Для чего служит вентилятор охлаждения тэд
Привод состоит из редуктора вентилятора, фрикционной муфты, горизонтальных и вертикальных карданов, промежуточной опоры и подпятника. Вращение через промежуточный вал редуктора и фрикционные диски передается на фланец муфты, прикрепленной к полому валу, и через шестерни на ведомый вертикальный вал. Смазка редуктора циркуляционная, посредством вихревого насоса, смонтированного на полом валу. Подшипник № 314 заполняется консистентной смазкой через масленку.
На тепловоз установлен редуктор вентилятора с пневматическим механизмом включения фрикционной муфты нажимной диск которой совмещен с поршнем пневмоцилиндра. При включении муфты воздух поступает в полость В через воздухоподводящую муфту из системы автоматики по дюритовому шлангу. Поршень при этом перемешается и происходит сцепление фрикционных дисков.
Карданные валы привода вентилятора автомобильного типа. Шарниры головок снабжены игольчатыми подшипниками. Одна головка кардана упругая с резиновыми втулками.
Подпятник вентилятора служит опорой вентиляторного колеса. Нижняя крышка имеет самоподжимной сальник, верхняя снабжена войлочным кольцом.
Промежуточная опора состоит из корпуса, подшипников и крышек. Уплотнения в крышках войлочные. Фланцы промежуточной опоры и фланец подпятника посажены на конусные хвостовики валов с натягом. Для привода вентилятора охлаждения ТЭД на опоре установлен шкив.
Вентиляторное колесо осевого типа (шестилопастное) представляет собой сварную конструкцию.
Контрольные вопросы
- В чем заключается работа гидромеханического редуктора?
- Каково предназначение золотниковой коробки?
- От чего получает редуктор механическую энергию?
- От чего получает привод компрессора механическую энергию?
- Каково предназначение главного вентилятора?
- В чем особенности устройства привода жалюзи холодильника?
В процессе работы тяговых электрических двигателей (ТЭД), выпрямителей, трансформаторов, реакторов, индуктивных шунтов (ИШ), вспомогательных машин и другого оборудования выделяется тепло. Если это тепло не отводить, то мощность машин и аппаратов нельзя будет использовать полностью, так как они могут перегреться и выйти из строя. Поэтому их охлаждают, используя специальную принудительную вентиляцию. Также система вентиляции необходима для обеспечения требуемого избыточного давления в кузове локомотива с целью защиты от проникновения в него пыли и снега во время движения электровоза, для охлаждения воздуха в кузове в летнее время. Непрерывный поток охлаждающего воздуха создается центробежными вентиляторами.
Принцип работы вентилятора.
При вращении вентиляторного колеса (ротора), вентилятор засасывает воздух через входную воронку и подвижной патрубок и нагнетает его в каналы между лопатками колеса, откуда он под действием центробежных сил, возникающих от вращения колеса, перемещается в напорную камеру улитки, а затем по соответствующим каналам подается на охлаждаемое оборудование.
Вследствие непрерывного выбрасывания воздуха за пределы колеса вентилятора внутри него образуется разрежение и из атмосферы (снаружи кузова) засасываются новые порции воздуха. Засасываемый воздух проходит через жалюзи кузова, форкамеру, сетку приемного отверстия вентилятора к его лопастям, заполняя разреженное пространство. Форкамера изолирует вентиляционную систему от остального помещения кузова. Скорость воздуха, подающегося через жалюзи в форкамеру, резко снижается и взвешенные частицы снега, влаги и пыли осаждаются, т. е. в кузов поступает очищенный воздух.
Конструкция вентиляторов
Вентиляторы скомпонованы с приводными электродвигателями в блоки (Рис. 1, 2, 3). Каждый блок состоит из электродвигателя 9, спиральной стеклопластовой улитки 4, в которую помещено коническое сварное колесо 1, насаженное на вал электродвигателя, крышки 6, подвижного патрубка 11, входной воронки 10, перегородки 12, отделяющей пылесборную камеру, и каркаса 7.
Несоосность колеса и подвижного патрубка у всех вентиляторов контролируют визуально по смещению входного отверстия на колесе относительно внутренней цилиндрической поверхности патрубка.
Собранное колесо подвергают статической балансировке. После установки колеса на вал электродвигателя производят динамическую балансировку колеса совместно с ротором электродвигателя.
Особенностью блока центробежных вентиляторов ЦВП64-14 № 6,7 (Рис. 3) является использование обоих концов вала электродвигателя для привода двух противоположных по направлению вращения вентиляторов, установленных на общем для электродвигателя и вентиляторов каркасе 7.
Система вентиляции
Система вентиляции предусматривает два режима: летний и зимний. В летнем режиме эксплуатации система вентиляции обеспечивает полный номинальный расход воздуха на охлаждение и выброс воздуха в кузов, необходимый для создания противодавления в кузове. В зимнем режиме эксплуатации, кроме выброса в кузов из воздуховодов, подающих воздух на охлаждение тяговых двигателей, предусмотренного в летнем режиме, в кузов подается воздух после охлаждения сглаживающих реакторов (Рис. 4 узел I) и частично воздух, идущий на охлаждение теплообменников тягового трансформатора за счет перекрытия одного из воздуховодов к его теплообменникам (Рис. 4, узел II), при этом расход воздуха на охлаждение теплообменников трансформатора снижается до 280 м3/мин.
Часть направленного в кузов воздуха, создав необходимое противодавление в кузове (30 - 50 Па), уходит наружу через неплотности кузова, а остальная часть - через двери форкамер (положение которых фиксируется специальным устройством) и специальные рециркуляционные окна 12, расположенные на стенках проходных форкамер, вновь поступает в вентилятор, что уменьшает забор наружного воздуха, содержащего снег, пыль, влагу.
Расходы воздуха на охлаждение
При правильной регулировке система вентиляции обеспечивает следующие расходы воздуха, м3/'мин (не менее), для охлаждения электрооборудования:
¾ тягового двигателя НБ-418К6 105
¾ теплообменников тягового трансформатора 330
¾ сглаживающего реактора РС-32 160
¾ индуктивного шунта ИШ-95 20
¾ блока балластных резисторов ББС-131 (в горячем состоянии) 290
¾ выпрямительной установки возбуждения ВУВ-758 17
¾ выпрямительно-инверторного преобразователя ВИП-4000УХЛ2 340
Охлаждение тяговых двигателей, индуктивных шунтов. Воздух через лабиринтные жалюзи и изолированные от других помещений кузова форкамеры, охлаждая индуктивные шунты, засасывается центробежными вентиляторами и нагнетается в воздуховоды к тяговым двигателям. Требуемый расход воздуха на охлаждение тяговых двигателей регулируют заслонками на окнах выброса воздуха в кузов, после чего заслонки фиксируют болтами.
Охлаждение силового оборудования. Воздух поступает через лабиринтные жалюзи и форкамеры и подается двумя центробежными вентиляторами на охлаждение выпрямительно-инверторных преобразователей, затем одна часть воздуха поступает на охлаждение сглаживающих реакторов, другая — на охлаждение теплообменников тягового трансформатора.
Распределение воздуха между сглаживающими реакторами и теплообменниками трансформатора осуществляется заслонками на воздуховодах к трансформатору и заслонками после сглаживающих реакторов. После охлаждения теплообменников тягового трансформатора воздух выбрасывается под кузов, после охлаждения сглаживающего реактора в летнем режиме эксплуатации - под кузов, в зимнем режиме эксплуатации - в кузов.
После охлаждения блока балластных резисторов воздух выбрасывается через колпак и крышевые жалюзи в атмосферу. После охлаждения выпрямительной установки возбуждения воздух выбрасывается в кузов.
На электровозах выпуска с июля 1981 г. в выбросных колпаках блоков балластных резисторов устанавливают снегоотбойные листы, которые улучшают защиту блоков от снега на стоянке и в режиме тяги.
Вентиляция кузова.
Вентиляция кузова осуществляется воздухом, поступающим через окна выброса в кузов, расположенные на воздуховодах к тяговым двигателям, и воздухом после охлаждения выпрямительной установки возбуждения, при этом в кузове обеспечивается избыточное (по отношению к атмосферному) давление 30 -50 Па для защиты от попадания в кузов пыли и снега через его неплотности. Выбрасывается отработанный воздух из кузова через дефлекторы, расположенные на крыше кузова.
В зависимости от года выпуска электровозов в систему вентиляции вносились некоторые изменения, которые не повлекли за собой принципиальных отличий в режиме ее работы.
Системы вентиляции и отопления на электропоездах
На электропоездах тяговые двигатели имеют самовентиляцию (Рис. 5.153) Воздух для их охлаждения забирается через жалюзи, расположенные над входными дверями и соединенные вентиляционным каналом с фильтрами. Далее по вертикальному каналу, находящемуся в пассажирском помещении, и по подвагонному каналу через гибкое соединение воздух поступает к двигателю, а из двигателя выбрасывается в атмосферу.
Кроме того, имеются специальные системы для охлаждения выпрямительной установки, реактора и охладителя масла трансформатора электропоезда . Для подачи воздуха к этим агрегатам на валу расщепителя фаз установлено вентиляторное колесо. Воздух забирается через специальные жалюзи в боковых стенках моторных вагонов (под окнами) и подается в фильтровую камеру. Из камеры он засасывается вентиляторным колесом и подается по двум трактам: расщепитель фаз - атмосфера (для охлаждения самого расщепителя фаз) и выпрямительная установка, реактор, охладитель масла трансформатора — атмосфера. В зимний период перед всасывающими жалюзи устанавливают матерчатые фильтры, предотвращающие попадание снега. Во всех вентиляционных устройствах применены сетчатые фильтры типа ВНИИСТО размером 500X500 мм с масляной пропиткой.
Система отопления вагонов состоит из электрических печей и электрокалориферов. Печи установлены в заземленных кожухах на полу под диванами, а электрокалориферы — в чердачных помещениях у переднего конца распределительного вентиляционного канала, расположенного на потолке.
Вентиляция пассажирских помещений выполнена принудительной, имеет два режима работы (летний и зимний) или три (летний, переходный, т. е. осенне - зимний, либо зимне - весенний и зимний). Вентиляционная система электропоездов ЭР2, ЭР9М, ЭР9Е (Рис. 5) обеспечивает подачу 1,67 м3/с воздуха летом и около 0,55 м3/с зимой. Летом воздух в салон может поступать и через открытые окна, а зимой - только через систему вентиляции, предварительно подогретый в электрокалориферах. Если наружная температура ниже -20 °С, специальными заслонками 13, устанавливая их в определенное положение, уменьшают количество подаваемого в кузов воздуха. При этом используется часть воздуха, находящегося в вагоне, т. е. осуществляется рециркуляция.
На электропоездах в каждом вагоне имеются два самостоятельных вентиляционных агрегата, расположенных в чердачных помещениях тамбуров. Агрегат 6 состоит из двух центробежных вентиляторов и двигателя постоянного тока напряжением 50В с частотой вращения 5 - 20 об/с. Предусмотрен переходный брезентовый патрубок 7 с отводами для вентиляции тамбура. Наружный воздух поступает через жалюзи 12, 15, 16,18,20, проходит
Рис. 5. Система вентиляции головного вагона электропоезда (стрелками указано направление воздуха при летнем режиме): 1 – щиток; 2 – жалюзи; 3 - фильтровая камера; 4 - горизонтальный канал; 5, 6 - вентиляционный агрегат; 7 - переходной брезентовый патрубок; 8 – дефлекторы; 9 – потолочный вентиляционный канал; 11 – кресло (сиденье) машиниста; 10, 12, 15, 16,18,20 – жалюзи; 13 - специальные заслонки; 14 – диффузор; 17, 19 служебные помещения.
через сетчатые фильтры в чердачное помещение, а оттуда через диффузор 14 и калорифер нагнетается вентилятором в потолочный вентиляционный канал 9. Удаляется воздух из вагона и служебных помещений 17, 19 через двери во время выхода и входа пассажиров, летом - еще через жалюзи 2. Зимой заслонки вентиляторов закрыты, а рециркуляционные люки открыты. В зимнем режиме 40 - 50% теплого воздуха из пассажирского помещения через рециркуляционные люки попадает в чердачные помещения тамбуров, где смешивается с холодным воздухом и подается вентилятором в потолочный канал. Летом заслонки вентиляторов открыты, а рециркуляционные люки закрыты.
На электропоездах ЭР2 и ЭР9М производства 1974 г. предусмотрена также принудительная вентиляция и кабины машиниста (Рис. 5) Для подачи в кабину свежего воздуха над служебным тамбуром в чердачном помещении установлены вентиляционный агрегат 5 и фильтровая камера 3, снабженная задвижкой и заслонкой форсированного нагрева подаваемого воздуха За сиденьем машиниста 11 проходят вертикальный и горизонтальный 4 каналы, в верхней части которого находится заслонка зимнего и летнего режимов и отверстие для подачи воздуха в летнее время. Против отверстия установлен щиток 1, позволяющий по желанию машиниста менять направление воздушного потока. В нижней части вертикального канала расположены жалюзи 10 для подачи подогретого воздуха в зимнее время. Электрокалорифер, установленный в вертикальном канале, имеет две ступени мощности: большой 6,5 и малой 2,2 кВт. Ступень малой мощности используется в период, когда температура наружного воздуха находится в пределах от 0 до + 15°С. В верхней части задней перегородки имеется рециркуляционный люк, открываемый в зимнее время. Установленные в кабине терморегуляторы, автоматически включая или выключая любую ступень калорифера, поддерживают температуру в пределах от + 16 до +20 °С.
На каждом вагоне электропоездов ЭР9М и ЭР9Е устанавливают по одной аналогичной вентиляционной установке, но с двигателями переменного тока, имеющими максимальную частоту вращения 23 об/с. Система вентиляции имеет три режима: летний, переходный и зимний. Летний режим аналогичен такому же на вагонах ЭР2, причем подача одного вентилятора 1,12 м3/с, а другого (при одном закрытом заслонкой всасывающем отверстии) 0,72 м3/с. В переходные периоды (осенне-зимний и зимне-весенний) в зависимости от температуры наружного воздуха работает только один вентилятор.
При температуре наружного воздуха от +18 до -20 °С один вентилятор подает в пассажирское помещение 0,665 м3/с свежего воздуха, а при температуре ниже -20 °С другой - 0,42 м3/с. Кроме того, в зимнее время создается рециркуляция. При открытых рециркуляционных люках количество воздуха, нагнетаемого через них в вагон, составляет 30 - 40% общего количества подаваемого воздуха. Аналогично выполнена вентиляция и в вагонах электропоезда ЭР2Р. Туалетные помещения в вагонах вентилируются дефлекторами 8.
Системы охлаждения силовых трансформаторов
Нормальная продолжительная безаварийная работа силовых трансформаторов обеспечивается при условии контроля и соблюдения допустимых пределов различных параметров, одним из которых является температурный режим. Соблюдение температурного режима в пределах установленных для того или иного типа трансформатора норм обеспечивается специально предусмотренными системами охлаждения. Рассмотрим, какие бывают системы охлаждения силовых трансформаторов.
Охлаждение типа С, СГ, СЗ, СД
Буква С в маркировке показывает, что силовой трансформатор сухой – то есть в нем не предусмотрено использование трансформаторного масла для охлаждения. В данном случае обмотки и магнитопровод трансформатора охлаждаются естественной циркуляцией воздуха. Существуют модификации данной системы охлаждения: СГ – герметичное исполнение, СЗ – защищенный корпус.
Возможно наличие принудительной циркуляции воздуха на корпус трансформатора – это охлаждение системы СД.
Системы охлаждения С и их модификации характеризуются низкой эффективностью, поэтому применяются на трансформаторах малой мощности, как правило, до 1,6 МВ*А класса напряжения 6 и 10 кВ.
На трансформаторы данной системы охлаждения монтируются датчики температуры для возможности контроля температуры по каждой из фаз трансформатора.
Система охлаждения М
Более мощные трансформаторы требуют более производительной системы охлаждения – масляной. Масло обеспечивает более эффективный отвод тепла от обмоток и магнитной системы трансформатора, обеспечивая их равномерное охлаждение.
Система охлаждения М предусматривает естественную циркуляцию масла в баке трансформатора. Тепло масла передается баку трансформатора, который охлаждается окружающим воздухом. Данная система охлаждения не предусматривает принудительной циркуляции воздуха.
Для более эффективного охлаждения на баке трансформатора устанавливаются радиаторы, состоящие из ребер или труб, по которым осуществляется циркуляция масла.
Система охлаждения М используется на силовых трансформаторах номинальной мощностью до 16 МВ*А. Отсутствие дополнительных устройств в конструкции трансформаторов данной системы охлаждения упрощает их эксплуатацию.
Обслуживающему персоналу необходимо лишь проверять уровень масла и температуру его верхних слоев. Уровень масла должен примерно соответствовать среднесуточной температуре окружающей среды с учетом нагрузки трансформатора (это актуально для всех типов охлаждения). Температура верхних слоев масла трансформаторов с охлаждением М и Д не должна превышать 95 град.
На рисунке ниже показан трехфазный двухобмоточный трансформатор с естественным масляным охлаждением (с естественной циркуляцией масла) серии ТМ-250/6-10-66 мощностью 250 кВа, предназначенный для преобразования переменного трехфазного тока напряжением 6 — 10 кВ на стороне ВН, на стороне НН 0,23; 0,40; 0,69 кВ как для внутренней, так и для наружной установки.
Силовой серии TM-250/6-10 с термосифонным фильтром для непрерывной очистки масла: 1 — катки; 2 — болт заземления; 3 — бак; 4 — съемные радиаторные охладители; 5 — крышка; 6 — селикогелевый воздухоосушитель; 7 — расширитель с маслоуказателем; 8 — выводы BH; 9 — выводы НН; 10 — ртутный термометр; 11 — пробка для заливки и взятия проб масла; 12 — переключатель; 13 — пробивной предохранитель; 14 — термосифонный фильтр очистки для непрерывной масла.
Охлаждение типа Д
Система охлаждения трансформатора Д – с дутьем и естественной циркуляцией масла. Трансформаторы данной системы охлаждения конструктивно имеют вентиляторы обдува, устанавливаемые в навесные радиаторы, по которым циркулирует трансформаторное масло.
Обдув трансформатора данной системы охлаждения включается при достижении температуры верхнего слоя трансформаторного масла 55 и более град., либо при достижении номинальной нагрузки трансформатора, не зависимо от температуры масла. Система охлаждения Д является более эффективной и используется для трансформаторов номинальной мощностью 16-80 МВ*А.
Системы охлаждения ДЦ, НДЦ
Система охлаждения ДЦ отличается от системы Д наличием принудительной циркуляции масла. Вентиляторы обдува, как и в системе Д охлаждают радиаторные трубы. По радиаторным трубам непрерывно циркулирует трансформаторное масло, которое перекачивается электрическими насосами, встроенными в маслопроводы бака трансформатора.
Быстрая циркуляция масла по радиаторам и их обдув обеспечивают высокую теплоотдачу. Благодаря данной системе охлаждения значительно снижены габариты силового трансформатора (автотрансформатора) и увеличена их номинальная мощность до пределов 63-160 МВ*А.
Принудительная циркуляция масла позволяет отойти от традиционной конструкции трансформаторов - бак трансформатора и охладитель могут стоять раздельно, соединенные между собой маслопроводами.
В отличие от охлаждения типа Д, вентиляторы обдува охлаждения ДЦ должны быть всегда включены в работу вместе с насосами принудительной циркуляции масла. В случае отключения одной из систем охлаждения трансформатор не может находиться в работе.
НДЦ отличается от охлаждения ДЦ наличием направленного потока масла, что позволяет повысить эффективность охлаждения и соответственно увеличить мощность трансформатора, не изменяя его размер.
Системы охлаждения Ц, НЦ
Трансформаторы и автотрансформаторы мощностью от 160 МВ*А оборудуются системами охлаждения типа Ц. Это охлаждение масляно-водяное, по радиаторам трансформатора осуществлена циркуляция не только масла, но и воды.
Вода принудительно циркулирует по трубкам охлаждающего устройства, между которыми, в свою очередь, циркулирует трансформаторное масло. Перед входом в охладитель монтируются специальные датчики температуры для контроля температуры циркулируемого масла, которая не должна превышать 70 град.
Устройства принудительной циркуляции масла и воды должны быть всегда в работе, не зависимо от температуры и нагрузки, они должны включаться в работу автоматически одновременно с подачей напряжения на трансформатор (автотрансформатор).
При наличии конструктивно нескольких охладительных устройств, количество их одновременного включения в работу определяется величиной нагрузки и температурой охлаждающей среды - трансформаторного масла.
Данная система охлаждения одна из наиболее эффективных систем, но ее основным недостатком является сложность конструктивного исполнения и эксплуатации.
Для трансформаторов (автотрансформаторов) мощностью от 630 МВ*А применяется более эффективная масляно-водяная система охлаждения с направленным потоком масла - НЦ.
Охлаждение трансформаторов в закрытых камерах
В закрытых камерах, закрытых трансформаторных подстанциях, где расположены силовые трансформаторы, должна быть предусмотрена система вентиляции, которая обеспечивает нормальную работу трансформаторов во всех нормированных режимах.
Помещение, в котором расположен силовой трансформатор, должно быть спроектировано таким образом, чтобы в процессе эксплуатации трансформатор не подвергался перегреву, что обеспечивается при наличии достаточной внутренней площади в помещении, а также наличию эффективной системы вентиляции.
Особое внимание уделяется трансформаторам системы охлаждения С, которые охлаждаются естественной циркуляцией воздуха. В камерах трансформаторов данного типа устанавливается принудительная вентиляция, осуществляющая циркуляцию воздуха для более эффективного охлаждения.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Охлаждение дизеля
Понятно, вода охладила дизель, очень хорошо нагрелась и поступает для охлаждения в холодильник, проходя с напором по щелевым секциям, которые находятся в специальной шахте, над этими шахтами вращается лопастное колесо самого вентилятора, который вращаясь создает сильный воздушный поток, хорошо охлаждающий бегущую по трубкам секций воду.
Снаружи водяные секции закрываются жалюзи, которые также работают в автоматическом режиме и находятся в открытом или закрытом состоянии, в зависимости от температуры окружающего воздуха и самой охлаждаемой воды. Ну так вот, по одной стороне секций в шахте холодильника проходит вода, охлаждающая сам дизель, а по другой, противоположной, охлаждается вода, поступающая из водомаслянного теплообменника, в котором она охлаждала проходящее по трубам горячее масло дизеля. Это и есть контуры охлаждения воды дизеля и воды охлаждения масла.
А теперь рассмотрим, как эта система работает. Система называется САРТ – система автоматического регулирования температуры. Она включает в себя датчики температуры, реле, сам вентилятор или вентиляторы, приводы вентилятора, водяные секции, жалюзи и их приводы. На тепловозах применяются разные приводы вентилятора, кратко рассмотрим некоторые.
Шахта холодильника тепловоза, вал вентилятора, муфта
Основной вид привода – гидравлический. Первый и самый распространенный – это вращение вала вентилятора через гидромуфту переменного наполнения. Гидромуфта позволяет поддерживать обороты вала бесступенчато и плавно. Привод гидромуфта получает от главного заднего редуктора отбора мощности, через небольшой вал, который вращает насосное колесо. В корпус муфты через штуцер поступает масло из картера дизеля. На валу турбинного колеса расположена шестерня, которая вращает небольшие шестеренки с прикрепленными к ним черпаковыми трубками. Главная шестерня соединена с зубчатой рейкой, а рейка в свою очередь работает в системе САРТ. Если требуется увеличить обороты вала вентилятора, рейка передвинется в сторону увеличения и повернет главную шестерню, а та в свою очередь шестеренки с черпаковыми трубками, которые переместятся ближе к валу и соответственно поток и давление масла в корпусе муфты будет больше, увеличатся и обороты вала вентилятора.
Вал вентилятора получает вращение от редуктора, расположенного на валу гидромуфты, через конические шестерни. Если необходимо уменьшить обороты вала вентилятора, то рейка переместится в противоположную сторону, поворачивая и шестерню на валу, ну а та через шестеренки начнет разворачивать черпаковые трубки, которые будут захватывать в свои полости больше масла, сливая его обратно в масляную систему. Соответственно поток и давление масла уменьшаться и вал вентилятора будет вращаться медленнее. Рейку передвигает шток небольшого цилиндра, в котором находится церезин — это вещество, активно реагирующее на изменение температуры воды. Если температура больше, то нагреваясь церезин увеличивается в объеме, толкая шток рейки на максимальные обороты, при уменьшении температуры происходит обратный процесс. В данной системе установлены и микропереключатели воздушных цилиндров жалюзи. Процесс такой-же, нагрелись – микропереключатель толкаемый небольшим рычажком подключает электрический вентиль пневмоцилиндра, а тот в свою очередь, открывает доступ воздуха из пневматической системы тепловоза в цилиндр. Поршень в цилиндре воздействует на тягу, а та, через рычажную систему на привод жалюзи. В основном в качестве привода используются звездочки с цепной передачей.
Жалюзи холодильника тепловоза
Аналогично работает датчик с приводом и на другом контуре. Остыли – рычажок отходит от микропереключателя и цепь на пневмоцилиндр прерывается, воздух из него выходит и поршень перемещаясь тянет за собой тягу и жалюзи закрываются. Жалюзи можно оставить принудительно в открытом или закрытом положении, на цилиндрах есть кулисная система с дырочками – фиксаторами, в них вставляется металлическая шпонка, закрепляя всю систему в фиксированном положении. Такое случается, если, например, сильный нагрев воды в жаркий летний день и жалюзи требуется постоянно держать открытыми.
При неполадках с системой САРТ температура может регулироваться вручную, тумблерами с пульта машиниста, посредством тумблеров открытия и закрытия жалюзи, включения вентилятора, но машинист теперь уже будет постоянно отвлекать свое внимание на приборы, показывающие температуру воды на пульте.
На других тепловозах применяется гидростатический привод вентилятора. Данный привод включает в себя гидронасосы и гидродвигатели. Гидронасосы вращаются от коленвала дизеля, вращаясь они забирают масло из специального бака и под давлением подают его в гидродвигатели, которые и вращают вентиляторное колесо. Вот главное отличие. Работа остальных устройств осуществляется также, посредством датчиков.
Еще на некоторых тепловозах вентиляторы вращаются электродвигателями. Масляная и водяная система надежно защищены от перегрева и падения давления масла посредством датчиков давления и температуры, которые подключены к соответствующим реле в цепях управления. Давление масла контролируется при запуске, на малых и больших позициях контроллера, и если давление недостаточное, то дизель не запустится, не соберется схема тяги, а на больших позициях при падении давления масла дизель будет остановлен. А вот с температурой масла и воды немного по-другому. Температура воды и масла также контролируется датчиками, стоящими в электроцепях соответствующих реле, но останавливать дизель при критическом повышении температуры воды или масла нельзя, водяные или масляные насосы остановятся и жидкость перестанет циркулировать в системе, не попадая в секции охлаждения и повинуясь законам физики просто закипит. Закипев она будет увеличиваться в объеме и будет выдавливаться через все возможные неплотности в системе и конечно через расширительный бак, крутым фонтаном.
Давление, температуру воды и масла машинист видит на манометрах и термометрах на пульте управления, а давление масла по другим системам (редукторы, гидромуфты) выводится на манометры, которые располагаются на прибором щитке в дизельном помещении. Еще часть горячей воды поступает в калорифер, находящийся в кабине машиниста, калорифер обдувает кабину горячим воздухом в зимнее время, часть горячего воздуха подается на обдув лобовых стекол. Горячая вода поступает и в грелки, находящиеся под ногами машиниста и помощника.
Читайте также: