Эстрадный усилитель мощности своими руками
Статья о создании усилителя, в схемотехнике и конструкции которого использованы нетрадиционные технические решения. Проект некоммерческий.
Увлекаться аудиотехникой и слушать музыку я начал очень давно, с конца 80-х годов и продолжительное время был твердо убежден, что любой УМ с лейблом Sony, Technics, Revox и т.д. намного лучше отечественных усилителей, а самоделок – тем более, так как у западных брендов и технологии, и самые качественные детали, и опыт.
Все изменилось после статьи А.М. Лихницкого в журнале Аудиомагазин № 4(9) 1996, где рассказывалось о разработке и внедрении в производство в 70-е годы усилителя Бриг-001, автором которого он является. Волею случая, спустя небольшой промежуток времени, неисправный Бриг-001 из первых выпусков попал мне в руки. Используя только оригинальные отечественные детали 70-х - 80-х годов, привел этот УМ в первоначальное состояние, чтобы можно было оценить его звуковые способности как можно более достоверно.
Подключение усилителя Бриг-001 вместо Technics SU-A700 домашней аудиосистемы повергло меня в шок – Бриг звучал намного лучше, хотя параметры имел скромнее и был старше лет на 20. Именно в этот момент возникла идея сделать усилитель своими руками, способный заменить штатный в аудиосистеме, что и было сделано в 1998 году, преимущественно, на отечественной элементной базе военной приемки. Новый аппарат не оставлял шансов на сравнительных прослушиваниях уже и более именитым усилителям, типа NAD и Rotel средних моделей линейки и был вполне убедителен даже в сравнении с их более старшими собратьями. Дальнейшее развитие проект получил в 2000-м году, в виде двухблочного УМ по той же схеме, но с новым конструктивом и увеличенной энергоемкостью блока питания. Сравнивался он уже с транзисторными и ламповыми усилителями из ценовой категории до нескольких тысяч долларов США, причем, во многих случаях превосходил их по качеству звучания. Тут я понял еще одну вещь – конструкция усилителя решает почти все.
2. Снижение выходного сопротивления УМ еще до охвата ОООС.
1. Быстродействие и полоса пропускания композитного усилителя должны увеличиваться от входа к выходу.
2. Коррекция только однополюсная. Никаких конденсаторов в цепях ООС.
4. Свыше 200 В/мкс заметного улучшения не наблюдалось, но для УМ с выходным напряжением 20 В RMS, к примеру, нужно уже 500 В/мкс для достижения такого же результата.
В 2008 году, случайно, в Интернете нашлось дополнение к спецификации на интегральный буфер BUF634T, где самими разработчиками приводилась схема композитного усилителя с тремя такими буферами на выходе, соединенными параллельно (рис. 1) – именно тогда пришла идея спроектировать УМ с большим количеством таких буферов в выходном каскаде.
BUF634T – это широкополосный (до 180 МГц), сверхбыстродействующий (2000 В/мкс) буфер, построенный на основе параллельного повторителя, имеющий выходной ток 250 мА и ток покоя до 20 мА. Единственный его недостаток, можно сказать, - это низкое напряжение питания (+\- 15 В номинальное и +\- 18 В – максимально допустимое), что накладывает определенные ограничения на амплитуду выходного напряжения.
Остановил все-таки свой выбор на BUF634T, смирившись с низким выходным напряжением, так как все остальные характеристики буфера и его звуковые свойства меня полностью устраивали, и начал проектировать УМ с максимальной выходной мощностью 20 Вт/4Ом.
Рис.1
Выбор количества элементов выходного каскада свелся к тому, чтобы получить УМ, работающий в чистом классе А на нагрузку 8 Ом и обеспечить режимы элементов выходного каскада по току далекие от предельных. Требуемое количество определилось как 40+1. Для дополнительного 41-го буфера был установлен минимальный ток покоя - всего 1.5 мА, а использовать его предполагалось для того, чтобы осуществить первый запуск конструкции еще до установки радиаторов, а также с целью проведения некоторых настроек и экспериментов в более комфортных условиях. Впоследствии оказалось, что это была очень хорошая идея.
Общая схема усилителя претерпела множество изменений за время настройки и доводки, поэтому приведу сразу финальный вариант, который включает в себя все исправления и доработки (рис. 2).
Рис. 2
Структура проста – селектор входов, регулятор громкости, УН, буферный усилитель для записи на магнитофон, оконечный каскад и реле защиты, которое управляется оптоэлектронной схемой задержки подключения АС и защиты их от постоянного напряжения (рис.3). Для компактности, буферы и сопутствующие им резисторы объединены по 10 шт, но нумерация деталей сохранена в полном объеме. Как видно на рис. 2, контактная группа реле защиты УМ (К6) не включена в цепь прохождения звука и замыкает выход на землю во время переходных процессов или возможных аварийных ситуаций.
Рис. 3
Для BUF634T такое включение не опасно, тем более что все буферы имеют на выходе по резистору 10 Ом. Во избежание потери устойчивости усилителем, из-за замыкания на землю резистора ОООС (R15), одновременно со срабатыванием реле К6 замыкается и реле К5, образующее временную цепь ОООС драйверного каскада через резистор R14. Если номиналы резисторов R14 и R15 равны, то никаких посторонних щелчков в АС во время работы защиты нет, даже если они чувствительностью свыше 100 дБ.
Стоит заметить, что первый год эксплуатации усилитель надежно функционировал и без реле К5, и без временной цепи ООС с R14, но мне не давала покоя сама вероятность возникновения самовозбуждения во время работы защиты, поэтому были введены эти дополнительные элементы. Кстати, усилитель прекрасно работает и без охвата оконечного каскада цепью ОООС. Можно убрать резистор R15, реле К5, а резистором R14 замкнуть обратную связь в УН, что я и делал, в качестве эксперимента. Мне так звук понравился меньше – возможно, что это тот вариант, когда от использования сверхбыстродействующей обратной связи получаем больше плюсов, чем минусов.
На схеме не показаны блокировочные конденсаторы по питанию – они для удобства будут отображены на схеме БП.
Идеология этого усилителя в значительной степени отличается от классической и основывается на принципе разделения токов – каждый элемент оконечного каскада работает с малым током, в очень комфортном режиме, но достаточное количество этих элементов, включенных параллельно, могут обеспечить данному 20-Ваттному усилителю максимальный ток в нагрузке более 10 А постоянно и до 16 А в импульсе. Таким образом, выходные каскады нагружены во время прослушивания, в среднем, не более чем на 5-7%. Единственное место в усилителе, где могут проходить большие токи, – это две медные шины на плате УМ, ведущие к терминалам для подключения АС, куда сходятся вместе выходы всех BUF634T каждого канала.
Рис. 4
На БП для сервисных функций возложено подключение сетевого напряжения к основным трансформаторам (реле К8), питание компонентов системы Soft Start, реле селектора входов, напряжение питания которых, кстати, тоже стабилизировано. Реализован также выход +5 В, выведенный на разъем на задней панели УМ, – это уже некий стандарт в моих усилителях для одновременного включения каких-либо внешних блоков. Данный усилитель вполне может работать как усилительно-коммутационное устройство (предварительный усилитель) для более мощных моноблоков, к примеру, которые будут включаться при подаче на них управляющего напряжения +5 В.
Блок питания усилителя был построен в первую очередь, так как дальнейшее продвижение процесса разработки требовало наличие полноценного БП, чтобы первый запуск, эксперименты и настройку производить в режиме близком к реальным условиям эксплуатации. После успешного запуска всех цепей питания, на плате УМ был собран селектор входов, узел задержки включения и защиты АС, а также композитный усилитель с одним BUF634T (BUF41) на выходе, в качестве оконечного каскада. Как уже упоминалось выше, этот 41-й буфер имеет малый ток покоя и не требует установки на радиатор, но к выходу усилителя теперь запросто подключались наушники, что давало возможность слухового контроля, наряду с измерениями. По окончании отладки схемы с одним выходным буфером в каждом канале, оставалось только впаять остальные 80 шт. и посмотреть, что из этого получится. Никаких гарантий положительного результата у меня не было, да и быть не могло - отсутствовала информация об успешно реализованных подобных проектах других разработчиков. Насколько мне известно, конструкций на параллельных ОУ, имеющих аналогичное быстродействие, ни в России, ни за рубежом нет и сейчас.
Результат все же оказался положительным. Так как усилитель был собран на жестком шасси из алюминиевых брусков, где были закреплены и все коммутационные разъемы (фото 1), то подключить его к аудиосистеме возможно было и без корпуса. Начались первые прослушивания, но об этом чуть позже - сначала, приведу некоторые параметры:
Фото 1
Выходная мощность: 20 Вт/4Ом, 10 Вт/8Ом (класс А)
Полоса пропускания: 0 Гц – 5 МГц (вход CD)
1.25Гц - 5 МГц (входы AUX, Tape, LP)
Скорость нарастания выходного напряжения: более 250 В/мкс
Коэффициент усиления: 26 дБ
Выходное сопротивление: 0.004 Ом
Чувствительность входов: 500 мВ
Отношение сигнал/шум: 113.4 дБ
Потребляемая мощность: 75 Вт
Мощность блока питания: 320 Вт
Габаритные размеры, мм: 450х132х390 (без учета высоты ножек)
Вес: 18 кг
На основании параметров, даже не заглядывая в схему, очевидно, что в усилителе отсутствуют входные и выходные фильтры, а также внешние цепи частотной коррекции. Но стоит заметить, что при этом он устойчив и прекрасно работает даже с неэкранированными межблочными кабелями. Достаточно информативна в этом отношении и осциллограмма меандра 2 кГц 5В/дел, на нагрузке 8 Ом при почти максимальном уровне выходного напряжения (Фото 2).
Фото 2
Есть осциллограммы, снятые и на частотах 10кГц, 20кГц и 100кГц, но проверки на высоких частотах проводились с малым уровнем сигнала, поэтому уже сказывалось наличие высокоОмного регулятора громкости на входе, а также R-C цепь Цобеля на выходе УМ, которая еще присутствовала в то время (меандр 100 кГц 50мВ/дел - фото 3).
Фото 3
Усилитель подключался к различной акустике – это и АС известных российских производителей: Александра Клячина (модели: MBV (MBS), PM-2, N-1, Y-1), рупорные АС Александра Князева, полочные АС на профессиональных динамиках фирмы Tulip Acoustics, АС иностранных брендов средней и высокой ценовой категории: Klipsh, Jamo, Cerwin Vega, PBN Audio, Monitor Audio, Cabasse и многих других, с разной чувствительностью и входным импедансом, многополосные со сложными и простыми разделительными фильтрами, широкополосные без разделительных фильтров, АС с разным акустическим оформлением. Особых предпочтений выявлено не было, но лучше всего УМ раскрывается на напольной акустике с полноценным НЧ диапазоном и, желательно, чувствительностью повыше, так как выходная мощность невелика.
Фото 4
Фото 5
Фото 6
Регулятор громкости установлен DACT 50 кОм. Сейчас, я бы выбрал их наименьший номинал – 10 кОм или использовал бы релейный регулятор Никитина с постоянным входным и выходным сопротивлением 600 Ом. РГ типа ALPS RK-27 будет намного хуже и не рекомендуется к использованию.
Реле рекомендую Finder в силовой части, защитеАС и софтстарте, а для селектора входов нужно использовать только такие реле, у которых в параметрах нормирован минимальный коммутируемый ток. Таких реле выпускается немного моделей, но они есть.
Отечественные быстродействующие выпрямительные диоды КД213 (10 А) или КД2989 (20 А) в питании оконечного каскада будут лучше большинства импортных.
Хочу заметить, что схемотехника усилителя достаточно проста, но для работы со столь быстродействующими и широкополосными микросхемами нужны соответствующие навыки и измерительные приборы – функциональный генератор, осциллограф с полосой не менее 30 МГц (лучше - 50 МГц).
В заключение, хотелось бы сказать, что сделанные мной выводы по результатам проведенных экспериментов, а также в течение работ над данным проектом и последующей его доводки, не претендуют на абсолютную истину. Путей достижения цели, которой в данном случае является качественный звук, достаточно много и каждый из них подразумевает комплекс мер, которые могут не давать положительного результата по отдельности. Поэтому, простых рецептов в этой области не бывает.
Статья была опубликована в журнале Радиолюбитель, в номерах 7 и 8 за 2014 год.
Многих радиолюбителей не устраивает звучание промышленных звуковых систем, поэтому проблема как сделать усилитель для колонок своими руками является интересной. Имеется много схем, которые пригодны для повторения начинающими радиолюбителями. Они собираются на доступных и недорогих деталях, просты в изготовлении и не требуют сложного налаживания. Можно сначала сделать усилитель звука простейшего типа, а затем переходить к более сложным конструкциям.
Мощный усилитель звука своими руками
Радиолюбитель, собирающийся сделать систему низкой частоты (УНЧ), должен решить ряд следующих вопросов:
- Элементная база
- Электрические параметры
- Выбор схемы
Современные звуковые системы собираются с применением биполярных или полевых транзисторов и интегральных микросхем. Такие конструкции не требуют высокого напряжения в цепях питания, достаточно компактны и обеспечивают хороший диапазон воспроизводимых частот и низкий процент искажений. Звуковая аппаратура высшего класса собирается на электронных лампах, которые в серийной технике не применяются уже давно. Электрические параметры зависят от того, для какой цели будет использоваться УНЧ. Конструкция, предназначенная для подключения к планшету или компьютеру, не предполагает высокого качества воспроизведения звука.
Для специалиста будет просто собрать своими руками аудио усилитель, обеспечивающий достаточно высокие параметры. В такой конструкции можно использовать мощные транзисторы или микросхемы. Блок может быть предназначен для работы с устройствами, которые выдают мощный выходной сигнал. Тогда предварительный каскад не требуется и достаточно собрать только оконечник. Если устройство предназначено для работы с микрофоном, проигрывателем виниловых дисков или электрогитарой, то придётся собирать полный тракт с предварительным каскадом и регулировками тембра. Оконечный усилитель мощности своими руками можно проще всего собрать на интегральной микросхеме. Такая конструкция собирается на простейшей печатной плате, не требует регулировок, налаживания и при правильной сборке сразу начинает работать.
Конструкция обеспечивает выходную мощность до 20 ватт на канал, работает от напряжения от 10 до 18 В, поэтому может быть использована в автомобиле. Такая мощность обеспечивается при использовании микросхемы TDA1557. Корпус TDA8560Q может выдать до 30 ватт в каждом канале. Для более стабильной работы конструкции при воспроизведении низких частот рекомендуется в фильтре питания использовать 5, соединённых параллельно емкостей по 2200 мкф. Корпус микросхемы сильно нагревается, поэтому её нужно установить на радиатор. Чтобы собрать усилитель звука для колонок своими руками потребуется тестер и паяльник. Осциллограф и генератор для простых схем не используются.
Как собрать усилитель звука
Начинающим радиолюбителям нет смысла браться за повторение сложных транзисторных схем с высокими параметрами. Для регулировки таких конструкций потребуется сложная измерительная аппаратура. Самым простым вариантом для начинающих будет повторение схем, выполненных на интегральных компонентах. Для начала можно своими руками собрать простой усилитель звука небольшой мощности.
Микросхема LM386 работает в широком диапазоне питающего напряжения и обеспечивает мощность до 1,2 ватта на нагрузку 8 Ом. Коэффициент искажений сигнала не превышает 0,2%. Переменный резистор 4,7 кОм позволяет изменять коэффициент усиления от 20 до 200. Самодельное устройство можно собрать на макетной плате или навесным монтажом.
Стерео усилитель звука своими руками
Схема, работающая в данном режиме, потребляет большой ток, и выходные транзисторы греются при отсутствии сигнала, поэтому они устанавливаются на радиаторы. Чтобы сделать своими руками аудио усилитель для колонок стереофонического тракта собираются две схемы – для правого и левого каналов. Если конструкция будет использоваться для автомобильной магнитолы, то этой схемы достаточно. В других случаях потребуется предварительный каскад с регулировками усиления, тембров и стерео баланса. Спаять усилитель звука лучше всего на печатной плате. Выходные транзисторы монтируются на радиаторы. Для надёжного охлаждения можно использовать кулер от компьютерного блока питания. Конденсатор С2 должен быть плёночным.
Увеличить мощность усилителя звука своими руками, можно повысив напряжение питания на 10-15%. Предварительно нужно узнать критические величины напряжения для транзисторов. В некоторых случаях поможет увеличение входного сигнала. Это эффективнее раскачает выходной каскад.
Вопрос как сделать мощный усилитель звука своими руками часто возникает у радиолюбителей с небольшим опытом работы. Браться за транзисторную схему не имеет смысла. Это сложно, долго и нет гарантии, что конструкция заработает. Лучше всего применить специальные микросхемы. Интегральный УНЧ может выдавать на выходе сотни ватт, при этом схема не нуждается в регулировке.
Усилитель для колонок своими руками для чайников
Обычно конструкции с большой выходной мощностью используют для сабвуферов, но если имеются мощные акустические системы, то такую конструкцию можно использовать для озвучивания больших помещений. Таким УНЧ требуется правильно подобранный источник питания, а для корректной работы нужно продумать охлаждение выходных каскадов или корпуса мощной микросхемы.
Простая схема низкочастотного блока большой мощности может быть собрана на нескольких типах интегральных микросхем, но нумерация выводов не меняется. Выходная мощность (W) соответствует следующим типам микросхем:
- PA01 – 50
- OPA12 – 60
- TSC1468 – 120
- PA04 – 400
- PA03 – 1000
Самодельные усилители звука, сделанные своими руками при использовании исправных элементов и аккуратном монтаже, смогут обеспечить хорошие параметры. Питание конструкции осуществляется от двухполярного источника питания с напряжением от 15 до 45 вольт. Кроме РА01 максимальное напряжение для которой, не должно превышать 28 вольт. В качестве нагрузки используются широкополосные колонки, так как амплитудно-частотная характеристика достаточно линейна в диапазоне 10 Гц-40 кГц. Коэффициент нелинейных искажений на частоте 1 кГц и выходной мощности 50 ватт не превышает 0,005%. Несмотря на то, что микросхемы достаточно дорогие на них можно собрать хороший усилитель звука.
Мини усилитель звука для колонок своими руками
Такая конструкция должна иметь небольшое количество доступных деталей, легко собираться и не нуждаться в настройке. Для такой цели лучше всего подойдут распространённые и недорогие микросхемы. Они применяются в серийной аппаратуре, но их можно использовать для домашних самоделок. Конструкция сможет обеспечить выходную мощность достаточную для озвучивания помещения среднего размера. Как сделать самый простой усилитель звука своими руками будет ясно после прочтения данной статьи.
Собрать простой мини усилитель звука, своими руками очень просто, используя готовый модуль с микросхемой РАМ8403. Для этой конструкции не потребуются никакие дискретные элементы, поскольку они предусмотрены в схеме. Достаточно подключить колонки, питание и подать входной сигнал. Сопротивление акустических систем должно быть 6-8 Ом. Выходная мощность достигает 2 ватт на канал.
Полный усилитель звука своими руками
Полный усилитель звука состоит из предварительного и оконечного каскадов, которые могут быть реализованы на транзисторах или интегральных микросхемах. Чтобы собрать аудио усилитель своими руками нужно иметь опыт и необходимое техническое оборудование, так как без измерительных приборов наладить такую конструкцию невозможно. Блок схема полного усилителя.
Регулировку устройства может выполнить только опытный радиолюбитель. На рисунке показана схема одного входного канала. В стереофонический тракт входят две такие схемы. Это каскад с активными регулировками тембра и регулятором громкости с компенсацией можно подключить к любому оконечному каскаду. Предварительный каскад собран на сдвоенном операционном усилителе с высоким быстродействием LM833 и на TL071. Вместо них можно использовать ОУ 544 серии.
Простой аудио усилитель своими руками
Простейший усилитель звука своими руками собирается на микросхеме TDA7231. Представленная схема обеспечивает выходную мощность до 1,5 ватт на четырёхомную нагрузку. Микросхема имеет большой допустимый диапазон по питанию, поэтому УНЧ может применяться в батарейных конструкциях. Ток покоя устройства не превышает 8 mA. Потребляемый ток при максимальной мощности достигает 1,5 А. К устройству можно подключить любую динамическую головку с сопротивлением 4 Ом. Для качественного воспроизведения музыки эта конструкция не подходит из-за большого процента искажений, который при максимальной громкости достигает 8%. Устройство может быть использовано в электронных игрушках с автономным питанием или системах охранной сигнализации.
Простой аудио усилитель звука для дома легко собирается на микросхеме 4069, которая содержит 6 инверторов. Система пригодна для подключения наушников при прослушивании музыкальных файлов с компьютера, телефона или планшета. Простая схема обеспечивает удовлетворительные параметры.
Изменяя сопротивление резисторов R2 и R3 можно менять коэффициент усиления устройства. Для этого УНЧ не обязательно делать печатную плату. Подойдёт стандартная макетная плата с металлизированными отверстиями.
Существует много простейших конструкций, которые доступны для повторения радиолюбителями с небольшим опытом. Для изготовления таких устройств потребуется только тестер для проверки основных цепей. После того, как в процессе изготовления и наладки простых схем появится опыт, можно переходить на более сложные системы.
МР-Р-Р-мяу.
Количество
транзисторов
возрастает
в
арифметической
прогрессии!
Интересно, а
качество
звука также
заметно
растёт?
Что сомневаюсь
я, однако.
АНТОЛОГИЯ "ТРАНЗИСТОРНЫЕ УНЧ"
по материалам журналов "РАДИО" 1990-2013 гг
Я не преследую цель создать некую библиотеку схем ТРАНЗИСТОРЫХ УНЧ. Моя задача - показать ТЕНДЕНЦИЮ.
Перелистав свою коллекцию журналов РАДИО (1955 -2013), я вознамерился показать, как с течением времени менялся интерес к данной теме, и как часто схемы транзисторных УНЧ появлялись на страницах журнала.
Хотелось бы отметить также, что схемы различных транзисторных УНЧ, которые кочуют из сайта в сайт (без указания первоисточника, зачастую выдаваемые за собственные гениальные схемные творения) произошли именно отсюда.
1990
№2, с.62, УМЗЧ с коррекцией динамической характеристики
№5, с.52, Усилитель мощности с блоком питания
№8, с.63, Блок защиты УМЗЧ и АС
№9, с.53, УМЗЧ для автомагнитолы
№12, с.63, Усилитель мощности ЗЧ (усовершенствованный, №4,1987)
1991
№3, с.53, Режим В в усилителях мощности ЗЧ
1992
№1, с.54, Мостовой усилитель мощности ЗЧ
№7, с.31, Автомобильный стереофонический УМЗЧ
1993
№1, с.22, УМЗЧ с широкополосной ООС
№5, с. 13, УМЗЧ с системой защиты
№9, с.9, Высококачественный автомобильный УМЗЧ
№12, с.27, УЗЧ мощностью 20 Вт
№11, с.13, Обзор: УМЗЧ (по следам публикаций)
1995
№1, с.20, УМЗЧ для активной акустической системы
№4, с.15, УМЗЧ с питанием от низковольтного источника (для радиоприёсмников)
№10, с.14, УМЗЧ с плавающим питанием ОУ
№11, с.12, Схемотехника УМЗЧ высокой верности (начало)
№12, с.16, (продолжение)
1996
№1, с.22, (продолжение №12, 1995)
№4, с.14, УМЗЧ с защитой нагрузки без реле (рекомендации)
№5, с.18, (продолжение №1 с.г.)
№7, с.15 (продолжение №5 с.г.)
№8, с.24 продолжение №7 с.г.)
№9, с.21 (продолжение №8 с.г.)
1997
№2, с.12, Лампы или транзисторы? (теория)
№3, с.12, УМЗЧ с обратной связью по вычитанию искажений
№3, с.15, (продолжение №9, 1996)
№4, с.17, Каскодная схема ОИ-ОБ в УМЗЧ
№8, с.13 (продолжение №3 с.г.)
№12, с.14, УМЗЧ с однокаскадным усилением напряжения
1999
№4, с.49, Усилитель НЧ для приёмников с батарейным питанием
№6, с.16, УМЗЧ с однополярным источником питания
№10, с.15, Сверхлинейный УМЗЧ с глубокой ООС (начало)
№10, с.18, УМЗЧ с индуктивной коррекцией
№11, с.13, (продолжение, №10.с.г.)
№12, с.16, (продолжение, №11 с.г.)
2000
№1, с.18, (продолжение, №12, 1999)
№2, с.40, (продолжение, №1 с.г.)
№4, с.40, (продолжение, №2 с.г.)
№5, с.22, (продолжение, №4 с.г.)
№6, с.10, (окончание, №5 с.г.)
№9, с.12, Мостовой УМЗЧ с БСИТ
№10, с.14, Два усилителя мощности ЗЧ
№11, с.12, Простой эстрадный усилитель мощности (начало)
№12, с.37, Простой эстрадный усилитель мощности (окончание)
2001
№4, с.13, Комбинированный УМЗЧ без общей ООС (начало)
№5, с.12, Комбинированный УМЗЧ без общей ООС (окончание)
2002
№4, с.12, УМЗЧ с симметричным входом без общей ООС
№8, с.13, УМЗЧ на полевых транзисторах
№9, с.12, Мощные усилители с режимом А+ (начало)
№10, с.18, Мощные усилители с режимом А+ (окончание)
2003
№8, с.20, УМЗЧ с малыми интермодуляционными искажениями
№12, с.16, УМЗЧ в режиме класса В с комбинированной ООС
№5, с.23, УМЗЧ с комплементарными полевыми транзисторами (окончание)
№10, с.13, Простой УМЗЧ на полевых транзисторах
№12, с.17, Транзисторный усилитель мощности без обратной связи (начало)
2005
№1, с.20, Транзисторный усилитель мощности без обратной связи (окончание)
№2, с.15, УМЗЧ с параллельной ОС (начало)
№3, с.14, УМЗЧ с параллельной ОС (продолжение)
№4, с.16, УМЗЧ с параллельной ОС (окончание)
№7, с.20, Транзисторный УМЗЧ с многопетлевой ОС
2006
№7, с.14, Усовершенствованный гибридный усилитель
2007
№1, с.17, УМЗЧ без общей обратной связи
№6, с.19, УМЗЧ с параллельным каналом и максимально глубокой ООС
№9, с.19, Транзисторный УМЗЧ с повышенной термодинамической стабильностью (начало)
№10, с.17, Транзисторный УМЗЧ с повышенной термодинамической стабильностью (окончание)
2008
№10, с.9, Стабилизация тока покоя УМЗЧ с полевыми транзисторами
№11, с.15, УМЗЧ с многопетлевой ООС (новый вариант платы)
№12, с.19, УМЗЧ с выходным каскадом на полевых транзисторах одинаковой структуры
2009
№1, с.13, УМЗЧ мощностью 300 Вт с малыми искажениями
№2, с.14, УМЗЧ с полевыми транзисторами IRFZ44 (начало)
№3, с.15, УМЗЧ с полевыми транзисторами IRFZ44 (окончание)
№4, с.15, УМЗЧ с высоким КПД
№5, с.13, УМЗЧ на коомплементарных транзисторах
№7, с.10, Высококачественный УМЗЧ на полевых транзисторах в режиме класса А (начало)
№8, с.11, Высококачественный УМЗЧ на полевых транзисторах в режиме класса А (окончание)
2010
№2, с.17, УМЗЧ с усилителем напряжения по схеме с общей базой
2011
№4, с.17, УМЗЧ с кране глубокой ООС (начало)
№5, с.17, УМЗЧ с кране глубокой ООС (окончание)
№10, с.17, МКУС в УМЗЧ с токовым управлением и кране глубокой ООС (начало)
№11, с.17, МКУС в УМЗЧ с токовым управлением и кране глубокой ООС (окончание)
Схема усилителя Дорофеева знакома большой аудитории радиолюбителей. В начале 90-х, а точнее в 1991 году.
Усилитель Ланзар представляет собой качественный и очень мощный УМЗЧ. Его сборку выполнили тысячи радиолюбителей.
Ребята, всех приветствую на своем сайте. Проводя время в сети, я наткнулся на готовый вариант печатной.
Сегодня будем говорить о сборке транзисторного усилителя Apex AX11. Разработчиком этого несложного, но.
На этом сайте я уже публиковал несколько конструкций усилителей на микросхеме TDA2030a, как в стерео.
Микросхема TDA1514a представляет собой интегральный усилитель HI-FI, работающий в классе AB и являющийся.
Автомобильный усилитель сабвуфера состоит из трех схем, которые смонтированы на одной печатной плате.
Конструктивно усилитель выполнен в алюминиевом корпусе и включает в себя четыре основных блока: два канала.
Как известно, усилители звуковой частоты класса B имеют довольно серьезные искажения, которые связаны.
Создание усилителя звука является популярным выбором, когда речь идет о практической части курсов электроники.
В этой статье будет рассмотрена схема и пошаговая инструкция по изготовлению металлоискателя Volksturm S. Схема металлоискателя Volksturm S не очень сложная и если следовать рекомендациям, то вы соберёте своими руками отличный металлоискатель. Металлоискатель Volksturm S достаточно чувствительный и с его помощью можно легко обнаружить монету, на глубине 20 см, а крупные металлические предметы, на глубине до 80 см.
В этой статье будет рассмотрена схема и пошаговая инструкция по изготовлению индикатора разряда аккумулятора. Схема индикатора разряда аккумулятора достаточно проста и повторить её не составит труда. Если всё собрано согласно схеме, то устройство должно заработать сразу без каких либо настроек. Индикатор разряда будет полезен для различных приборов, что бы можно было следить за состоянием аккумулятора, тем более что схема универсальная!
В этой статье вы узнаете как сделать усилитель на микросхеме TDA2003 своими руками. Достаточно простая схема усилителя на популярной микросхеме TDA2003, все детали доступны, собрать такой усилитель не составит труда, а наша пошаговая инструкция по сборке усилителя на микросхеме TDA2003 вам в этом поможет! На базе данного усилителя, можно собрать портативную колонку или сделать акустику для компьютера, в общем идей для творчества достаточно. ))
Некоторые автолюбителе устанавливают на заднее стекло дополнительный стоп сигнал, который, при нажатии на педаль тормоза, загорается вместе со штатными стопами. Вот и мне захотелось поставить такие же, что я и сделал, но мне не понравилось то, что они постоянно горят, начал я тогда искать схему мигающего стоп сигнала. Все схемы которые мне попадались, были или слишком сложные либо не рабочие.
Сегодня вы узнаете как сделать простое устройство защиты аккумуляторов от разряда, оно способно работать на больших токах и его можно применить для самоделок с использованием аккумуляторов или установить её в автомобиль и оно будет отключать фары, если вы вдруг забыли их выключить.
Доброго времени суток! Если вы только познаете увлекательный мир радиоэлектроники, то советую обратить внимание на эту подборку из пяти схем для начинающего радиолюбителя! Схемы не сложные, поэтому собрать их не составит особого труда, в конце поста есть видео, в котором подробно рассказывается о каждой схеме, для чего нужна, принцип работы, а так же другая полезная информация. Надеюсь вам понравится!
Это схема коротковолновой радиостанции содержит в своем составе всего три транзистора. Самая простая рация для повторения начинающими радиолюбителями. Конструкция была взятая из старенького журнала, но актуальности своей ни капли не потеряла. Единственное, что устарело, так это радио компоненты, которые необходимо заменить на современные аналоги, в результате характеристики радиопереговорного устройства улучшатся.
Занимаясь недавно отладкой своей схемы, я обнаружил короткое замыкание слоя питания на землю. Миллиомметра или тестера с эквивалентными возможностями для поиска коротких замыканий у меня не было. Поэтому я вошел в Интернет, чтобы найти описание простого миллиомметра. Я нашел ответ в технической документации производителя, в который излагались основы
Во многих аудио, автомобильных и измерительных приложениях требуются недорогие, но высокостабильные и точные генераторы прямоугольных импульсов, способные отдавать в нагрузку достаточный ток. Интерес к дешевым способам реализации высококачественных приложений имеется всегда. Изображенная на Рисунке 1 схема состоит из бюджетного сдвоенного операционного усилителя (ОУ) с дополнительной функцией отключения и нескольких пассивных компонентов.
Блокировочные конденсаторы применяются в большинстве схем, но при плохих импульсных характеристиках эффект их использования может совсем не соответствовать ожидаемому. Очень немного статей, если таковые вообще существуют, затрагивают тему измерения импульсных характеристик блокировочных конденсаторов. На Рисунке 1 показана схема, предназначенная для таких измерений. Она в течение примерно 1 мс заряжает проверяемый
Во многих приложениях последовательность цепей преобразователя частоты состоит из буфера, желательно с некоторым дополнительным усилением по напряжению, смесителя, и элементов фильтрации. Вместо использования усилителя перед входом смесителя вы можете просто объединить функции смесителя и усилителя в одном приборе. В предлагаемой недорогой схеме используется усилитель, имеющий вход запрета. Когда прямоугольные импульсы гетеродина управляют выводом запрета, эти импульсы перемножается с входным сигналом, в результате чего происходит преобразование частоты.
Читайте также: