Для чего нужны логарифмы в реальной жизни
Логарифмы — традиционная головная боль для многих учеников старших классов. Особенно — уравнения и неравенства с логарифмами. Не любят старшеклассники логарифмы почему-то. И поэтому боятся. И совершенно зря.) Ибо сам по себе логарифм — это очень и очень простое понятие. Не верите? Убедитесь сами! В сегодняшнем уроке.
Итак, поехали знакомиться.)
Для начала решим в уме вот такое очень простенькое уравнение:
Это простейшее показательное уравнение. Оно так называется из-за того, что неизвестное икс находится в показателе степени. Даже если вы не в курсе, как решаются показательные уравнения, просто в уме подберите икс так, чтобы равенство выполнилось. Ну же?! Ну, конечно же, х = 2. Два в квадрате — это четыре.)
А теперь я изменю в нём всего одно число. Вот такое уравнение теперь решим:
И снова пробуем подобрать икс…
Что, никак не подбирается? Два в квадрате — это четыре. Два в кубе — это уже восемь. А у нас — пятёрка. Мимо проскочили… Что делать? Только не говорите мне, что нету такого икса! Не поверю.)
Согласитесь, что это как-то несправедливо: с четвёркой уравнение решается в уме, а с пятёркой — уже не решается никак. Математика не приемлет такой дискриминации! Для неё все числа — равноправные партнёры.)
На данном этапе мы можем лишь грубо прикинуть, что икс — какое-то дробное число между двойкой (2 2 = 4) и тройкой (2 3 = 8). Можем даже немного повозиться с калькулятором и приближённо подобрать, найти это число. Но такая возня каждый раз… Согласен, как-то грустно…
Математика решает данную проблему очень просто и элегантно — введением понятия логарифма.
Итак, что же такое логарифм? Вернёмся к нашему загадочному уравнению:
Осмысливаем задачу: нам надо найти некое число х, в которое надо возвести 2, чтобы получить 5. Понятна эта фраза? Если нет, перечитайте ещё раз. И ещё… Пока не осознаете. Ибо это очень важно!
Вот и назовём это загадочное число х логарифмом пятёрки по основанию два! В математической форме эти слова выглядят так:
А произносится эта запись вот так: "Икс равен логарифму пяти по основанию два."
Число внизу (двойка) называется основанием логарифма. Пишется снизу так же, как и в показательном выражении 2 х . Запомнить очень легко.)
Ну, вот, собственно, и всё! Мы решили ужасное на вид показательное уравнение!
И всё! Это правильный и совершенно полноценный ответ!
Может быть, вас смущает, что вместо конкретного числа я пишу какие-то непонятные буковки и значки?
Ну что ж, ладно, уговорили… Специально для вас:
x = log25 = 2,321928095…
Имейте в виду, что число это никогда не кончается. Да-да! Иррациональное оно…
Вот вам и ответ на вопрос, для чего нужны логарифмы. Логарифмы нам нужны, в первую очередь, для решения показательных уравнений! Таких, которые без логарифмов и не решаются вовсе…
Например, решая показательное уравнение
про логарифмы можно не вспоминать. Сразу ясно, что х = 2.
А вот, решая уравнение, скажем, такое
вы приближённо получите вот такой лохматый ответ:
Зато через логарифм даётся абсолютно точный ответ:
И все дела.) Вот поэтому и пишут логарифмы вместо некрасивых иррациональных чисел. Кому нужен числовой ответ — посчитает на калькуляторе или хотя бы в Excel.) А раньше, когда калькуляторов и компьютеров не было и в помине, существовали специальные таблицы логарифмов. Объёмные и увесистые. Так же, как и таблицы Брадиса для синусов и косинусов. И даже инструмент такой был — логарифмическая линейка. Которая позволяла с хорошей точностью вычислять массу полезных вещей. И не только логарифмы.)
Ну вот. Теперь, незаметно для себя, мы научились решать все показательные уравнения такого зверского типа.
И тут не вопрос:
Это всё верные ответы! Ну как? Заманчиво, правда?
А теперь вдумаемся в смысл самой операции нахождения логарифма.
Как мы знаем, на каждое действие математики стараются найти противодействие (т.е. обратное действие). Для сложения это вычитание, для умножения это деление. А какое обратное действие есть для возведения в степень?
Давайте посмотрим. Какие у нас основные действующие фигуры при возведении в степень? Вот они:
b - собственно сама степень.
А теперь подумаем: если нам известна степень (b) и известен показатель этой самой степени (n), а найти надо основание (a), то что мы обычно делаем? Правильно! Извлекаем корень n-й степени! Вот так:
А теперь посмотрим на другую ситуацию: нам снова известна степень (b), но на этот раз вместо показателя n нам известно основание (a), а найти как раз надо этот самый показатель (n). Что делать будем?
Вот тут-то на помощь и приходят логарифмы! Прямо так и пишут:
"Эн" (n) — это число, в которое надо возвести "a", чтобы получить "b". Вот и всё. Вот и весь смысл логарифма. Операция нахождения логарифма — это всего лишь поиск показателя степени по известным степени и основанию.
Таким образом, для возведения в степень в математике существует два разных по природе обратных действия. Это извлечение корня и нахождение логарифма. А вот, скажем для умножения обратное действие только одно — деление. Оно и понятно: любой из неизвестных множителей — что первый, что второй — ищется с помощью одной операции - деления.)
Простейшие примеры с логарифмами.
А теперь новость не очень хорошая. Если логарифм считается ровно, то его надо считать, да.
Скажем, если где-то в уравнении вы получили
то такой ответ никто не оценит. Надо логарифм посчитать и записать:
А как мы поняли, что log39=2? Переводим равенство с математического языка на русский: логарифм девяти по основанию три — это число, в которое надо возвести три, чтобы получить девять. И в какое же число надо возвести тройку, чтобы получить девятку? Ну, конечно! В квадрат надо возвести. То есть, в двойку.)
А чему равен, скажем, log5125? А в какой степени пятёрка даёт нам 125? В третьей, разумеется (т.е. в кубе)!
Стало быть, log5125 = 3.
В какую степень надо возвести 7, чтобы получить 7? В первую!
Вот вам и ответ: log77 = 1
А вот такой пример как вам?
И в какую же степень надо возвести тройку, чтобы получить единицу? Неужели не догадались? А вы вспомните свойства степеней .) Да! В нулевую! Вот и пишем:
Уловили принцип? Тогда тренируемся:
Ответы (в беспорядке): 1; 3; 5; 0; 4.
Что? Забыли, в какой степени 3 даёт 243? Что ж, ничего не поделаешь: степени популярных чисел надо узнавать. В лицо! Ну, и таблица умножения — надёжный спутник и помощник. И не только в логарифмах.)
Ну вот, совсем простенькие примеры порешали, а теперь шагаем на ступеньку выше. Вспоминаем отрицательные и дробные показатели.)
Решаем вот такой пример:
Мда… И в какую же степень надо возвести четвёрку, чтобы получить 0,25? Так с ходу и не скажешь. Если работать только с натуральными показателями. Но степени в математике, как известно, бывают не только натуральными. Самое время подключить наши знания об отрицательных показателях и вспомнить, что
Стало быть, можно смело записать:
В какую такую степень надо возвести четвёрку, чтобы получить двойку? Для ответа на этот вопрос придётся подключать наши знания о корнях. И вспомнить, что двойка — это корень квадратный из четырёх:
А корень квадратный математика позволяет представить в виде степени! С показателем 1/2. Так и пишем:
Поэтому наш логарифм будет равен:
Ну что, поздравляю! Вот мы с вами и познакомились с логарифмами. На самом примитивном начальном уровне.) И вы сами лично убедились, что они вовсе не так страшны, как, возможно, вам казалось раньше. Но у логарифмов, как и у любых других математических понятий, есть свои свойства и свои особые фишки. О том и о другом (о свойствах и о фишках) — в следующем уроке.
Оказывается, мы мыслим логарифмами: не так уж они бесполезны
Вспомните старшие классы школы: косинусы-синусы, производные, логарифмы… Зачем оно надо? В жизни не пригодится ведь. Оказывается, логарифмы нам намного ближе, чем сложение и вычитание. И это касается буквально всех органов чувств человека.
1. Обычная жизнь
В повседневности мы редко сталкиваемся со сложными операциями. Где-то надо что-то приплюсовать, что-то отнять, разделить или умножить. Даже степени – уже что-то необычное.
Кстати, многие люди (которые давно закончили школу), до сих пор не понимают сути возведения в степень . Если их попросит возвести 2 в степень 3, они не смогут ответить.
Это не шутка – проверено лично.
А вот логарифмы – это вообще какая-то странная сущность . Ну где я в обычной жизни с ними столкнусь? В магазине они не нужны, в быту – тоже, для развлечений и отдыха – ни разу не применялись.
Всё понятно: математики напридумывали всякого , чтобы нас запутать. Кроме них, никому и не нужны все эти заморочки.
Кому и зачем нужны логарифмы?
Давайте разбираться. Кому и зачем понадобились логарифмы?
"Изобретение логарифмов, сокращая вычисления нескольких месяцев в труд нескольких дней, словно удваивает жизнь астрономов" - Пьер Лаплас. Отличная характеристика, правда?
Астрономия имеет дело с огромными расстояниями. Например, расстояние от Солнца до Земли равно 150 миллионов километров. А расстояния до ближайших звезд - это минимум несколько световых лет. А один световой год это примерно 9500 миллиардов километров! Поэтому в астрономии могут применяться логарифмические шкалы. В логарифмической шкале, основанной на десятичном логарифме число 100 превращается в 2, а миллиард в 9. Представляете?
Как бы это странно ни казалось, логарифмы могут превратить умножение в сложение, а деление в вычитание, и этом очень упрощают вычисления.
Кроме того, например, абсолютную звездную величину можно вычислить также через десятичный логарифм:
Здесь М - абсолютная звездная величина, то есть звездная величина объекта при условии, если он находится на расстоянии 10 парсек или 32,6 световых года от наблюдателя. Также d - это расстояние до объекта, а d с индексом "ноль" - те самые 10 парсек.
Хорошо, допустим, вы никогда не будете заниматься астрономией. Где еще можно использовать логарифмы?
В акустике мы часто применяем такую величину, как децибел. Оказывается, и тут в вычислениях не обходятся без логарифмов. Дело в том, что ухо очень чувствительно и к сверхтихим звукам, и также терпимо к сверхгромким. Поэтому удвоение децибел удобнее записать как логарифм отношения текущей и единичной звуковой мощности:
Итак, если звуковая мощность увеличивается в 100 раз, то децибелы увеличиваются лишь на 20 единиц.
В космонавтике логарифмическая функция используется для расчета движения тела переменной массы (формула Циолковского-Мещерского). Конечная скорость ракеты связана со скоростью истечения газов и логарифмом отношения начальной массы ракеты к конечной.
Здесь u - скорость истечения реактивных газов, М0 - масса заправленной ракеты, Мk - масса конструкции последней ступени ракеты без топлива.
Ну, а если совсем приземленно? Где-то в быту бывают логарифмы?
Допустим, вы инвестируете сумму S под сложный процент с неким ежегодным коэффициентом начисления k. Если вы через год получаете 10% прибыли, то k=1,1 ; если 20%, то k=1,2, и т.д. Допустим ваша цель - накопить сумму А. Тогда рассчитать количество лет до этой суммы можно следующим образом:
Кроме того, "логарифмическая спираль" присутствует и в форме галактик и в раковинах моллюсков и строении цветков растений.
Здесь угол "тета" зависит от логарифма радиуса или отношения радиуса к параметру а:
А параметр b отвечает за расстояние между витками спирали. Как видите, здесь присутствует так называемый "натуральный логарифм" (не путать с натуральным блондином), то есть логарифм по основанию е, которое также называют числом Эйлера, оно равно примерно 2,72 и является бесконечной непериодической десятичной дробью.
От космоса до цветка, от астрономии до экономики мы можем увидеть логарифмы. Большинство учеников по началу их боятся, ибо они кажутся чем-то сверхъестественным, странным и непонятным. И действительно, есть в логарифмах какая-то "магия".
Но если вы наберетесь немного терпения, то полюбите логарифмы на втором-третьем занятии. Это то, что я наблюдаю у учеников. Даже если оставить чистую математику, свойства логарифмов очень интересны, завораживают, добавляют "детективную нотку" в решение задач. :)
Весь наш современный мир и нынешние технологии были бы невозможны без логарифмических вычислений. А то, чем мы сегодня владеем, лет 300-400 назад казалось чистой воды МАГИЕЙ! Так что один из ключиков к современной магии - это именно знание логарифмов.
Областей применения у логарифмических функций и выражений очень много. Может, они и не "вездесущи", но крайне молезны для современной цивилизации :)
А если я вас еще не убедил, пишите вопросы в комментариях! Расскажу больше :)
И напоследок вопрос - что вам нравится, и что кажется самым трудным в логарифмах? Делитеьс, пожалуйста, в комментах.
Для чего нужны логарифмы в реальной жизни
d10 = 2 * math.pi * a**2
Правдивость данной расчетной программы была проверена на примере планеты Венеры путем ввода в программу ее данных. Программа показала высокую точность и верность вычислений (см. приложение 2 )
2. Навигация
Формулы помогают нам найти нужные значения, но для полного понимания сути существования логарифмов следует найти и изучить более наглядный материал. Навигация для этого самый лучший вариант.
Локсодромия – линия на сфере, которая пересекает под одинаковым углом меридианы. Другими словами это кривая, в каждой точке имеющая путевой угол
С использованием в навигации магнитных компасов стало зарождаться понятие локсодромии. Простой пример: самолет летит с постоянным курсом относительно меридиана, над которым пролетает, и если магнитное склонение нулевое и нет ветра, то самолет в этой ситуации осуществляет движение по линии локсодромии.
Уравнение локсодромии выглядит следующим образом: , где – постоянные для данной локсодромии величины. Для того чтобы найти долготу нужно подставить в правую часть равенства соответствующую ей широту . Локсодромия - не единственная область навигации, использующая логарифмы в своих вычислениях. Однако в данной работе будет рассмотрена только она.
По определению локсодромии можно понять, что она представляет собой логарифмическую спираль на сфере, которая асимптотически приближается к полюсам, но никогда не пересекает их.
Итогом была проведена практическая работа по построению логарифмической спирали различными способами. В приложении 3 показана спираль, построенная путем заложения в основу программы GeoGebra уравнения логарифмической спирали в полярных координатах ( ). В приложении 4 представлена логарифмическая спираль, построенная с помощью прямоугольников, стороны которых имеют определенное отношение. Длины их сторон представлены числовым рядом Фибоначчи. Такая же работа была проведена вручную.
3. Психология
Громкость звука измеряют в децибелах, которые пропорциональны логарифму мощности звука, воздействующего на ухо. Употребление логарифмических шкал продиктовано особенностями наших органов чувств: зрения, слуха и т.д. Человеческий мозг воспринимает раздражения от органов чувств не пропорционально силе раздражителя (как мы рассматривали мощность звука), а лишь пропорционально ее логарифму. Именно поэтому ухо одинаково способно слышать шорох листьев и не оглохнуть от громкого удара станка на заводе. А глаз может заметить, как блестит снег на свету и не ослепнуть, если посмотрит на Солнце, которое в миллиарды раз ярче.
Описанные выше сведения объединяются законом психофизики, установленным Фехнером, который говорит, что мера ощущения пропорциональная логарифму величины раздражения.
Тот факт, что логарифмическая шкала позволяет увидеть и осознать объекты большого масштаба позволяет применять понятие логарифма и в истории. Чтобы представить себе всю эволюцию нашего человечества нужно представить его историю в масштабе, который подвластен представлению. В этом на помощь приходит логарифмический масштаб (шкала). Такая система называется логарифмической шкалой времени.
Из этого следует, что логарифмы применимы в математическом моделировании развития мира, культуры, экономики и так далее.
То, какое значение логарифм имеет в физике, является отдельной темой для проекта по количеству материала, имеющегося по этому направлению. Здесь будет рассмотрена только одна формула – формула Циолковского.
Формула Циолковского значительно выделяется на фоне всех приведенных в этой работе расчетов. Это достижение было важным для истории тем, что открыло новую эпоху в сфере естествознания и космонавтики. Формула предназначена для того, чтобы рассчитывать характеристическую скорость летательного аппарата, т.е. скорость которую он приобретает под действием тяги двигателя, не имея воздействия со стороны других сил. Эта формула приобретает соответствующий вид в зависимости от вида самого рассматриваемого аппарата. Речь идет о количестве ступень ракеты. Для ракет с 2-мя, 3-мя ступенями действительная более сложная формула, которая не рассматривается в данной работе. Для ракет с 1-ой ступенью используется формула более простого вида: . Где – удельный импульс ракетного двигателя, – начальная масса РН (ракета-носителя), включающая в себя массу полезной нагрузки, самого аппарата и топлива на момент старта, – "сухая масса", т.е. масса полезной нагрузки и аппарата. На данный момент существует одна ракета подобного вида, разрабатываемая в России, обладающая одной ступенью. Она называется РН "Корона" и разрабатывается уже на протяжении 25 лет. Данные необходимые для подстановки были взяты из характеристик этого ракета-носителя и написана соответствующая программа. Результаты смотрите в приложении 5.
5. Незамысловатый фокус
Представьте, что в ваш город приехал фокусник, утверждающий, что может с легкостью вычислить корень высокой степени из многозначного числа. Перед представлением вы заготовили 31-ю степень какого-нибудь многозначного числа и в итоге получили пятизначное. Уверенные в том, что фокусник не сможет извлечь из него корень вы начинаете говорить "31-ая степень этого числа : пятизначное число …" и тут произошло чудо, этот волшебник уже написал вам ответ на доске, даже не услышав само число. Как так вышло?
На самом деле здесь нет ничего сложного. Есть только одно число, которое в 31-й степени дает пятизначное число. Однако даже если так, то откуда тот фокусник знал это и смог так быстро отыскать нужное число?
Для этого он заучил двузначные логарифмы для первых 15-20 чисел. Тем более эта задача сильно упрощается знанием того факта, что зная логарифмы 2,3 и 7, можно в уме легко найти логарифмы чисел первого десятка ( ).
Когда вы сказали фокуснику, что 31-ая степень числа дает пятизначное число, ему оставалось только выполнить следующее действие: . Значение этого выражения лежит где-то между 1,09 и 1,13. Этот интервал включает в себя только один логарифм от целого числа. Это 1,11 – логарифм числа 13. Конечно, чтобы такое проделать в уме нужна тренировка, но если видеть это все перед глазами, то все довольно просто.
Теперь уже перед вами стоит задача извлечь корень 64 степени из 20-значного числа. Получим: То есть значение лежит в интервале между или по-другому между 0,29 и 0,31. Такое значение только одно 0,3 – логарифм числа 2.
Использование логарифмов дает людям преимущество в виде упрощения и ускорения сложных вычислительных операций. Бесспорно, будет нерационально использовать это при умножении 6 на 3, но при действиях с по-настоящему большими числами данное преимущество значительно упростит задачу.
Логарифмическая функция дает нам возможность по-другому взглянуть на масштабные процессы, происходящие в огромных пространствах и временных интервалах для понимания и осмысления общей картины.
В ходе работы поставленные задачи были выполнены, гипотеза подтверждена, проработана практическая часть и цель достигнута.
Список литературы
1. . Вильчек Ф. Красота физики: постигая устройство природы: пер. с англ. – 2-е изд. – М.: Альпина нон-фикшн, 2017.
2. Выгодский М.Я. Справочник по элементарной математике – Москва: Издательство: АСТ: 2017
3.Засов А.В., Постнов К.А. Общая астрофизика – Фрязино: Век 2: 2015
4 Перельман Я.И. Занимательная алгебра. – СПб.: СЗКЭО, 2017
5. Пискунов Н.С. Дифференциальное и интегральное исчисления для втузов – Москва: государственное издательство физико-математической литературы, 1963
6. Энциклопедия для детей: Т.8. Астрономия. – 2-е изд., глав.ред. М.Д.Аксенова – М.: Аванта+, 1999
2. Аддитивный или логарифмический
Итак, в обиходе мы сталкиваемся со сложениями. Часто ведь приходится к 100 добавлять 1 или 10. Справляются все хорошо.
А в чем же суть логарифмического счета ? К каждому последующему числу мы прибавляем его степень . Например, для числа 2 это будет: 2, потом 2 во 2-ой степени (т.е. 4), затем опять умножаем на 2, получая 8, потом 16, 32, 64 и т.д.
Реферат по теме"Логарифмы в нашей жизни".
Министерство образования и науки Российской Федерации. Международная ассоциация строительных вузов(АСВ) Федеральное государственное бюджетное образовательное учреждение высшего профессионального образован «Воронежский государственный архитектурно-строительный университет» Всероссийский конкурс исследовательских проектов, выполненных школьниками и студентами при научном консультировании ученых Международной ассоциации строительных вузов Секция математики Номинация 10-11 классы
Тема проекта:«Логарифмы в нашей жизни»
Выполнила Ученица 11 класса
МКОУ Калачеевская СОШ № 6
Омельченко Елена Сергеевна
Руководитель учитель математики
МКОУ Калачеевская СОШ № 6
Берестнева Любовь Васильевна
Научный консультант к.т.н., доцент
кафедры высшей математики
Глазкова Мария Юрьевна
2 Логарифмы и психология
3 Логарифмы в природе
4Логарифмы и рояль
5 Логарифмы в технике
7 Список литературы
Цель: показать, что логарифмы нужны не только на уроках математики но, могут быть использованы и в других областях.
Проблема: показать практическую значимость логарифмов для окружения.
Задача: применение логарифмов в различных областях науки и повседневной жизни .
Логарифмы были изобретены шотландским математиком Джоном Непером (1550–1617) в 1614 г. Его «Канон о логарифмах» начинался так: «Осознав, что в математике нет ничего более, скучного и утомительного, чем умножение, деление, извлечение квадратных и кубических корней, и что названные операции являются бесполезной тратой времени и неиссякаемым источником неуловимых ошибок, я решил найти простое и надежное средство, чтобы избавиться от них».
С точки зрения вычислительной практики, изобретение логарифмов по возможности можно смело поставить рядом с другими, более древним великим изобретением индусов – нашей десятичной системы нумерации.
Через десяток лет после появления логарифмов Непера английский ученый Гунтер изобрел очень популярный прежде счетный прибор – логарифмическую линейку. Она помогала астрономам и инженерам при вычислениях, она позволяла быстро получать ответ с достаточной точностью в три значащие цифры.
Таким образом, потребность в сложных расчётах быстро росла. Теория логарифмов связана с именами целого ряда математиков: Генри Бригс, Эдмунд Уингейт, Уильям Отред, Н. Меркатор, Джон Спейдел, К. Бремикер, Ф. Клейн.
Термин «логарифм» (logarithmus) принадлежит Неперу. Он возник из сочетания греческих слов: logos – «отношение» и ariqmo – «число», которое означало «число отношений». Первоначально Непер пользовался другим термином: numeri artificiales - «искусственные числа», в противоположность numeri naturalts – «числам естественным».
Понятия функции тогда ещё не было, и Непер определил логарифм кинематически, сопоставив равномерное и логарифмически-замедленное движение. В современной записи модель Непера можно изобразить дифференциальным уравнением: dx/x = -dy/M, где M — масштабный множитель, введенный для того, чтобы значение получилось целым числом с нужным количеством знаков (десятичные дроби тогда ещё не нашли широкого применения). Непер взял M = 10000000.
Строго говоря, Непер табулировал не ту функцию, которая сейчас называется логарифмом.
К сожалению, все значения таблицы Непера содержали вычислительную ошибку после шестого знака. Однако это не помешало новой методике вычислений получить широчайшую популярность, и составлением логарифмических таблиц занялись многие европейские математики, включая Кеплера.
В 1615 году в беседе с профессором математики Грешем Колледжа в Лондоне Генри Бригсом (1561-1631) Непер предложил принять за логарифм единицы нуль, а за логарифм десяти - 100, или, что сводится к тому же, просто 1. Так появились десятичные логарифмы и были напечатаны первые логарифмические таблицы. Непер уже был болен, поэтому не смог усовершенствовать свои таблицы, однако дал Бригсу рекомендации видоизменить определение логарифма, приблизив его к современному. Бригс опубликовал свои таблицы в год смерти Непера (1617).
Позже таблицы Бригса дополнил голландский книготорговец и любитель математики Андриан Флакк (1600-1667). Непер и Бригс, хотя пришли к логарифмам раньше всех, опубликовали свои таблицы позже других - в 1620 году.
Но и в таблицах Бригса обнаружились ошибки. Первое безошибочное издание на основе таблиц Вега ́ появилось только в 1857 году в Берлине (таблицы Бремивера).
В 1620-е годы Эдмунд Уингейт и Уильям Отред изобрели первую логарифмическую линейку, до появления карманных калькуляторов — незаменимый инструмент инженера.
Знаки log и Log были введены в 1624 году И. Кеплером.
Термин «натуральный логарифм» ввели Менголи в 1659 г. и вслед за ним Н. Меркатор в 1668 г., а издал таблицы натуральных логарифмов чисел от 1 до 1000 под названием «Новые логарифмы» лондонский учитель Джон Спейдел.
На русском языке первые логарифмические таблицы были изданы в 1703 году. Но во всех логарифмических таблицах были допущены ошибки при вычислении. Первые безошибочные таблицы вышли в 1857 году в Берлине в обработке немецкого математика К. Бремикера (1804-1877).
Дальнейшее развитие теории логарифмов связано с более широким применением аналитической геометрии и исчисления бесконечно малых. К тому времени относится установление связи между квадратурой равносторонней гиперболы и натуральным логарифмом.
С открытием логарифмического ряда изменилась техника вычисления логарифмов: они стали определяться с помощью бесконечных рядов.
В своих лекциях «Элементарная математика с высшей точки зрения», прочитанных в 1907-1908 годах, Ф. Клейн предложил использовать формулу в качестве исходного пункта построения теории логарифмов.
Таким образом, прошло 394 года с тех пор, как логарифмы впервые были введены (считая с 1614 г.), прежде чем математики пришли к определению понятия логарифма, которое положено теперь в основу школьного курса.
Радиоактивный распад. Изменение массы радиоактивного вещества происходит по формуле , где m 0 – где масса вещества в начальный период времени t=0, m – масса вещества в момент времени t,
T - период полураспада.
Это означает, что через время Т после начального момента времени, масса радиоактивного вещества уменьшается вдвое.
Народонаселение. Изменение количества людей в стране на небольшом отрезке времени с хорошей точностью описывается формулой , где N 0 – число людей при t=0, N – число людей в момент t, λ – некоторая константа.
Формула Циолковского. Эта формула, связывающая скорость ракеты V с ее массой m: , где Vr – скорость вылетающих газов, m 0 – стартовая масса ракеты.
Скорость истечения газа при сгорании топлива Vr невелика (в настоящее время она меньше или равна 2 км/с). Логарифм растет очень медленно, и для того чтобы достичь космической скорости, необходимо сделать большим отношение , т.е. почти всю стартовую массу отдать под топливо.
Звукоизоляция стен. Коэффициент звукоизоляции стен измеряется по формуле
, где p 0 – давление звука до поглощения, p – давление звука, прошедшего через стену, А – некоторая константа, которая в расчетах принимается равной 20 децибелам.
Если коэффициент звукоизоляции D равен, например 20 децибел, то это означает, что
и p 0 =10p, т.е. стена снижает давление звука в 10 раз. Такую изоляцию имеет деревянная дверь.
Логарифмическая спираль.
Логарифмическая спираль- плоская трансцендентная кривая, уравнение которой в полярных координатах имеет вид p=a φ, a>0.
Логарифмическую спираль можно увидеть в природе: известно, что живые существа обычно растут, сохраняя общее начертание своей формы. Раковины морских животных могут расти лишь в одном направлении.
Логарифмическую спираль можно увидеть в природе: известно, что живые существа обычно растут, сохраняя общее начертание своей формы. Раковины морских животных могут расти лишь в одном направлении.
Нажимая на клавиши современного рояля , мы играем на логарифмах.
Так называемые ступени темперированной хроматической гаммы не расставлены на равных расстояниях ни по отношению к числам колебаний, ни по отношению к длинам волн соответствующих звуков, а представляют логарифмы этих величин и основание этих логарифмов равно 2.
Рога козлов, раковина улитки и семечки в подсолнухе закручены по логарифмической спирали
Логарифмические таблицы.
Если вычислительные потребности практической жизни и технического обихода вполне обеспечиваются трех и четырехзначными таблицами то с другой стороны, к услугам теоретического исследователя имеются таблицы и с гораздо большим числом знаков, чем даже 14- значные логарифмы. Вообще говоря, логарифм в большинстве случаев есть число иррациональное и не может быть точно выражен никаким числом цифр; логарифмы большинства чисел, сколько бы знаков ни брать, выражаются лишь приближенно, тем точней, чем больше цифр в их мантиссе. Для научных работ оказывается иногда недостаточной точность 14- значных логарифмов, но среди пятисот всевозможных образов логарифмических таблиц вышедших в свет, со времени их изобретения, исследователь всегда найдет такие, которые его удовлетворяют.
Например, 20- значные логарифмы чисел от 2 до1200, изданные во Франции Кале.
Для еще более ограниченной группы чисел имеются таблицы логарифмов с огромным числом десятичных знаков - настоящие логарифмические диковинки о существование которых не подозревают многие математики.
Вот эти логарифмы – исполины все они - не десятичные, а натуральные: (натуральными называются логарифмы, вычисленные не при основании 10, а при основании 2,718…, о котором у вас еще будет речь впереди. 48–значные таблицы Вольфрама для чисел до 10000; 61-значные таблицы Шарпа; 102-значные таблицы Паркхерста.
Счетная линейка.
К логарифмическим диковинкам можно было бы с полным основанием отнести и счетную линейку – «деревянные логарифмы», - если бы этот остроумный прибор не сделался благодаря своему удобству столь же обычным, счетным орудием для техников, как десятикосточковые счеты для конторских работников. Привычка угашает чувство изумления перед прибором, работающим по принципу логарифмов и, тем не менее, не требующим от пользующихся им даже знания того, что такое логарифм.
Молекула ДНК.
Её молекулы имеют огромную по молекулярным масштабам длину и состоят из 2-х нитей, сплетённых между собой в двойную спираль. Каждую из нитей можно сравнить с длинной нитки бус. С нитями бус мы сравниваем и белки. У белков «бусинами» являются аминокислоты 20 различных типов. У ДНК-всего 4 типа «бусин» и зовутся они нуклеотидами. «Бусины» двух нитей двойной спирали ДНК связаны между собой и строго друг другу соответствуют. Мы часто встречаем изготовление предметов по шаблону, называемому матрицей. Отливка монет или медалей, типографского шрифта. По аналогии происходящее в живой клетке восстановление двойной спирали по одной её цепи, как по матрице, так же называют матричным синтезом.
Вывод: Многие природные явления не могли быть изучены без понятия логарифма;
Логарифмы используются для описания природных явлений астрономами, физиками, биологами.
Понятие логарифма широко применяется человеком во многих науках
Логарифмы на самом деле очень интересно изучать, если приводятся примеры из жизни. Оказывается, что логарифмы окружают нас в нашей жизни практически везде. Поэтому знание правил вычисления логарифмов и их свойств поможет разобраться во многих вопросах, которые ставит перед нами жизнь.
Читайте также: