Что является единицей хранения информации в памяти компьютера
При хранении данных решаются две проблемы: как сохранить данные в наиболее компактном виде и как обеспечить к ним удобный и быстрый доступ (если доступ не обеспечен, то это не хранение). Для обеспечения доступа необходимо, чтобы данные имели упорядоченную структуру. При этом образуются адресные данные. Без них нельзя получить доступ к нужным элементам данных, входящих в структуру.
Поскольку адресные данные тоже имеют размер и тоже подлежат хранению, хранить данные в виде мелких единиц, таких, как байты, неудобно. Их неудобно хранить и в более крупных единицах (килобайтах, мегабайтах и т.п.), поскольку частичное заполнение одной единицы хранения приводит к неэффективности хранения.
В качестве единицы хранения данных принят объект переменной длины, называемый файлом.
Файл – это последовательность произвольного числа байтов, обладающая уникальным собственным именем.
Обычно в отдельном файле хранят данные, относящиеся к одному типу. В этом случае тип данных определяет тип файла.
Поскольку в определении файла нет ограничений на размер, можно представить себе файл, имеющий 0 байтов (пустой файл), и файл, имеющий любое число байтов.
В определении файла особое внимание уделяется имени. Оно фактически несет в себе адресные данные, без которых данные, хранящиеся в файле, не станут информацией из-за отсутствия метода доступа к ним. Кроме функций, связанных с адресацией, имя файла может хранить и сведения о типе данных, заключенных в нем. Для автоматических средств работы с данными это важно, поскольку по имени файла они могут автоматически определить адекватный метод извлечения информации из файла.
Имя файла состоит из двух частей: собственно имени и расширения файла.
Собственно имя файла может состоять из букв русского и английского алфавитов, цифр и специальных символов. При этом его длина не должна превышать 256 символов.
В зависимости от расширения все файлы делятся на две большие группы: исполняемые и неисполняемые.
Исполняемые файлы – это такие файлы, которые могут выполняться самостоятельно, т. е. не требуют каких-либо специальных программ для их запуска. Имеют следующие расширения:
exe – готовый к исполнению файл (tetris.exe; winword.exe);
sys – файл операционной системы (Io.sys);
bat – командный файл операционной системы MS-DOS (autoexec.bat).
Неисполняемые файлы для запуска требуют установки специальных программ. Так, например, для того чтобы просмотреть текстовый документ, требуется наличие какого-либо текстового редактора. По расширению неисполняемого файла можно судить о типе данных, хранящихся в данном файле. Вот несколько примеров:
Минимальной единицей информации является бит или кратные ему единицы: килобит (1 кб = 1024 бита), мегабит (1Мб = 1024кбит), гигабит (1Гб = 1024Мбит). Но чаще пользуются единицей байт (1 байт = 8 бит), или же кратными ему единицами: килобайт (1 КБ = 1024 байта), мегабайт (1МБ = 1024кБ), гигабайт (1ГБ = 1024МБ). Для измерения больших объемов памяти используются терабайты и петабайты.
Компьютерную память можно классифицировать по типу доступа:
- последовательный доступ (магнитные ленты)
- произвольный доступ (оперативная память)
- прямой доступ (жесткие магнитные диски);
- ассоциативный;
по типу электропитания:
- буферная;
- временная;
- кэш-память;
- корректирующая;
- управляющая;
- коллективная.
по типу носителя и способу записи информации:
- акустическая;
- голографическая;
- емкостная;
- криогенная;
- лазерная;
- магнитная;
- магнитооптическая;
- молекулярная;
- полупроводниковая;
- ферритовая;
- фазоинверсная;
- электростатическая.
Оперативная память компьютера
Оперативная память современного компьютера разделена на несколько типов. Хотя в основе всех типов памяти лежит обычная ячейка памяти, представляющий собой комбинацию из транзистора и конденсатора, благодаря различным внешним интерфейсам и устройствам взаимодействия с компьютером модули памяти они все же отличаются друг от друга.
Это наиболее дешевый способ производства ячеек памяти. Состояние конденсатора определяет, содержит ячейка «0» или «1», но само наличие конденсатора является причиной некоторых ограничений динамической памяти.
Таким образом, каждый раз при считывании информации должна проводиться и его запись. В результате увеличивается время циклического доступа, и повышается латентность.
Массовое распространение получили следующие виды оперативной памяти DDR (уже не пользуется большим спросом), DDR2, DDR3, DDR4.
Внешний вид модулей памяти DDR, DDR2, DDR3
В каждом модуле оперативной памяти содержится также специальная микросхема SPD. В этой микросхеме хранятся данные о модуле памяти: дата изготовления модуля, основные характеристики модуля и тому подобное.
Кэш память
Персональные компьютеры также имеют скрытую память. Фактически, из-за разницы в скорости процессоров и схем основной памяти, большинство персональных компьютеров имеют два разных типа кэша, известных как «Уровень 1» (уровень 1 или L1) и «Уровень 2». Уровень 2 или L2 кэш).
L1 кэш-память
Кэш L1 содержит адреса памяти, которые соответствуют данным и машинным командам. Он часто делится на два раздела для этих двух типов адресов. Машинные команды, выполняемые внутри процессора, особенно полезно кэшировать, когда процессор имеет конвейерную архитектуру, которая обрабатывает несколько команд одновременно.
Кэш-память второго уровня
Кэш уровня 2 больше по размеру, чем L1, но не так быстр, и находится на материнской плате компьютера. Как мы уже говорили, его схемы в основном состоят из статической памяти. Кэш-память уровня 2 обычно имеет размер до 1 Мб, но его максимальный размер также зависит от материнской платы.
Память DDR
Память DDR2
Память этого стандарта использовалась в платформе Socket 775. По сути DDR2 память не имеет кардинальных отличий от DDR. Однако в то время как DDR осуществляет две передачи данных по шине за такт, DDR2 выполняет четыре таких передачи. При этом, построена DDR2 из таких же ячеек памяти, как и DDR, а для удвоения пропускной способности используется техника мультиплексирования.
Память DDR3
Передача данных по-прежнему осуществляется по обоим полупериодах синхросигнала на удвоенной «эффективной» частоте относительно собственной частоты шины памяти. Только рейтинги производительности выросли в 2 раза, по сравнению с DDR2. Типичными скоростными категориями памяти нового стандарта DDR3 являются разновидности от DDR3-800 до DDR3-1600 и выше. Очередное увеличение теоретической пропускной способности компонентов памяти в 2 раза вновь связано со снижением их внутренней частоты функционирования во столько же раз. Поэтому отныне, для достижения темпа передачи данных со скоростью 1 бит / такт по каждой линии внешней шины данных с «эффективной» частотой в 1600 МГц используемые 200-МГц микросхемы должны передавать по 8 бит данных за каждый свой такт. То есть,
Однако у данного типа памяти есть свои недостатки:
- наряду с ростом пропускной способности выросла также и латентность памяти;
- высокая цена модулей памяти.
Память DDR 4
На сегодня это основной тип памяти, который приобрел массовое применение. Первые тестовые образцы DDR4 были представлены в середине 2012 года фирмами Hynix, Micron и Samsung.
Благодаря 30 нм техпроцессу память DDR4 от Samsung имела объем 8 и 16ГБ и тактовую частоту 2133 МГц. 16 ГБ планки имеют два ряда чипов памяти, в отличие от привычного одного ряда. К тому же, они располагаются на печатной плате ближе друг к другу, что позволяет вместить ее два дополнительных чипа памяти с каждой стороны. Samsung обещает, что с переходом на передовой 20 нм техпроцесс, появится возможность создания модулей памяти объемом 32 ГБ. Модули памяти DDR4 от Samsung, работают с напряжением 1,2 В, в отличие от DDR3 планок, которые работают на 1,35 В. Это небольшая разница, позволяет экономить энергию на 40%.
Рекомендации по выбору модулей памяти:
При производстве модулей памяти, как правило, одна фирма выпускает микросхемы (чипы), а другая делает сами модули (монтаж и пайка). Производителей чипов в мире насчитывается не более 10. Крупные производители чипов: Samsung, Mиcron, LG, Hynиx, Toshиba, Nec, Texas Instruments проводят тщательное тестирование готовой продукции, но полный цикл тестирования проходят далеко не все чипы. Исходя из этого, продукцию этих компаний можно условно разделить на три категории: класса А, В и С.
Третья (чипы класса C), которые вообще не тестировались производителем на скорость и надежность. Понятно, что на рынке такая продукция имеет наименьшую стоимость, поскольку вся ответственность за тестирование ложится на производителей модулей. Именно такие микросхемы используют производители дешевой памяти класса noname, а стабильность работы этих изделий вызывает большие сомнения. Надежность готового модуля памяти определяется совокупностью многих факторов. В частности, это количество слоев печатной платы (PCB), качество электронных компонентов, грамотное разведение цепей, а также технология производственного процесса. Мелкие производители модулей для снижения цены готовых изделий экономят на мелких компонентах, зачастую просто не впаянных на модуль.
Память для хранения информации: жесткий диск, твердотельные накопители
За счет вращения создается своеобразный подпор воздуха, благодаря которому считывающие головки не касаются поверхности пластин, хотя и находятся очень близко к ним (всего несколько микрометров). Это гарантирует надежность записи / считывания данных. При остановке пластин, головки перемещаются за пределы их поверхности, поэтому механический контакт между головками и пластинами практически исключен. Такая конструкция обеспечивает долговечность запоминающих устройств этого типа.
Основные характеристики жестких дисков:
Параметры жестких дисков
Классический жесткий диск имеет форм-фактор 3,5 дюйма. В ноутбуках, нетбуках и других портативных устройствах чаще всего используются устройства 2,5 или 1,8 дюйма, хотя встречаются и другие варианты.
Объем буфера специальной внутренней быстрой памяти диска, предназначенная для временного хранения данных с целью сглаживания перебоев при считывании и записи информации на носитель и ее передачи по интерфейсу. В современных запоминающих устройствах буфер может достигать размеров до 64 МБ. Чем этот показатель больше, тем лучше.
В последнее время начался выпуск жестких дисков со встроенной флэш-памятью в качестве кэша, что значительно улучшает скоростные показатели дисков.
Фирмы производители: IBM , Hitachi , Seagate , Samsung , Western Digital .
Запись магнитной информации продольного (а) и перпендикулярного (б) типа
Накопители SSD
Существует всего 2 типа SSD накопителей: SSD диски на основе флэш-памяти (самые популярные и распространенные), и SSD на основе оперативной памяти.
Основополагающим принципом организации работы флеш-памяти является хранение ею 1 бита данных в массиве транзисторов с плавающим затвором (элементарными ячейками), путем изменения и регистрации электрического заряда в изолированной области полупроводниковой структуры. Главной особенностью полевого транзистора, которая позволила ему получить всеобщее признание, как носителя информации, стала способность удерживать электрический разряд на плавающем затворе до 120 месяцев. Сам плавающий затвор изготовлен из поликристаллического кремния и со всех сторон окружен слоем диэлектрика, что исключает возможность контакта его с элементами транзистора. Располагается он между диэлектрической подкладкой и управляющим затвором. Управляющий электрод полевого транзистора и называется затвором.
Запись и стирание информации происходит за счет изменения приложенного заряда между затвором и истоком большим потенциалом, пока напряженность электрического поля в диэлектрике между каналом транзистора и изолированной областью не станет достаточной для возникновения туннельного эффекта. Таким образом электроны переходят через слой диэлектрика на плавающий затвор, обеспечивая его зарядом, а, значит, и наполнение элементарной ячейки битом информации. Также, для усиления эффекта туннелирования электронов при записи, применяется слабое ускорение электронов путем пропускания тока через канал полевого транзистора.
Для удаления информации управляющий затвор обеспечивается отрицательным напряжением высокой мощности с тем, чтобы позволить электронам переходить с плавающего затвора на исток. Подобная организация элементарных ячеек, объединенных в страницы, блоки и массивы и составляет твердотельный накопитель.
Преимущества SSD накопителей:
Недостатки SSD накопителей:
RAID массивы
RAID имеет две цели:
- увеличение надежности хранения информации;
- увеличение скорости записи / считывания.
Наиболее популярными видами RAID является RAID 0, 1 и 0 + 1.
Схема записи информации в массиве RAID 1 (отражение)
RAID 3 и 4 используют массив дисков с чередованием и выделенным диском четности.
Схема массива RAID 5
RAID 6. Все различия сводятся к тому, что используются две схемы четности. Система устойчива к отказам двух дисков. Основной сложностью является то, что для реализации этого приходится делать больше операций при выполнении записи. Из-за этого скорость записи чрезвычайно низкой.
Комбинация RAID 0 + 1, которая является массивом RAID 1, собранным на базе массивов RAID 0. Как и в массиве RAID 1, доступным будет только половина объема дисков. Но, как и в RAID 0, скорость будет выше, чем с одним диском. Для реализации такого решения необходимо минимум 4 диска.
Схематическое изображение массива RAID 0 + 1 (а) и RAID1 + 0 (б)
RAID 0 + 1 имеет высокую скорость работы и повышенную надежность, поддерживается даже дешевыми RAID контроллерами и является недорогим решением.
Выводы
Ну хорошо. Получили мы какую-то информацию. И что дальше? Что нам с ней делать? Так вот, оказывается, что по своей природе человек старается каким-то образом сохранить значимую для него информацию, передать её своим близким и друзьям, при необходимости как-то её модифицировать или на основании информации из нескольких источников создать новую информацию.
Таким образом, мы получаем несколько основных информационных процессов: хранение, передача и обработка. Далее мы подробно рассмотрим каждый из них.
У нас с тобой информация хранится в головном мозге. До сих пор достоверно, во всех подробностях неизвестно, каким образом функционирует память человека. Совсем по-другому обстоят дела с памятью компьютера.
Информация, как мы с тобой уже говорили, бывает разная. В компьютере может находиться текстовая информация, информация в виде изображений, звука или видео. Для того чтобы такое стало возможным, нужно привести всё разнообразие информации к единой форме, «понятной» компьютеру, то есть закодировать.
Кодирование — это процесс перевода, преобразования информации в необходимую, наиболее подходящую форму для её хранения или передачи.
В памяти компьютера вся информация представлена в виде последовательностей \(0\) и \(1\). Это называется двоичным кодом.
Двоичный код — код, в котором используются только \(0\) и \(1\).
Рассмотрим в качестве примера кодирование цифр от \(0\) до \(9\) в двоичном коде или, как принято говорить, их представление в двоичной системе счисления. В «Большой политехнической энциклопедии» даётся такое определение.
Система счисления² — совокупность приёмов обозначения (записи) чисел и соответствующих правил, применяемых для представления и обработки чисел в ЭВМ.
Допустим, у нас есть \(8\) разрядов для представления цифр. Изобразить их можно в виде такой полоски.
В течение последних трех десятилетий объем компьютерной памяти увеличивался в геометрической прогрессии, и с каждым следующим поколением появляется новый уровень единиц памяти и новые условия для изучения. Давайте рассмотрим эти единицы измерения.
Структурные единицы
Биты и байты являются основными структурными единицами памяти. "Бит" обозначает двоичный символ. Бит — это единица или ноль, включение или выключение, так сохраняется вся информация в компьютере. Байт состоит из восьми бит. Исходный объем информации, необходимой для кодирования одного символа текста, был изначально равен восьми битам или одному байту. Позже, по мере развития компьютерного оборудования, это число было стандартизировано.
По техническим причинам емкость компьютерной памяти выражается в единицах кратных числу два. Затем к этим кратным единицам добавили приставки для образования кратных единиц, чтобы обеспечить простой способ выражения очень большого количества бит и байтов.
Приставки СИ
Для измерения компьютерной памяти используются некоторые приставки международной системы единиц (СИ) для образования производных единиц для байта. Однако эти приставки не являются метрическими, поскольку байт состоит из восьми бит, а килобайт равен 1024 байтам.
Приставка единицы измерения памяти
Кило- (килобайт, КБ)
Мега- (мегабайт, МБ)
Гига- (гигабайт, ГБ)
Тера- (терабайт, ТБ)
Пета- (петабайт, ПБ)
Единицы измерения памяти
Компьютеры используют память в оперативном запоминающем устройстве (ОЗУ), которое временно хранит информацию, и в накопителях, данные на которых хранятся постоянно. ОЗУ позволяет компьютеру переключаться между программами и иметь большие файлы наготове для просмотра.
В зависимости от того, для чего используется ваш компьютер, вам, как правило, понадобится установить максимально возможное количество памяти. Тип и объем памяти, установленной на вашем компьютере, а также максимальный объем и скорость, которые можно нарастить, зависят от производителя и модели компьютера. Воспользуйтесь инструментом Crucial® Advisor™ или системным сканером, чтобы найти память, совместимую с вашим компьютером. Подробнее о том, какой объем памяти необходим вашему компьютеру, читайте здесь.
Накопители: при описании емкости жестких дисков и твердотельных накопителей используются одни те же термины, относящиеся к памяти. По мере увеличения объема файлов с видеороликами и очень большими фотографиями необходимо увеличение объема хранилищ. В настоящее время в продаже имеются твердотельные накопители разного объема, исчисляемого гигабайтами и терабайтами. Как и в случае с ОЗУ, вы можете использовать инструмент Crucial® Advisor™ или системный сканер для поиска твердотельного накопителя, совместимого с вашей системой.
Читайте также: