Электричество из радиоволн своими руками
Недавно на просторах интернета нашёл интересную схему- утилизатор радиоволн. Решил немного потестить и поделиться своими наработками в этой теме. Для начала я собрал простую схемку петлевого вибратора на приём частоты цифрового эфирного ТВ у нас в городе Самаре эта частота составляет 522мГц. Вибратор получился в длину всего 287мм, припаяв к концам диполя высокочастотные диоды ГД507А и конденсатор 1500пф на выходе с конденсатора получил постоянку примерно 5-7мВ. Для начала неплохо. т.е. эффект есть! В инструкции по сборке рекомендовано сделать последовательно несколько таких петлевых вибраторов что бы увеличить входное напряжение для дальнейшего преобразования в нормальный вид питания зарядного устройства аккумуляторных батареек. Сейчас решил собрать нормальную антенну на 6шт. петлевых вибраторов что бы наверняка получить хотя бы 20-30мВ для нормальной работы преобразователя на микросхеме LTC3108. Как доделаю антенну и подключу преобразователь поделюсь результатами.
Может ли радиоприемник состоять менее чем из 10 деталей и работать без батареек?
Да, может: детекторные радиоприемники очень просты и могут работать, получая питание только от радиоволн. В этой статье я опишу, как можно сделать такую штуку своими руками, потратив на всю работу не более часа! ;)
Чем хорош детекторный радиоприемник?
Во-первых, этот приемник работает без батареек. Во-вторых, все необходимые детали стоят около 10-15 рублей, да и в старой технике их в избытке. В-третьих, собрать приемник может каждый, независимо от имеющихся навыков (навыки чтения и работы с паяльником приветствуются :-)
Так или иначе, такой приёмник может стать хорошим помощником на даче, когда случаются перебои с электричеством или сложно купить батарейки. У меня на даче стоит аж 4 таких приемника по всему дому, дед на них не нарадуется =)
Что нам понадобится для сборки?
• Конденсатор постоянный 190-500 Пф
• Конденсатор 1000-2000 Пф
• Любой диод (кроме светового)
• Медная проволока диаметром 1-0.1 мм
• Цилиндр диаметром 10 см (например, банка из под кофе)
• Газета
• Металлический штырь около 30 см в длину для заземления
• Маленький динамик, например из старого дискового телефона
Вот как выглядит схема детекторного радиоприемника Оганова:
Начнем мы с самого простого – с заземления. Вбиваем металлический штырь в землю, предварительно прикрепив к нему провод (из соображений безопасности батарею отопления в качестве заземления лучше не использовать). И помните, что чем лучше будет заземление, тем лучше будет прием станции. Лучше всего устанавливать заземление с той стороны дома, куда меньше всего попадает солнце, где земля всегда сырая. Конец заземления проводим в дом и крепим к соответствующему выводу приемника.
Следующим шагом будет создание антенны. У меня она проведена под крышей, длиной около 10 метров. Сделать ее можно, например, из медной проволоки. Практика показывает, что при антенне длиной 10 м. будет приниматься только одна станция, но громко. При длине антенны 1-3 м. можно будет поймать и другие станции, но все они будут очень плохо слышны.
Далее принимаемся за катушку. Катушка состоит из двух равных частей, по 20 витков каждая (это для приема средних волн, а для приема длинных нужно намотать по 60 витков). Как сделать катушку? Берем что-нибудь круглое диаметром около 10 см (например, банка из под кофе), обклеиваем двойным слоем газеты. Первый слой крепится к банке скотчем, второй неплотно накручивается на первый. В этом случае катушку после намотки легко будет снять. Теперь аккуратно наматываем медную проволоку – виток к витку. Между двумя частями катушки оставляем 5 сантиметров проволоки, а также не забываем оставить примерно столько же проволоки на входе и выходе. После того как вы намотали катушку, ее следует обмотать изолентой в два слоя вдоль витков. А после снятия с банки – обмотать еще и поперек. Да, газета нам больше не понадобится, от нее можно с чистой совестью избавиться! =)
Наконец, приступаем к сборке приемника!
Схема, приведенная выше, может быть упрощена до следующего вида:
Если вы хотите настроиться на другую частоту, или качество приема далеко от идеального — возьмите катушку из более толстой проволоки.
Настройка производится перемещением одной части катушки относительно другой. Для наиболее точной настройки можно взять несколько переменных конденсаторов, заменяющих С1, настраивая их вы сможете максимально точно настроиться на станцию.
Как будет выглядеть приемник — зависит только от вашей фантазии! Ввиду малых размеров, его можно упаковать практически в любой контейнер. На фото — один из 4х моих приемников — настенная модель с тумблером для выключения питания (радио и катушки — в черной коробке, белый провод — заземление и антенна, а черный провод идет на наушник :) Были также и более компактные варианты, но их фотографий, к сожалению нет)
В общем-то всё, надеюсь, что данный материал кому-нибудь да будет полезен =)
Сама идея устройства для получения дармовой энергии из эфира неизменно была очень востребована. Не только аматёры, но и многие именитые учёные всерьёз и небезрезультатно занимались этим вопросом. Нынче не стало меньше желающих разработать подобную установку и её сделать самому. Энергию из эфира для дома сегодня можно попытаться получить, используя простые и доступные схемы.
Энергия из пустоты
Энергия определяется полезной работой, а поле — пространственными характеристиками влияния его источника. И статический электрический заряд, и динамический магнитный эффект вокруг проводника с током, и тепло нагретого тела считаются полями.
Любое поле может выполнить полезную работу, следовательно, передать часть своей энергии. Именно это свойство побуждает искать источники дармовой энергии в различных полях. Считается, что такой энергии существует в разы больше, чем в освоенных человечеством традиционных источниках.
Например, мы умеем использовать энергию гравитации огромной Земли, но не умеем её извлекать из притяжения малюсенького камня. Она слишком незначительная, чтобы это имело смысл, но практически неисчерпаема. Если придумать некий способ её извлечения из камешка, мы получим новый источник энергии.
Эфир и его свойства
Никола Тесла и его идеи
Многие его разработки считаются утраченными ещё со времени его смерти. Одни из них известны исключительно как принципы, другие — всего лишь в общих чертах. Тем не менее, многие нынешние конструкторы пытаются сегодня воспроизвести открытия и устройства Тесла, пользуясь уже современными научными и технологическими открытиями.
Большинство идей Тесла базируются на извлечении её из полей, формируемых взаимодействием Земли со своей ионосферой. Эта система рассматривается как большой конденсатор, в котором одна пластина — Земля, а другая — её ионосфера, облучаемая космическими лучами. Как и любой конденсатор, такая система постоянно накапливает заряд.
А разрабатываемые по идеям Тесла различные самодельные устройства предназначены для извлечения этой энергии.
Нынешние и классические разработки
-
радиантное электричество;
- использование мощных неодимовых магнитов;
- получение тепла от механических нагревателей;
- трансформация энергии земли и излучений космоса;
- вихревые двигатели;
- термические земляные насосы;
- солнечные конвекторы;
- торсионные генераторы.
Все эти способы имеют своих приверженцев, но большинство из них довольно ресурсоёмкие и затратные. Немаловажно и то, что они требуют глубоких специальных знаний и изобретательности. Всё это делает подобное конструирование в домашних условиях затруднительным. Энергия из эфира своими руками может быть получена с помощью несложных и доступных схем. Их реализация не потребует глубоких знаний или больших издержек, но некоторая подгонка, настройка и расчёты всё же понадобятся.
Энергия воздушной тяги
Эта идея — типичный пример такого устройства. Она не является в строгом смысле слова способом извлечь энергию из эфира. Это, скорее, способ её простого, дешёвого и длительного получения.
Для его реализации понадобится высокая труба, 15 метров и более. Такая труба ставится вертикально. Нижнее и верхнее отверстия должны быть открыты. Внутри неё устанавливаются электродвигатели с пропеллерами соответствующего диаметра , которые должны легко крутиться вместе с ротором. Восходящий поток воздуха вращает лопасти и роторы электродвигателей, в статоре вырабатывается электроэнергия.
Незамысловатая домашняя мини-электростанция
Одно из самых элементарных устройств можно сделать самостоятельно из кулера от компьютера (рис.1). В нём используется такая современная разработка, как неодимовые магниты.
Для его изготовления нужно:
- подобрать компьютерный кулер;
- снять с него трансформаторные катушки (их там 4 штуки);
- вместо них поставить 4 маленьких неодимовых магнита;
- их нужно сориентировать в исходных направлениях катушек;
- правильно подобрав положение магнитов, заставить вращаться ротор моторчика.
Такая электростанция позволяет работать подключённой к ней маленькой лампочке. Взяв мотор побольше и более сильные магниты, можно получить больше электроэнергии.
Применение магнитов и маховика
Возможности подобной электростанции значительно увеличиваются при использовании инерции тяжёлого маховика. Упрощённая модель такой конструкции показана на рис. 2.На сегодняшний день существует масса разработок — в том числе и запатентованных подобных конструкций с горизонтальным и вертикальным расположением маховика. Все они имеют общую схему устройства.
Основная деталь — барабан маховика, по окружности которого расположены довольно мощные неодимовые магниты. По окружности движения ротора-маховика расположены несколько электрических катушек, выполняющих роль электромагнита и генератора электричества (статора). В комплект также входит аккумулятор и устройство переключения направления подачи напряжения.
Будучи один раз запущен, маховик, вращаясь по кругу, возбуждает своими магнитами электромагнитное поле в катушках. Это приводит к появлению в проводнике электрического тока, который подаётся для зарядки аккумулятора. Периодически часть вырабатываемой электроэнергии используется для подталкивания маховика. Заявляемый разработчиками КПД такого механизма составляет 92%.
В обоих этих устройствах энергия вырабатывается за счёт инерции вращения и сравнительно недавно разработанных мощных магнитов. Понимая принцип работы устройства, можно попытаться сделать его самостоятельно дома. По словам конструкторов, с помощью него можно получать до 5 кВт*ч полезной мощности.
Простой генератор Тесла
Сегодняшнее воздушное пространство значительно сильнее ионизировано, чем во времена Тесла.
Основание тому — существование огромного количества линий электропередач, источников радиоволн и прочих причин ионизации. Поэтому попытка получить электричество из эфира своими руками с помощью простейших конструкций по идеям Тесла может быть весьма эффективной.
На пластинах, как и в конденсаторе, накапливаются потенциалы противоположного знака. Само устройство состоит из стартового источника питания (аккумулятор 12 В), подключённого через разрядник к первичной обмотке трансформатора, и параллельно включённого конденсатора. Накопившийся заряд пластин снимается со вторичной обмотки трансформатора.
Эта конструкция представляет опасность тем, что фактически моделирует возникновение атмосферного разряда молнии, и работы с такой установкой нужно проводить с соблюдением всех мер безопасности.
С помощью подобной конструкции можно получить небольшое количество электричества. Для более серьёзных целей потребуется использовать более сложные и дорогостоящие в реализации схемы. В этом случае также не обойтись без достаточных знаний физики и электроники.
Устройство разработки Стивена Марка
Эта установка, созданная электриком и изобретателем Стивеном Марком, предназначена для получения уже довольно значительного количества холодного электричества (рис.4). С помощью него можно питать как лампы накаливания, так и сложные бытовые устройства — электроинструмент, телерадиоаппаратуру, электродвигатели. Он назвал его Тороидальный Генератор Стивена Марка (TPU). Изобретение подтверждено патентом США от 27 июля 2006 года.
Принцип его действия основан на создании магнитного вихря, резонансных частот и ударов тока в металле. В отличие от многих других подобных устройств, будучи уже запущенным, генератор не требует подпитки и может работать неограниченное количество времени. Он был воссоздан много раз различными испытателями, которые подтверждают его работоспособность.
Существуют несколько конструкций этого устройства. Принципиально они между собой не разнятся, есть некоторые отличия в реализации схемы.
Здесь приведена схема и конструкция 2-частотного TPU. В основу принципа его действия положено столкновение вращающихся магнитных полей. Устройство имеет вес меньше 100 г и довольно простую конструкцию. Оно включает в себя такие компоненты:
Внутрення кольцеобразная основа (рис.5) выполняет роль стабильной платформы, вокруг которой расположены все другие катушки. Материал для изготовления кольца — пластик, фанера, мягкий полиуретан.
- ширина: 25 мм;
- внешний диаметр: 230 мм;
- внутренний диаметр: 180 мм;
- толщина: 5 мм.
Внутренняя коллекторная катушка может быть сделана из 1–3 витков 5 параллельных многожильных проводов-литцендратов. Для намотки витков можно также использовать обычный одножильный провод с диаметром жилы 1 мм. Схематический вид после изготовления представлен на рис. 6.
Внешняя коллекторная катушка, она же — выходной коллектор двухполярного типа. Для его намотки можно использовать тот же провод, что и для управляющих катушек. Им покрывается вся доступная поверхность.
Каждая из катушек управления (рис.7) — плоского типа, по 90 градусов для установки вращающегося магнитного поля.
Чтобы сделать катушки с одинаковым количеством витков, необходимо до наматывания отрезать 8 проводов немного длиннее метра. Выводы поможет различать разный цвет проводов. Каждая катушка имеет 21 виток двухпроводного стандартного одножильного провода сечением 1 мм со стандартной изоляцией.
Выводы с наконечниками (рис. 7) — это два вывода внутренней коллекторной катушки.
Обязательной является установка общей обратной земли и 10-микрофарадного полиэстрового конденсатора, без которого на всё оборудование будут отрицательно воздействовать токи и возвращаемое излучение.
Схема соединений делится на 4 секции:
- входа;
- управления;
- катушек;
- выхода.
Секция входа предназначена для предоставления интерфейса к генератору прямоугольного сигнала
и выдачи синхронизированных прямоугольных волн подходящим образом. Это обеспечивается с помощью КМОП-мультивибратора.
Для реализации секции управления МОСФИТами (MOSFET) лучшее решение — стандартный интерфейс IRF7307, предлагаемый конструктором.
Как видно из последней модели, человеку без специального образования и навыков работы с физическими устройствами и приборами собрать такую конструкцию дома будет достаточно сложно.
Существует множество схем и описаний подобных устройств других авторов. Капанадзе, Мельниченко, Акимов, Романов, Дональд (Дон) Смит хорошо известны всем желающим найти способ получения энергии из ничего. Многие конструкции довольно простые и недорогие для того, чтобы их сделать и самому получить энергию из эфира для дома.
Вполне возможно, что многим таким аматёрам удастся практически достоверно узнать, как получить электричество в домашних условиях.
Читайте также: