, так и недостатки.
К преимуществам флотационного метода относится:
- низкая стоимость;
- простота конструкции;
- высокая степень очищения;
- высокая скорость очистки;
- возможность очищения вод от нефтепродуктов.
В то же время избирательное действие воздуха на примеси ввиду их низкой гидрофобности, необходимость дополнительного применения реагентов (для повышения уровня гидрофобности) и необходимость точной настройки электрофлотатора (для получения пузырьков строго определенного размера) являются существенными недостатками данного метода.
Флотационный метод
Эффективность: важные параметры
Эффективность флотационного метода очищения стоков зависит от определенных параметров:
- чем больше примеси в стоках склонны к гидрофобности, тем выше эффективность очистки;
- пузырьки воздуха должны быть устойчивы к разрушению, что осуществляется за счет добавления реагентов;
- размер пузырька воздуха не должен быть слишком большим (быстро всплывет) или слишком маленьким (быстро лопнет);
- количество пузырьков и равномерность распределения также оказывают влияние на эффективность данного способа очистки.
Эффективность флотационного метода очистки также во многом зависит от конфигурации устройства, его производительности и автоматизации.
Важно понимать, что в качестве самостоятельных инструментов очистки стоков флотационные блоки не используются. Их применение целесообразно в комплексе с другими очистными устройствами. В процессе очистки флотаторы функционируют лишь после блоков механической обработки.
Виды флотаторов
Флотационные установки
Для повышения эффективности очищения используются флотационные установки, спроектированные на основе определенных конструкционных принципов.
В большинстве своем установки делятся на три категории:
- устройства, основанные на создании мельчайших пузырьков;
- напорные устройства;
- гравитационные устройства.
Работа флотаторов любой категории основана на общей методики пенной флотации, однако каждая из систем наиболее эффективна для очищения сточных вод различных степеней загрязненности.
Современные флотационные установки изготавливаются в виде однокамерного или двухкамерного аппарата.
В однокамерных устройствах образование флотокомплексов осуществляется в том же масштабе, что и разделение фаз. Такой тип конструкции наиболее эффективен при флотации крупными пузырями, когда фитокомплексы всплывают со скоростью, соизмеримой со скоростью простейшего акта флотации.
При флотации пузырьками небольшого размера более прогрессивной считается двухкамерная емкость. В первой камере создаются условия для взаимодействия частиц, а во второй – обеспечивается благоприятная гидродинамическая обстановка, ориентированная на завершение процесса флотационного деления и накопления пены.
В настоящий момент двухкамерные установки применяются чаще всего для электрической и напорной флотации. При последовательном расположении нескольких аппаратов получаются флотационные установки многоступенчатого типа (для последовательного очищения стоков). При этом с каждой последующей ступени стоки очищаются с меньшей концентрацией частиц. Как правило, число ступеней ограничивается тремя.
Большое влияние на эффективность очистки оказывает направление движения жидкости в установке. На данный момент выпускаются аппараты с горизонтальным, вертикальным и угловым движением стоков.
В горизонтальных установках движение потока может быть как прямоточным, так и тангенциальным. В вертикальных – жидкость может быть направлена вверх (увлекая флотокомплексы за собой) или вниз (замедляя из всплытие).
Для установок с угловым направлением движения характерно прямоточное, противоточное или перекрестное перемещение потока по отношению к направлению движения пены.
Наиболее совершенными считаются изделия с угловым направлением движения потока, в то время как наименее эффективными (особенно при флотации пузырьками мелкого калибра) – вертикальные аппараты.
Электрофлотатор
Электрофлотатор представляет собой технологический комплекс для очищения стоков от тяжелых металлов, нефтепродуктов и ПАВ методом электрофлотации с дальнейшим выводом очищенных вод в дренаж или подачей на блок фильтров. Особенностью данного устройства является создание замкнутого цикла оборотного водоснабжения в организации.
Принцип работы электрофлотатора основывается на электрохимических процессах выделения кислорода и водорода в процессе электролиза и флотационного эффекта всплытия примесей на поверхность сточной жидкости.
Электрофлотационный модуль состоит из таких элементов, как:
- электрофлотатор с блоком нерастворимых электродов;
- пеносборное устройство;
- источник питания постоянного тока;
- дополнительные накопительные емкости для реагентов, стоков и очищенных вод;
- насосное оборудование.
Данное устройство рекомендуется применять для очистки сточных вод как производственного характера, так и смешанного состава.
Механическая флотатор
Данный метод обогащения канализационных стоков воздухом может осуществляться одним из нижеперечисленных способов:
- перемешивание сточных вод в специальной центрифуге с помощью турбины;
- перемешивание воды с помощью специального рабочего колеса, оснащенного лопастями;
- обогащение стоков с помощью специальных труб.
- В первом случае установка (импеллер) позволяет добиться формирования пузырьков воздуха необходимого диаметра. Как правило, импеллер используется для очищения стоков от нефтепродуктов и жиров. Основным преимуществом данной установки является возможность вариации величины пузырей в результате схемы проведения флотации. Иными словами, чем выше скорость вращения турбины, тем меньше диаметр пузырьков.
- Второй способ является безнапорным и является наиболее подходящим для удаления крупнодисперсных и волокнистых загрязнений (шерсть, волосы, нити и тому подобное). При безнапорном способе флотации пузыри получается достаточно большими по размеру.
- В третьем способе для обогащения стоков используются специальные трубы, расположенные на дне приемного резервуара. Данный способ также называется пневматическим и используется в случаях необходимости очищения стоков, являющихся агрессивными и небезопасными для обработки в безнапорном колесе или импеллере.
Важно понимать, что в каждом из перечисленных способов схема заключается в проведении стоков через стадию завихрения, в результате которой и образуются воздушные пузырьки.
Насыщение воды воздухом с использованием пористого материала
Данный способ насыщения стоков заключается в проведении воздушного потока сквозь специальную пористую структуру, в качестве которой может выступать специальная тонкая пластина с тонкими щелями по всему периметру. При этом, чем меньше щели, тем меньше размер формируемых пузырей.
Выделение пузырей воздуха из специального раствора
В данном методе насыщения стоков воздух может выделяться как напорным, так и вакуумным методом.
В случае с напорным методом, воздух под высоким давлением подается в воду, в результате чего на всех слоях жидкости образуются воздушные пузыри.
В случае с вакуумным методом, сточная вода усиленно насыщается воздухом в аэрационной камере, после чего поступает в дезаэратор и подвергается удалению нерастворившегося (излишнего) воздуха. Впоследствии серая жидкость переливается во флотационную камеру, в которой давление понижается до критической отметки, и образуются пузырьки воздуха.
Реагенты во флотации
Для повышения качества очистки стоков флотационным методом зачастую используются специальные химические реагенты, основной задачей которых является увеличение уровня гидрофобности частиц мусора и примесей. Специалисты выделяют два вида реагентов для флотации:
- для усиления гидрофобности (чаще всего используются: нефтепродукты, масла, соли аммония, меркаптан);
- для стабилизации пены (чаще всего используются: крезол, фенолы, сосновое масло).
Как произвести расчет?
Эффективность работы флотатора зависит, прежде всего, от соответствия устройства и конфигурации поставленным задачам. В связи с этим расчет флотатора должен производиться с учетом таких показателей, как:
- объемы поступающих сточных вод;
- концентрация взвешенных элементов;
- состав стоков;
- наличие маслообразных продуктов.
На основании данных параметров может быть рассчитана схема флотации: габариты емкостей, труб и других элементов.
Стоимость электрофлотаторов зависит от множества факторов, и может колебаться от нескольких сотен тысяч до миллионов рублей.
Где купить флотатор для очистки сточных вод?
В Москве
Приобрести флотатор для очищения сточных вод можно в таких компаниях, как:
В СПб
Продажей флотаторов в Санкт-Петербурге занимаются:
Таким образом, несмотря на высокую стоимость, флотатор для очистки сточных вод является достаточно востребованным устройством, способным обеспечить очищение стоков от мельчайших примесей.
Из элементов, доступных в любом строительном магазине, и с помощью инструментов домашнего мастера можно за несколько часов изготовить мини-УЗВ своими руками. Чертёж установки из недорогих компонентов:
УЗВ можно собрать из недорогих материалов своими руками
Основа системы — две бочки, желательно предназначенные для пищевых целей. Одна из них служит аквариумом для рыбы, из нижней части которого при помощи насоса вода перемещается в пластиковое ведро, вмонтированное в верхнюю часть второй бочки. Оно является ёмкостью для механического фильтра, отделяющего остатки корма и твёрдые фекалии. Механически очищенная жидкость через стояк попадает на дно биофильтра для переработки азотистых отходов, а затем снова попадает в аквариум по возвратной трубе.
Подбор элементов УЗВ зависит от технических условий помещения
Механические фильтры можно сделать из хозяйственных губок или мебельного поролона. В качестве денитрификатора лучше использовать специальную плавающую биозагрузку для УЗВ. Воздушный компрессор низкого давления, нагнетающий воздух на дно аквариума, послужит аэратором.
Технические и биологические основы рециркуляционных аквакультур хорошо изучены. Накопленный опыт позволяет проектировать и изготавливать УЗВ любой сложности и масштабов. Единственный ограничивающий фактор, препятствующий бурному развитию замкнутых систем рыбоводства — экономика. Рыба из УЗВ дороже пойманной в открытом водоёме. Самые успешные рециркуляционные аквакультуры производят дорогие морепродукты для нишевых рынков или расположены в экстремальных климатических зонах. Эта технология пока не позволяет накормить весь мир, но её вклад в улучшение экологии водных бассейнов трудно переоценить.
(Visited 233 times, 1 visits today)
На рынок компания представила два проекта УЗВ
1. Водообмен — 4275 м3/час; объем — 2850 м3; максимальная биомасса — 142500 кг; максимальная норма кормления — 3000 кг/день; площадь хозяйства — 200 м2, включая углубленные конусы для оксигенации; объем вносимой свежей воды — 300 литров/кг корма.
Узлы водоподготовки УЗВ первого типа. Конусы для оксигенации углублены в землю.
2. Водообмен — 2400 м3/час; объем — 1400 м3; максимальная биомасса — 70000 кг; максимальная норма кормления — 2000 кг/день; площадь хозяйства — 250 м2; объем вносимой свежей воды — 300 литров/кг корма.
В Норвегии Kruger Kaldnes установила систему второго типа. При выращивании 45-60 кг/м3 биомассы (смолт лосося) и количестве вносимого корма — 900 кг/л вода имеет следующие показатели:
CO2 на выходе из емкостей культивирования — 12-13 мг/лNH3/NH4 — 0,6 мг/лNO2 —
Серия бассейнов для культивирования в УЗВ компании Kruger Kaldnes (проект для Саннефьорд, Норвегии).
Принципиальная схема петли рециркуляции и водоподготовки УЗВ от компании Kruger Kaldnes.
Вода из бассейнов с рыбой под действием силы тяжести устремляется в узлы очистки.По трубопроводу вода поступает в барабанный фильтр. Диаметр микросита варьирует от 10 до 60 мкм. Из механического фильтра загрязнения вымываются для последующей обработки.
После механической очистки вода следует в биофильтр с псевдоожиженным слоем. В качестве наполнителя используются полиэтиленовые, так называемые, биочипы AnoxKaldnes MBBR. Постоянное перемешивание наполнителя осуществляется с помощью распылителей воздуха.
MiniChipTM прототип (1500 м2/м3) (1); BiofilmChipTM M (1200 м2/м3) (2); K1 (3) и K3 (4) (оба 500 м2/м3) от шведской компании AnoxKaldnes. Второй экземпляр используется в биологических фильтрах немецкой УЗВ.
Вода последовательно проходит два биологических фильтра. Из второго реактора под действием сил тяжести она попадает в камеру для дегазации. Углекислый газ проходит вверх против движения воды и потока нагнетаемого воздуха. Давление в камере регулируется дополнительным компрессором, который создает противоточную газовую фазу.
Помпа обеспечивает возврат воды в конусы для оксигенации, а затем в емкости культивирования.
Проект УЗВ второго типа, реализованный в Норвегии. 1. Подвод воды от бассейнов к барабанным фильтрам. Место входа труб располагается чуть выше конусов для оксигенации, не показано); 2. Барабанный фильтр. Микросито ополаскивается от загрязнений; 3. загрязнения от фильтра поступают в дренаж и удаляются; 4-5. Барабанные фильтры наполовину погружены в емкость первого биофильтра так, что очищенная вода подвергается биологической фильтрации; 6. Наполнитель биочипы AnoxKaldnes MBBR перемешиваются аэратором; 7. из второго биологического фильтра вода проходит колонки для дегазации, слева колонки находятся два кулера для выветривания углекислого газа (создают противоток воздуха воде); 9-10. Насыщение воды кислородом и возвращение в бассейны с рыбой.
Баланс осаждаемых частиц
Эффективность бассейна с двойной дренажной системы в отношении концентрации твердых частиц при их прохождении через донный дренаж можно проиллюстрировать следующим уравнением баланса:
in> + TSS> = out1 • TSSout1> + out2 • TSSout2>, где Q – скорость водного потока (м3/сутки); Qout1 – скорость водного потока, покидающего донный дренаж (м3/сутки); TSSin – концентрация твердых частиц в бассейне (кг/м3); TSSout1 – концентрация твердых частиц, покидающих боковой дренаж (кг/м3); TSSout2 – концентрация твердых частиц, покидающих донный дренаж (кг/м3) и PTSS – уровень образования твердых частиц (кг/сутки).
PTSS = aTSS • rfeed • ρfish • Vtank, где ρfish – плотность рыб в емкости культивирования (кг/м3); Vtank – объем бассейна (м3); rfeed – частота кормления (кг корма/(кг рыбы*сутки)), aTSS — количество образующихся твердых частиц (кгTSS/кг корма).
Доля удаляемых через центральный дренаж твердых частиц (frem) может быть определена по следующему уравнению (1).Преобразуя уравнение, можно следующим образом рассчитать TSSout2 (2):
Использование двойной дренажной системы существенно повышает концентрацию твердых частиц, удаляемых посредством слабого потока через донный дренаж. Концентрация этих частиц может в 10 раз превышать концентрацию частиц в составе основного потока воды, покидающего дренаж. Например, в бассейнах с двойной дренажной системе, в которых выращивалась тиляпия (Timmons, 1997), центральный дренаж удалял до 100% твердых частиц (при использовании 2-3% всего потока воды). В том же исследовании концентрация частиц, проходящих через боковой дренаж (взвешенные в толще воды) составляла 6,4 мг/л (стандартное отклонение 3,6). В этой работе рыбе ежедневно давали 80 кг/сутки корма, объем бассейна составлял 53 м3, поток через центральный дренаж – 110 л/мин, а общий водный обмен через биофильтр – 3,6-5.5 м3/мин. Все захваченные в донный дренаж частицы затем фильтруются механическим сетчатым фильтром, либо отстойником (осушается ежедневно, объем 3 м3).
Re Сколько по минимуму будет стоить УЗВ
From: Василий
Comments
Построить своими руками можно все, если есть схемы и планы! Только это однозначно скажется на надежности всей системы. Надо быть к этому готовым!
Я рекомендую покупать только профессиональное оборудование для аквакультуры. Но если нет денег, а построить все же хочется, то можно брать другое.
Установка состоит из:
Если покупать в Германии для осетровника 20 тонн, то:
Мальковый цех — 4.000 €.Производственный цех — 6.000 €
2. Трубопроводы. В России выпускается много вариантов пластиковых труб.
Если покупать Европейский генератор, то он с воздушными фильтрами, высушивателем воздуха, с двумя ресиверами и компрессором (на 20 тонный осетровник) будет стоить: 32.000 €.
Конусный оксигенаторы (на 20 тонный осетровник) будут стоить примерно 4.000 €.
4. Механический фильтр. Лучше конечно купить микросетчатый, барабанный фильтр, но можно построить полочный отстойник или фильтровать через плавающие полиэтиленовые гранулы (сырье для ПЭТ бутылок), тогда будет стоить не дорого. Но удобнее работать с барабанным, самопромывающимся, микросетчатым фильтром.
Если брать в ЕС для осетровника 20 тонн, то
Мальковый цех — 7.000 €.Производственный цех — 10.000 €
Еще, хорошо бы усилить микросетчатый фильтр гидроциклоном, тогда меньше потребуется воды для обратной промывки.
6. Защита от аварий. Это лучше все купить в Европе. Датчики давления, скорости жидкости, содержания кислорода в воде и сигнализаторы уровня воды. Дизель-электрогенератор с авто запуском.
Сколько будет стоить такая самодельная УЗВ, трудно сказать, надо считать основываясь на местный рынок рабочей силы и доступных материалов. Но в разы она будет стоить точно! Надо иметь план, схему УЗВ.
Поэтому УЗВ лучше поделить на независимые модули, чтобы избежать потери всего урожая и быть готовым переселить рыбу из аварийного блока в другой рабочий, до исправления неполадок. Иметь трезвых, страдающих бессонницей операторов!
Из элементов, доступных в любом строительном магазине, и с помощью инструментов домашнего мастера можно за несколько часов изготовить мини-УЗВ своими руками. Чертёж установки из недорогих компонентов:
УЗВ можно собрать из недорогих материалов своими руками
Основа системы — две бочки, желательно предназначенные для пищевых целей. Одна из них служит аквариумом для рыбы, из нижней части которого при помощи насоса вода перемещается в пластиковое ведро, вмонтированное в верхнюю часть второй бочки. Оно является ёмкостью для механического фильтра, отделяющего остатки корма и твёрдые фекалии. Механически очищенная жидкость через стояк попадает на дно биофильтра для переработки азотистых отходов, а затем снова попадает в аквариум по возвратной трубе.
Подбор элементов УЗВ зависит от технических условий помещения
Механические фильтры можно сделать из хозяйственных губок или мебельного поролона. В качестве денитрификатора лучше использовать специальную плавающую биозагрузку для УЗВ. Воздушный компрессор низкого давления, нагнетающий воздух на дно аквариума, послужит аэратором.
Технические и биологические основы рециркуляционных аквакультур хорошо изучены. Накопленный опыт позволяет проектировать и изготавливать УЗВ любой сложности и масштабов. Единственный ограничивающий фактор, препятствующий бурному развитию замкнутых систем рыбоводства — экономика. Рыба из УЗВ дороже пойманной в открытом водоёме. Самые успешные рециркуляционные аквакультуры производят дорогие морепродукты для нишевых рынков или расположены в экстремальных климатических зонах. Эта технология пока не позволяет накормить весь мир, но её вклад в улучшение экологии водных бассейнов трудно переоценить.
(Visited 233 times, 1 visits today)
На рынок компания представила два проекта УЗВ
1. Водообмен — 4275 м3/час; объем — 2850 м3; максимальная биомасса — 142500 кг; максимальная норма кормления — 3000 кг/день; площадь хозяйства — 200 м2, включая углубленные конусы для оксигенации; объем вносимой свежей воды — 300 литров/кг корма.
Узлы водоподготовки УЗВ первого типа. Конусы для оксигенации углублены в землю.
2. Водообмен — 2400 м3/час; объем — 1400 м3; максимальная биомасса — 70000 кг; максимальная норма кормления — 2000 кг/день; площадь хозяйства — 250 м2; объем вносимой свежей воды — 300 литров/кг корма.
В Норвегии Kruger Kaldnes установила систему второго типа. При выращивании 45-60 кг/м3 биомассы (смолт лосося) и количестве вносимого корма — 900 кг/л вода имеет следующие показатели:
CO2 на выходе из емкостей культивирования — 12-13 мг/лNH3/NH4 — 0,6 мг/лNO2 —
Серия бассейнов для культивирования в УЗВ компании Kruger Kaldnes (проект для Саннефьорд, Норвегии).
Принципиальная схема петли рециркуляции и водоподготовки УЗВ от компании Kruger Kaldnes.
Вода из бассейнов с рыбой под действием силы тяжести устремляется в узлы очистки.По трубопроводу вода поступает в барабанный фильтр. Диаметр микросита варьирует от 10 до 60 мкм. Из механического фильтра загрязнения вымываются для последующей обработки.
После механической очистки вода следует в биофильтр с псевдоожиженным слоем. В качестве наполнителя используются полиэтиленовые, так называемые, биочипы AnoxKaldnes MBBR. Постоянное перемешивание наполнителя осуществляется с помощью распылителей воздуха.
MiniChipTM прототип (1500 м2/м3) (1); BiofilmChipTM M (1200 м2/м3) (2); K1 (3) и K3 (4) (оба 500 м2/м3) от шведской компании AnoxKaldnes. Второй экземпляр используется в биологических фильтрах немецкой УЗВ.
Вода последовательно проходит два биологических фильтра. Из второго реактора под действием сил тяжести она попадает в камеру для дегазации. Углекислый газ проходит вверх против движения воды и потока нагнетаемого воздуха. Давление в камере регулируется дополнительным компрессором, который создает противоточную газовую фазу.
Помпа обеспечивает возврат воды в конусы для оксигенации, а затем в емкости культивирования.
Проект УЗВ второго типа, реализованный в Норвегии. 1. Подвод воды от бассейнов к барабанным фильтрам. Место входа труб располагается чуть выше конусов для оксигенации, не показано); 2. Барабанный фильтр. Микросито ополаскивается от загрязнений; 3. загрязнения от фильтра поступают в дренаж и удаляются; 4-5. Барабанные фильтры наполовину погружены в емкость первого биофильтра так, что очищенная вода подвергается биологической фильтрации; 6. Наполнитель биочипы AnoxKaldnes MBBR перемешиваются аэратором; 7. из второго биологического фильтра вода проходит колонки для дегазации, слева колонки находятся два кулера для выветривания углекислого газа (создают противоток воздуха воде); 9-10. Насыщение воды кислородом и возвращение в бассейны с рыбой.
Баланс осаждаемых частиц
Эффективность бассейна с двойной дренажной системы в отношении концентрации твердых частиц при их прохождении через донный дренаж можно проиллюстрировать следующим уравнением баланса:
in> + TSS> = out1 • TSSout1> + out2 • TSSout2>, где Q – скорость водного потока (м3/сутки); Qout1 – скорость водного потока, покидающего донный дренаж (м3/сутки); TSSin – концентрация твердых частиц в бассейне (кг/м3); TSSout1 – концентрация твердых частиц, покидающих боковой дренаж (кг/м3); TSSout2 – концентрация твердых частиц, покидающих донный дренаж (кг/м3) и PTSS – уровень образования твердых частиц (кг/сутки).
PTSS = aTSS • rfeed • ρfish • Vtank, где ρfish – плотность рыб в емкости культивирования (кг/м3); Vtank – объем бассейна (м3); rfeed – частота кормления (кг корма/(кг рыбы*сутки)), aTSS — количество образующихся твердых частиц (кгTSS/кг корма).
Доля удаляемых через центральный дренаж твердых частиц (frem) может быть определена по следующему уравнению (1).Преобразуя уравнение, можно следующим образом рассчитать TSSout2 (2):
Использование двойной дренажной системы существенно повышает концентрацию твердых частиц, удаляемых посредством слабого потока через донный дренаж. Концентрация этих частиц может в 10 раз превышать концентрацию частиц в составе основного потока воды, покидающего дренаж. Например, в бассейнах с двойной дренажной системе, в которых выращивалась тиляпия (Timmons, 1997), центральный дренаж удалял до 100% твердых частиц (при использовании 2-3% всего потока воды). В том же исследовании концентрация частиц, проходящих через боковой дренаж (взвешенные в толще воды) составляла 6,4 мг/л (стандартное отклонение 3,6). В этой работе рыбе ежедневно давали 80 кг/сутки корма, объем бассейна составлял 53 м3, поток через центральный дренаж – 110 л/мин, а общий водный обмен через биофильтр – 3,6-5.5 м3/мин. Все захваченные в донный дренаж частицы затем фильтруются механическим сетчатым фильтром, либо отстойником (осушается ежедневно, объем 3 м3).
Re Сколько по минимуму будет стоить УЗВ
From: Василий
Comments
Построить своими руками можно все, если есть схемы и планы! Только это однозначно скажется на надежности всей системы. Надо быть к этому готовым!
Я рекомендую покупать только профессиональное оборудование для аквакультуры. Но если нет денег, а построить все же хочется, то можно брать другое.
Установка состоит из:
Если покупать в Германии для осетровника 20 тонн, то:
Мальковый цех — 4.000 €.Производственный цех — 6.000 €
2. Трубопроводы. В России выпускается много вариантов пластиковых труб.
Если покупать Европейский генератор, то он с воздушными фильтрами, высушивателем воздуха, с двумя ресиверами и компрессором (на 20 тонный осетровник) будет стоить: 32.000 €.
Конусный оксигенаторы (на 20 тонный осетровник) будут стоить примерно 4.000 €.
4. Механический фильтр. Лучше конечно купить микросетчатый, барабанный фильтр, но можно построить полочный отстойник или фильтровать через плавающие полиэтиленовые гранулы (сырье для ПЭТ бутылок), тогда будет стоить не дорого. Но удобнее работать с барабанным, самопромывающимся, микросетчатым фильтром.
Если брать в ЕС для осетровника 20 тонн, то
Мальковый цех — 7.000 €.Производственный цех — 10.000 €
Еще, хорошо бы усилить микросетчатый фильтр гидроциклоном, тогда меньше потребуется воды для обратной промывки.
6. Защита от аварий. Это лучше все купить в Европе. Датчики давления, скорости жидкости, содержания кислорода в воде и сигнализаторы уровня воды. Дизель-электрогенератор с авто запуском.
Сколько будет стоить такая самодельная УЗВ, трудно сказать, надо считать основываясь на местный рынок рабочей силы и доступных материалов. Но в разы она будет стоить точно! Надо иметь план, схему УЗВ.
Поэтому УЗВ лучше поделить на независимые модули, чтобы избежать потери всего урожая и быть готовым переселить рыбу из аварийного блока в другой рабочий, до исправления неполадок. Иметь трезвых, страдающих бессонницей операторов!
Читайте также: