Цифровая шкала с цапч своими руками
В связи с динамично обновляющимся парком автомобилей (иномарок) в нашей стране в настоящее время достать блок цифровой шкалы (ЦШ) старой автомагнитолы или тюнера для радиолюбителя не представляет особых затруднений.
В своих конструкциях радиолюбители применяют эти блоки либо по прямому назначению – как цифровая шкала, чаще ЧМ-приемника, причем в диапазонах не только FM1, 2, но и других, начиная с гражданского СВ-диапазона 27 МГц, с шагом 50 кГц.
Реже эту ЦШ применяют в качестве частотомера [1]. Показания считываются с блока индикаторов и к ним добавляется (а в FM диапазоне может и вычитаться) выбранное значение ПЧ, что не совсем удобно. Да и шаг индикации 50 кГц, если выбрана ПЧ FM диапазона, не позволяет достаточно точно измерить частоту. На АМ диапазоне с приемлемым шагом 1 кГц верхний предел ограничен 2 МГц.
Собственно, это значит, что приступая к измерению нужно знать, в каком диапазоне (сколько МГц) находится измеряемая частота. Т.е., получается, что после первого участка диапазон до 18 мГц разбит на участки по 2 мГц (от 0 до 1999 кГц). При этом частоты участков выше 2 МГц при четных значениях (мегагерцы) будет всегда индицироваться первой цифрой индикатора - единицей.
Таким образом, алгоритм измерения частоты можно представить в два этапа:
1. Сначала на диапазоне FM определяем с точностью до +/- 50 кГц частоту исследуемого сигнала. Например, индикатор покажет 14,00 МГц. Собственно частота будет составлять 14,00 – 10,7 МГц (запрограмированная ПЧ) = 3,3 МГц.
2. Далее измерения проводим в диапазоне АМ. Индикатор покажет только последние три цифры значения измеряемой частоты в кГц + 455 кГц. Скажем, 378 (кГц). Вывод: измеренная частота равна 3,378 МГц + 455 = 3,833 МГц.
Если же на диапазоне FM первая из четырех цифра будет четной, то при уточняющих измерениях на АМ диапазоне первую цифру индикатора (единицу) следует игнорировать. Например, 15,00 (показывает индикатор) – 10,7 (вычитаем ПЧ) = 4,3 МГц (первая цифра "4" - четная). На втором этапе измерений индикатор покажет 1378. Измеренная частота будет 4,378 МГц (единица игнорирована, т.е заменена на 4) + 455 кГц.
В ЦШ из автомобильного приемника "зашита" частота 455 кГц (или другая, имеются стандартные варианты, см. табл.2). Это рассчитано на то, что в самом приемнике ПЧ = 455 кГц (или другая. ), и при работе в комплексе с приемником на дисплее будут истинные показатели принимаемой приемником частоты.
Алгоритм такой: в приемнике F пч = Fсигн. - Fгпд (всегда одна и та же ПЧ = 455 кГц, т.к. перестраивается и ГПД, меняется Fсигн. Далее детектирование Fпч в звуковой спектр и УЗЧ).
В ЦШ то же самое, только частота 455 кГц ("аналог Fгпд приемника") зашита в микропроцессор ЦШ "намертво", не меняется. При этом при смене (перестройке приемника) по частоте Fсигн. дисплей будет показывать меняющуюся частоту приема по алгоритму Fдиспл. = fсигн. - Fзашит.
Если взять ЦШ отдельно (вне приемника) и подать на ее вход какую либо частоту (режим частотомера), то чтобы получить (правильно прочитать) значение измеряемой частоты , нужно прибавлять (суммировать) 455 в уме к показаниям дисплея. Ведь в ЦШ эти 455 кГц "зашиты" и они учтены в показаниях на дисплее.
Таким образом, чтобы "нивелировать " эти "зашитые" в ЦШ 455 кГц можно сделать приставку, в которой в смесителе суммируется частота 455 кгц (она получается в ОГ приставки с помощью резонатора 455 кГц) с частотой измеряемого сигнала. Тогда на дисплее будут цифры, соответствующие измеряемой частоте, и суммировать в уме не требуется. Конечно, с учетом погрешности резонатора в ОГ приставки, "пролезания" его сигнала на вход ЦШ, амплитуды и вида входного сигнала и сигнала ОГ, завала частот на ВЧ, и многого возможного другого при конструировании прибора.
Ниже приводится схема ЦШ (рис.1), лишь немного отличающаяся от приведенной в [1].
При разработке этого устройства авторы ставили перед собой задачи получить высокое быстродействие, минимальные помехи радиоприему, малое потребление энергии, а также добиться универсальности в применении, т.е. возможности гибкой перестройки режима работы.
Особенностью устройства является возможность его работы в нескольких режимах в соответствии с принципом формирования частоты настройки приемника или трансивера. Алгоритм работы цифровой шкалы зависит от двоичного кода на управляющих входах So, Si. Показания индикатора определяются частотами fi, fa, fs гетеродинов, сигналы которых подают на входы в соответствии с таблицей.
Устройство может быть использовано без переделок в трансиверах с одним или двумя преобразованиями частоты. Кроме того, его можно применять в качестве частотомера. При этом измеряемый сигнал может быть подан на любой "суммирующий" вход.
Принципиальная схема цифровой шкалы показана на рис. 1. Шкала состоит из входного мультиплексора DD1, формирователя импульсов в уровнях ТТЛ на транзисторах VT1- VT3, быстродействующего делителя частоты на 16 на триггерах DD2, DD3, шестидекадного реверсивного счетчика (DD10-DD15), регистра с дешифратором двоично-десятичного кода в код семисегментного индикатора (DD16-DD21), цифровых индикаторов - HG1-HG6, кварцевого генератора на элементах DD4.1, DD4.2 и узла управления (DD5-DD9).
Устройство управления определяет порядок следования входных сигналов, вырабатывает импульсы счета необходимой длительности, установки счетчика в нулевое состояние и записи результата счета в регистр с дешифратором. Работа всего устройства синхронизирована импульсами, формируемыми кварцевым генератором. С его выхода они через управляемый делитель частоты DD6-DD8 поступают на вход ЕС счетчика команд DD9. Общий коэффициент деления счетчиков DD6.1, DD6.2 - 64. Коэффициент пересчета микросхем DD7, DD8 равен 10, если на их входах D1-D4 низкий логический уровень, и 250 - если высокий.
Взаимодействие узлов рассмотрим с момента, когда на выходе 0 счетчика DD9 появляется импульс, разрешающий предварительную запись начального кода в реверсивные счетчики DD10-DD15. Очередной импульс, пришедший на вход ЕС счетчика DD9, вызовет появление на выходе 1 высокого логического уровня, который поступает на входы предустановки счетчика DD8, в результате чего коэффициент пересчета частоты кварцевого генератора становится равным 16000. Под действием этого сигнала также открывается первый ключ (между выводами 1 и 2) мультиплексора DD1 и сигнал с частотой f1 проходит в измерительный канал.
Счетчики DD10-DD15 при измерении частоты f1 работают в режиме суммирования, так как на их входы ±1 независимо от управляющих сигналов на входах S0, S1 с выхода элемента DD5.4 поступает высокий логический уровень. При низком уровне шестидекадный реверсивный счетчик работает в режиме вычитания.
Через 16 000 тактов кварцевого генератора (через 160 мс) появится импульс на выходе 2 счетчика команд DD9. На этом будет закончен счет входного сигнала с частотой f1.
Число импульсов, поступивших на счетчик при измерении, равно Ni=(f1/16)t1=0,01f1, где t1 - время счета, равное 160 мс.
В состоянии "2" счетчика команд DD9 формируется пауза, в течение которой запрещен счет, делитель частоты в измерительном канале устанавливается в исходное - нулевое - состояние, а вход формирователя импульсов оказывается соединенным с общим проводом через конденсатор С4. Длительность паузы - 6,4 мс, так как во время паузы коэффициент деления частоты микросхем DD7, DD8 равен 10.
После окончания паузы счетчик команд перейдет в состояние "З". При этом в измерительный канал поступает сигнал с частотой f2. Одновременно узел управления реверсом вырабатывает сигнал направления счета (логическая 1 - суммирование, 0 - вычитание) в зависимости от управляющих сигналов S0, S1. Счет сигнала частотой f2 длится также 160 мс. К концу счета число импульсов, подсчитанных счетчиком, увеличится или уменьшится на 0,01f2. По окончании счета будет сформирована пауза (счетчик команд в состоянии "4"). Аналогичные процессы происходят при исследовании сигнала с частотой f3, после чего наступает очередная пауза.
В состоянии "7" счетчика DD9 формируется последняя команда цикла. По ней информация со счетчиков. DD10- DD15 записывается в регистр с дешифратором (DD16-DD21) и отображается индикаторами HG1-HG6. Затем цикл команд повторится. Период измерения определяется суммарной длительностью всех команд и равен 505,6 мс.
Высокое быстродействие (30 МГц) получено благодаря использованию быстродействующего делителя частоты на базе ТТЛШ-триггеров DD2, DD3. Стыковка по уровням сигналов микросхем ТТЛШ и КМОП получена с помощью необычного способа питания триггеров ТТЛШ. Питание на эти микросхемы подают с выводов стабилитрона VD1, анод которого соединен с общим проводом через стабилитрон VD2. В результате уровни сигналов на выходе делителя частоты равны 6,8 (логический 0) и 10,8 (логическая 1) В. Эти уровни расположены симметрично относительно напряжения переключения счетчиков DDIO- DD15, что обеспечивает нормальную работу устройства.
Статическая индикация результата и элементы КМОП обеспечивают малое излучение радиопомех и приемлемую яркость индикаторов при выбранном напряжении питания (15 В). Налаживание устройства сво-дится к установке частоты квар-цевого генератора подбором конденсатора С6, так как точность шкалы зависит от точности установки частоты кварцевого генератора. При отсут-ствии счета возможно потребуется заменить стабилитрон' VD2 - КС168А на КС162А или КС156А, если напряжение переключения счетчиков DDIO- DD15 окажется ниже.
Цифровая шкала смонтирована на двух печатных платах (рис.2), (рис.3), (рис.4), причем на одной из них находятся только микросхемы. Платы расположены в корпусе одна над другой. В устройстве может быть использован также кварцевый резонатор на 200 или 400 кГц. В этих случаях вывод 10 микросхемы DD6 соединяют соответственно с выводом 5 или 6, а не 4. Диоды VD3-VD9 - любые высокочастотные. Вместо дешифраторов К176ИД2 можно применить К176ИДЗ.
При установке устройства в трансивер сигналы на входы шкалы надо подавать по коротким экранированным проводам. Управляющие сигналы на входы S0, S1 снимают с переключателя диапазонов, при этом уровень логической 1 должен быть в пределах 11. 15 В, О - 0. 5 В.
В современных приёмниках и тюнерах есть много дополнительных сервисных устройств, которые упрощают процесс настройки на радиостанцию. Одним из таких устройств является цифровая шкала. Это, как правило, 4-5 разрядный цифровой индикатор, на котором отображается непосредственная частота принимаемой радиостанции.
2. Как это работает?
Для этого нужно немного вспомнить теорию супергетеродинного приёма. В таком приёмнике есть входной контур с УВЧ (усилителем высокой частоты), гетеродин и смеситель (или преобразователь, что суть одно и то же). Гетеродин – это встроенный ВЧ-генератор, который вырабатывает (генерирует) напряжение высокой частоты. Частота этого напряжения может быть выше или ниже частоты принимаемого сигнала на вполне определённую величину (обычно 6,5 или 8,4 или 10,7 МГц). Т.е., например, при настройке на станцию, которая работает на частоте 100,0 МГц (при частоте ПЧ = 10,7 МГц), гетеродин будет вырабатывать сигнал частотой 89,3 МГц (если его частота ниже частоты сигнала станции) или 110,7 МГц (если выше). Второй вариант на практике используется чаще.
Содержание / Contents
↑ 3. Комплект ИМС LB3500 + LC7265
↑ LB3500
↑ LC7265
К ИМС можно подключить 4 или 5 семисегментных светодиодных индикаторов с общим анодом для отображения частоты. Индикация статическая (ножки 1-5, 23-34, 36-42), а так же индикаторы КГц и МГц (ножки 7 и 6). Выходы на индикаторы сделаны на полевых транзисторах с открытым стоком, максимальный ток нагрузки для каждого сегмента – 15 мА, для выходов, к которым подключаются сразу 2 сегмента – 30 мА. Это позволяет подключить к ним большинство современных индикаторов без ключей на транзисторах. Достаточно подобрать токоограничивающие резисторы.
↑ 4. Практическая реализация ЦШ. Эксперименты
В Интернете и радиолюбительской литературе можно найти много различных схем ЦШ на основе этого комплекта. Все они были тщательно изучены и проанализированы. С не меньшим вниманием были изучены справочные листки (datasheet) на эти ИМС. На основании этого был разработан и изготовлен первый вариант ЦШ.
↑ 5. Окончательный вариант
Во втором варианте плата индикаторов соединяется с основной платой при помощи шлейфа. Это позволяет разместить платы в разных местах, что бывает очень полезным при конструировании передней панели приёмника.
В остальном оба варианта ничем не отличаются, имеют абсолютно одинаковые схемы и применяются одинаковые типы деталей.
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
↑ Несколько замечаний по схеме
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
↑ 6. Немного о деталях
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
↑ 7. Сборка и налаживание
↑ 8. Немного о подключении цифровой шкалы к приёмнику
Исключён фрагмент. Полный вариант статьи доступен меценатам и полноправным членам сообщества. Читай условия доступа.
К сожалению, для приёмников, у которых частота ПЧ отличается от 10,7 МГц (например, как в старых советских ламповых приёмниках с их ПЧ = 8,4 или 6,5 МГц) эта шкала не годится. Хотя в Интернете мне встречались варианты доработки шкалы на этой ИМС для приёмников с ПЧ = 500 КГц (в режиме АМ). Там автор просто подобрал кварц с другой частотой. Не знаю, насколько корректно при этом будет работать ИМС, но такой вариант существует.
↑ Файлы
Чертежи всех печатных плат в формате .lay
🎁pcb-dig-scale.7z 173.86 Kb ⇣ 195
Немножко теории
Наверное нет необходимости рассказывать, что такое 7-сегментные индикаторы. Как сложно и представить область техники, где они не применяются. Соответственно по их подключению написано масса статей, но попробую все таки написать свою :)
Итак: что же такое 7-сегментный индикатор?
Обратимся к Википедии: "Семисегме́нтный индика́тор — устройство отображения цифровой информации. Это — наиболее простая реализация индикатора, который может отображать арабские цифры.
Семисегментный индикатор, как говорит его название, состоит из семи элементов индикации (сегментов), включающихся и выключающихся по отдельности. Включая их в разных комбинациях, из них можно составить упрощённые изображения арабских цифр. Часто семисегментные индикаторы делают в курсивном начертании."
Сегменты обозначаются буквами от A до G; восьмой сегмент — десятичная точка (decimal point, DP), предназначенная для отображения дробных чисел.
По сути говоря данный индикатор — это 8 светодиодов расположенных на панели определенным образом.
Соответственно самая простая схема включения — подсоединить все 8 ножек на выводы микроконтроллера (микросхемы — дешифратора) через балластные резисторы, а на общий провод подавать либо "+" (для индикаторов с общим анодом) либо "-" (для индикаторов с общим катодом).
Пример подключения индикатора с общим анодом для схемы индикации включенной передачи АКПП Лансера приведен ниже
А как быть, если нужно выводить не 1 цифру, а 2,3,4 и более?
И вот тут на помощь приходит человеческая психика. Если мозгу показать несколько быстросменяющихся изображений, то он не успев обработать каждое по отдельности "сольет" их вместе. Этот принцип лег в основу мультипликации. Т.е. для вывода нескольких разрядов (нескольких цифр) нужно подключить к микроконтроллеру не только провода сегментов, но и общие провода каждого из разрядов. Тогда чтобы вывести первый разряд (опять же для схемы с общим анодом) нужно подать "+" только на общий провод первого разряда и "-" на нужные провода сегментов. Задержать изображение на 2-3 милисекунды, переключится на второй разряд и проделать то же самое с ним, поле чего перейти на третий (четвертый и т.д.) или вернутся к первому. Проделывая все это достаточно быстро мы получим в мозгу единую картинку, где все разряды горят одновременно. Для схемы с общим катодом, соответственно, перекидывать нужно "-".
В чем же "бяка" данной схемы? А в том, что для вывода например трехразрядного числа нужно задействовать 11 ножек микроконтроллера, причем 7 из них, чтобы не раздувать программу, должны относится к одному порту.
Все это хорошо, но, например, у Attiny2313 такой только порт В на котором "висят" и оба входа аналогового компаратора.
И вот тут на помощь приходят специальные драйверы.
Чаще всего применяют драйвера MAX7219 и MAX7221, управляемые по SPI. Материал по работе с этими драйверами разместил недавно serdgos тут — www.drive2.ru/c/2812487/. Поэтому повторятся не буду — желающие могут почитать. Данные драйвера позволяют уменьшить количество задействованных выводом, но опять же требуют использования дополнительной библиотеки и "привязаны" к строго определенным ножкам микроконтроллера. А есть ли более "хардкорные" решения? Оказывается есть — драйвер CD4026.
Описание Драйвера
Чип CD4026 предназначен для управления 7-сегментными индикаторами и представляет собой счётчик до десятка с встроенным сдвиговым регистром.
Подключение
С этим все просто: смотрим даташит на индикатор. Я использовал 3х- разрядный, но принципиально разницы с четырехразрядным нет, — для подключения четвертого разряда нужно будет еще задействовать вывод 6 индикатора (сейчас он "пустой").
Читайте также: