Что такое трансдюсерная способность компьютерной техники
Электронно-вычислительные машины заняли место рядом с человеком с середины XX века, и со временем взаимодействие человека и компьютера только увеличивается. Наверно, не осталось сферы человеческой деятельности, где так или иначе не используются вычислительные устройства. И, если на заре развития электронно-вычислительной техники общаться с компьютерами могли только "посвященные", человек был вынужден использовать язык понятный машине, то в современной действительности вычислительные устройства становятся все более дружественными и для взаимодействия с компьютером серьезной подготовки человеку уже не требуется, разумеется, если это взаимодействие не предполагает решения сложных профессиональных задач.
Вполне объяснимо стремление разработчиков сделать взаимодействие с вычислительными устройствами как можно более естественным для человека. Развитие этого направления сдерживалось недостаточным технологическим уровнем. Однако в последнее время в деле гуманизации пользовательских интерфейсов наметились серьезные продвижения. Появление сенсорных экранов и функций множественного касания ( multitouch ) позволяет взаимодействовать с компьютером на интуитивном уровне, это подтверждается быстрым освоением подобных устройств детьми. Если следовать дальше, было бы логичным ожидать от компьютеров способности понимать словесные команды, реагировать на мимику и жесты людей, анализировать поведение человека и включенность его в окружающую действительность. И, оказывается, эти ожидания не напрасны, современное развитие технологий обработки речи, изображений и видео, выводит взаимодействие человека с компьютером на новый этап.
Появились идеи естественно-интуитивного взаимодействия человека с компьютером ( perceptual computing ), предполагающие способность вычислительных устройств понимать человека через физический контакт, словесные команды и жесты. Разработчикам программного обеспечения использование новых идей позволит создавать приложения, вносящие ощущение присутствия и погружения. Такого эффекта можно добиться реализацией возможностей отслеживания жестов рук и пальцев, анализа лица (мимики), распознавания голоса (речи), отслеживания перемещений 2D/3D объектов. Умение разрабатывать такие приложения в ближайшем будущем будет востребовано. Данный курс предлагает изучить инструмент Intel Perceptual Computing SDK и научиться с его помощью добавлять элементы естественно-интуитивного взаимодействия в свои приложения. В дополнение к бесплатному комплекту средств разработки Intel разработчикам понадобится интерактивная камера Interactive Gesture Camera производства компании Creative . Эта камера очень похожа на бесконтактный игровой контроллер Kinect от Microsoft, только меньше по размеру. Но главная разница между этими устройствами состоит в том, что интерактивная камера от Creative разработана для работы на более близких дистанциях и поэтому может распознавать движения пальцев. Корпорация Intel использовала возможности этой камеры в своем SDK , позволяющем разработчикам создавать следующее поколение естественного, современного ПО с элементами (эффектом) присутствия.
История развития человеко-компьютерного взаимодействия
Идеи цифровых вычислительных машин начали развиваться еще в XVIII-XIX веках, компьютерные технологии стали доступны в середине XX века. Первые электронно-вычислительные машины были ориентированы, в первую очередь , на выполнение трудоемких расчетов и на взаимодействие со специалистами. Например, для первой электронной машины ENIAC (1943 г.) ввод программы выполнялся с помощью переключателей и гибких кабелей со штекерами, вставляемыми в нужные разъемы.
Рис. 1.1. Взаимодействие человека и ЭВМ ENIAC (From IBM Archives)
В ЭВМ Mark I (1945 г.) уже использовались перфоленты с нанесенной на них программой, что несколько облегчило труд оператора. Перфоленты и перфокарты долго оставались носителями информации, которые использовались для хранения программ и ввода их в ЭВМ для исполнения.
Рис. 1.2. Устройство чтения перфолент ЭВМ Mark I (From Harvard University Cruft Photo Laboratory)
В 1960 году Дж.К.Р. Ликлайдер (J.R.Licklider) выдвинул идею "симбиоза человека и компьютера" – объединения человеческого интеллекта и вычислительной техники для управления информацией. Предложил промежуточные цели, достижение которых предполагает реализацию данной идеи.
- разделение времени компьютера между пользователями;
- электронный ввод/вывод символьной и графической информации;
- интерактивные системы реального времени для обработки информации и программирования;
- крупномасштабные системы хранения и поиска информации.
- координация объединения разработчиков для проектирования и программирования больших систем;
- способность ЭВМ распознавать речь оператора;
- способность ЭВМ распознавать рукописные тексты;
- возможность использования светового пера, в качестве устройства ввода координат и указки (световое перо – светочувствительное устройство, позволяющее выбрать точку экрана дисплея, указывая на нее).
- понимание ЭВМ естественного языка;
- способность ЭВМ распознавать речь произвольного пользователя;
- эвристическое программирование, т.е. "интеллектуализация" работы программы путем придания ей большей гибкости и эвристичности "мышления".
Развитие вычислительной техники, во многом, пошло по пути достижения целей, поставленных Ликлайдером, уже в середине 60-х годов появились вычислительные машины, поддерживающие большое количество пользователей, каждый из которых получал в свое распоряжение выделенный интерфейс к системе ( терминал ) и мог работать в интерактивном режиме.
В 1963 году Айвен Сазерленд (Ivan Sutherland) разработал SketchPad – графический комплекс, прообраз будущих САПР , оказавший огромное влияние на формирование базовых принципов графических пользовательских интерфейсов. Основные идеи: использование объектно-ориентированной модели, любой нарисованный элемент представлялся n-компонентной структурой, его можно было копировать, перемещать, поворачивать или масштабировать, сохраняя основные свойства. Впервые были реализованы алгоритм прорисовки окон и алгоритм обрезки.
Еще одно важное имя в истории развития вычислительной техники: Дуглас Энгельбарт (Douglas C. Engelbart). В середине 60-х годов командой Дугласа Энгельбарта разработана среда NLS (oN-LineSystem), включающая в себя принципиально новую операционную систему, универсальный язык программирования , электронную почту, разделенные экраны телеконференций, систему контекстной помощи. Представлен прототип т.н. WIMP-интерфейса, т. е. интерфейса, использующего понятия окон ( windows ), пиктограмм (icons), меню (menus) и указателей (pointers), являющихся ключевыми и для сегодняшних графических пользовательских программ и сред. Среда широкого распространения не получила, но как побочный эффект проекта NLS был изобретен первый манипулятор типа мышь , без которого сложно представить любое взаимодействие с компьютером в современной действительности. К оконной среде NLS существующие манипуляторы (джойстики, световые перья и прочие) категорически не подходили, в этой области было проведено целое исследование, итогом которого и стала мышка.
В конце 60-х годов XX века, технологический уровень позволил задумываться о создании персонального компьютера. В 1969 году американский математик Алан Кей защитил докторскую диссертацию, в которой разработал принципы создания персонального компьютера. С 1971 года Алан Кей занимался теоретической разработкой прототипа персонального компьютера, названного им Dynabook, в исследовательском центре фирмы Xerox в Пало-Альто (Palo Alto Research Center , PARC ). Этот компьютер , не превышающий размер блокнота, должен был обладать возможностями для обработки текстов и графической информации, а также служить средством связи с удаленными базами данных. Кроме того, этот компьютер должен был быть недорогим и доступным широкому кругу покупателей.
Концепция Dynabook описывала то, что сейчас известно как ноутбук, или планшетный ПК. Для Dynabook был спроектирован и смоделирован графический интерфейс Star GUI , одним из основных принципов управления новым компьютером должен был стать не ввод команд с клавиатуры, а выбор их с помощью "мыши" из предлагаемого меню . Графический интерфейс Star стал прототипом интерфейса Macintosh.
Несмотря на то, что графический интерфейс был описан еще в начале 70-х годов, а идеи появились еще раньше, в реальности взаимодействие пользователя с ЭВМ обеспечивалось за счет, так называемого, интерфейса командной строки ( CLI , Command Line Interface ). В процессе взаимодействия человек вводил команды, а компьютер реагировал соответствующим образом, разумеется, ни о каком дружественном интерфейсе речи не шло. Пользователь должен был точно знать, какая команда приведет к выполнению нужных ему действий и правильно ввести ее в командную строку.
К концу 70-х годов не только стало понятно, что при создании персональных компьютеров необходимо учитывать удобство пользователей, но и накопились технологии, позволяющие реализовать, так называемое, эргономическое проектирование вычислительной техники. Стали появляться персональные компьютеры с графическим интерфейсом, спроектированные с учетом удобства пользователя. В связи с этим назрела необходимость изучения человеко-компьютерного взаимодействия в университетах при подготовке специалистов в области компьютерных наук.
Человеко-компьютерное взаимодействие ( HCI , Human- Computer Interaction ) – это дисциплина, имеющая дело с проектированием, оцениванием и реализацией интерактивных вычислительных систем для использования человеком, а также с изучением основных явлений, связанных с этими вопросами.
Такое определение было сформулировано в отчете группы, ответственной за разработку рекомендаций к образовательной программе в области человеко-компьютерного взаимодействия (август, 1988). Группа была сформирована из членов ассоциации по вычислительной технике ( ACM , Association for Computing Machinery ). ACM и IEEE Computer Society, крупнейшие научно-профессиональные сообщества специалистов по вычислительной технике, играют ключевую роль в разработке образовательных программ в области компьютерных наук. После этого отчета модуль HCI (человеко-компьютерное взаимодействие) включается как обязательная часть в курс компьютерные науки.
В практике информационными технологиями обучения называют все технологии, использующие специальные технические информационные средства (ЭВМ, аудио, кино, видео).
Когда компьютеры стали широко использоваться в образовании, появился термин «новая информационная технология обучения». Вообще говоря, любая педагогическая технология – это информационная технология, так как основу технологического процесса обучения составляет информация и ее движение (преобразование). На наш взгляд, более удачным термином для технологий обучения, использующих компьютер, является компьютерная технология.
Компьютерные технологии развивают идеи программированного обучения, открывают совершенно новые, ещё исследованные технологические варианты обучения, связанные с уникальными возможностями современных компьютеров и телекоммуникаций. Компьютерные (новые информационные) технологии обучения – это процессы подготовки и передачи информации обучаемому, средством осуществления которых является компьютер.
Компьютерная технология может осуществляться в следующих трех вариантах:
1 – как «проникающая» технология (применение компьютерного обучения по отдельным темам, разделам для отдельных дидактических задач).
П – как основная , определяющая, наиболее значимая из используемых в данной технологии частей.
Ш – как монотехнология (когда все обучение, все управление учебным процессом, включая все виды диагностики, мониторинг, опираются на применение компьютера).
Классификационные параметры технологии:
По уровню применения: общепедагогическая.
По концепции усвоения: ассоциативно-рефлекторная
По ориентации на личностные структуры: информационная + операционная (ЗУН + СУД).
По характеру содержания: проникающая, пригодная для любого содержания.
По типу управления познавательной деятельности: компьютерная.
По организационным формам: индивидуальная + система малых групп.
По подходу к ребенку: сотрудничество.
По преобладающему методу: информационная + операционная (ЗУН + СУД), диалогическая + программированное обучение.
По направлению модернизации: эффективность организации и управления.
По категории обучаемых: все категории.
Акцент целей.
. Формирование умений работать с информацией, развитие коммуникативных способностей.
. Подготовка личности «информационного общества».
. Дать ребенку так много учебного материала. Как только может усвоить.
. формирование исследовательских умений, умений принимать оптимальные решения.
Концептуальные положения.
. Обучение – это общение ребенка с компьютером.
. Принцип адаптированности: приспособление компьютера к индивидуальным особенностям ребенка.
. Диалоговый характер обучения.
. Управляемость: в любой момент возможна коррекция учителем процесса обучения.
. Взаимодействие ребенка с компьютером может осуществляться по всем типам: субъект – объект, субъект – субъект, объект – субъект.
. Оптимальное сочетание индивидуальной и групповой работы.
. Поддержание у ученика состояния психологического комфорта при общении с компьютером.
. Неограниченное обучение: содержание, его интерпретация и приложения как угодно велики.
Особенности содержания:
Компьютерная технология основывается на использовании некоторой формализованной модели содержания, которое представлено педагогическими программными средствами, записанными в память компьютера, и возможностями телекоммуникационной сети.
Главной особенностью фактологической стороны содержания образования является многократное увеличение «поддерживающей информации», наличие компьютерной информационной среды, включающей на современной уровне базы информации, гипертекст и мультимедиа (гипермедиа), электронные коммуникации (сети).
Базы данных. Под базами данных понимаются технологии ввода, систематизации, хранения и предоставления информации с использованием компьютерной техники. Базы данных могут включать в состав информационного массива различную статистическую, текстовую, графическую и иллюстрированную информацию в неограниченном объеме с обязательной ее формализацией (представлением, вводом и выводом в компьютер определенной, характерной для данной системы форме – формате). Для целого ряда традиционно перерабатываемой информации существуют стандартные форматы ее представления, например: библиография, статистические данные, рефераты, обзоры и другие. Систематизация и поиск информации в базе данных осуществляются тремя основными способами.
Иерархическая база данных в качестве классификационной основы использует каталоги и рубрикаторы, т.е. информационно-поисковые языки иерархического типа.
В реляционной базе данных каждой единице информации присваиваются определенные атрибуты (автор, ключевые слова, регион, класс информации, дескриптор тезауруса и т.п.) и ее поиск производится по какому-либо из них или по любой их комбинации.
Статистические базы данных оперируют с числовой информацией, организованной с помощью двухмерной (реже – трехмерной) матрицы, так, что искомая информация находится в системе путем задания ее координат. Статистические базы данных более известны под названием электронные таблицы.
Базы данных используются в обучении для оперативного предоставления учителю и учащимся необходимой, не вошедшей в учебники и пособия информации, как непосредственно в дидактическом процессе, так и в режиме свободного выбора информации самим пользователем (сервисный режим).
Базы знаний. Базы знаний представляют собой информационные системы, содержащие замкнутый, не подлежащий дополнению объем информации по данной теме, структурированной таким образом, что каждый ее элемент содержит ссылки на другие логически связанные с ним элементы из их общего набора. Ссылки на элементы, не содержащиеся в данной базе знаний, не допускаются. Такая организация информации в базе знаний позволяет учащемуся изучать ее в той логике, которая ему наиболее предпочтительна в данный момент, т.к. он может по своему желанию легко переструктурировать информацию при знакомстве с ней. Привычным библиографическим аналогом базы знаний являются энциклопедии и словари, где в статьях содержаться ссылки на другие статьи этого же издания. Программные продукты, реализующие базы знаний, относятся к классу HIPERMEDIA (сверхсреда), поскольку они позволяют не только осуществлять свободный выбор пользователем логики ознакомления с информацией, но и дают возможность сочетать тексто-графичекую информацию со звуком, видео- и кинофрагментами, мультипликацией. Компьютерная техника, способная работать в таком режиме, объединяется интегральным термином MULTIMEDIA (многовариантная среда).
Аппаратные средства multimedia , наряду с базами знаний позволили создать и использовать в учебном процессе компьютерные имитации, микромиры и на их базе дидактические и развивающие игры, вызывающие особый интерес у детей.
Компьютерное тестирование уровня обученности школьника и диагностирование параметров его психофизического развития дополняется использованием экспертных систем – подсистем, осуществляющих сетевые оценочные процедуры и выдающих результаты с определенной степенью точности.
Эти программные средства применяются в зависимости от учебных ситуаций: в одних случаях необходимо глубже понять потребности учащегося; в других – важен анализ знаний в предметной области; в третьих – основную роль может играть учет психологических принципов обучения.
Богатейшие возможности представления информации на компьютере позволяют изменять и неограниченно обогащать содержание образования, включая в него интегрированные курсы, знакомство с историей и методологией науки, с творческими лабораториями великих людей, с мировым уровнем науки, техники, культуры и общественного сознания.
Особенности методики:
Компьютерные средства обучения называют интерактивными, они обладают способностью «откликаться» на действия ученика и учителя, «вступать» с ним в диалог, что и составляет главную особенность методик компьютерного обучения.
В 1 и П вариантах компьютерных технологий весьма актуален вопрос о соотношении компьютера и элементов других технологий.
Компьютер может использоваться на всех этапах процесса обучения: при объяснении (введении) нового материала, закреплении, повторении, контроле ЗУН. При этом для ребенка он выполняет различные функции: учителя, рабочего инструмента, объекта обучения, сотрудничающего коллектива, досуговой (игровой) среды.
В функции учителя компьютер представляет:
- источник учебной информации (частично или полностью заменяющий учителя и книгу);
- наглядное пособие (качественно нового уровня с возможностями мультимедиа и телекоммуникации);
- индивидуальное информационное пространство;
- средство диагностики и контроля.
В функции рабочего инструмента компьютер выступает как:
- средство подготовки текстов, их хранения;
-графопостроитель, графический редактор;
- вычислительная машина больших возможностей (с оформлением результатов в различном виде);
Функцию объекта обучения компьютер выполняет при:
- программировании, обучении компьютера заданным процессам;
- создании программных продуктов;
- применении различных информационных сред.
Сотрудничающий коллектив воссоздается компьютером как следствие коммуникации с широкой аудиторией (компьютерные сети), телекоммуникации в Internet .
Досуговая среда организуется с помощью:
- компьютерных игр по сети;
Работа учителя в компьютерной технологии включает следующие функции:
- Организация учебного процесса на уровне класса в целом, предмета в целом (график учебного процесса, внешняя диагностики. Итоговый контроль).
. Организация внутриклассной активизации и координации, расстановка рабочих мест, инструктаж, управление внутриклассной сетью и т.п.).
- индивидуальное наблюдение за учащимися, оказание индивидуальной помощи, индивидуальный «человеческий» контакт с ребенком. ЧС помощь. Компьютера достигаются варианты индивидуального обучения, использующие визуальные и слуховые образы.
Подготовка компонентов информационной среды (различные виды учебного, демонстративного оборудования, сопрягаемого с ПЭВМ, программные средства и системы, учебно-наглядные пособия и т.д.), связь их с предметным содержанием определенного учебного курса.
Информация обучения требует от учителей и учащихся компьютерной грамотности, которую можно рассматривать как особую часть содержания компьютерной технологии. В структуру содержания компьютерной технологии (компьютерной грамотности) входят:
- знание основных понятий информатики и вычислительной техники;
- знание принципиального устройства и функциональных возможностей компьютерной техники;
- знание современных операционных систем и владение их основными командами;
- знание современных программных оболочек и операционных средств общего назначении ( Norton Commander , Windows , их расширения) и владение их функциями;
- владение хотя бы одним текстовым редактором;
- первоначальные представления об алгоритмах, языках и пакетах программирования;
- первоначальный опыт использования прикладных программ утилитарного назначения.
Совершенно уникальные возможности для диалога ребенка с наукой и культурой представляет Всемирная компьютерная сеть – Internet :
- переписка-разговор со сверстниками из всех частей мира;
- привлечение научной и культурной информации из всех банков, музеев, хранилищ мира;
- интерактивное общение, слежение за событиями через международные серверы.
Комбинация компьютерных обучающих программ с телекоммуникационной сетью является разновидностью дистанционного обучения (обучение на расстоянии).
Литература:
1. Апатова Н.В. Информационные технологии в школьном образовании. – М., 1998
2. Беспалько В.П. Программированное обучение. Дидактическое основы. -
3. Беспалько В.П. Элементы теории управления процессом обучения. -
4. Вильяме Р. и др. Компьютеры в школе, - М., 1998
5. Роберт И.В. Современные информационные технологии в образовании: дидактические проблемы, перспективы использования. –М.: Школа-Пресс,1994
6. Селевко Г.К. Современные образовательные технологии. М., Народное образование, 1998г.
3. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К СОВРЕМЕННЫМ ВЫЧИСЛИТЕЛЬНЫМ СЕТЯМ
Основные требования, предъявляемые к вычислительным сетям — производительность, надежность, совместимость, управляемость, защищенность, расширяемость и масштабируемость . Наиболее важными из которых являются — производительность и надежность.
Независимо от выбранного показателя качества обслуживания сети существуют два подхода к его обеспечению. Первый подход состоит в том, что сеть гарантирует пользователю соблюдение некоторой числовой величины показателя качества обслуживания. Например, задержка передачи пакетов сетью не будет превышать 150 мс. Или средняя пропускная способность канала не будет ниже 5 Мбит/ с , при этом канал будет разрешать пульсации трафика в 10 Мбит на интервалах времени не более 2 секунд. Технологии frame relay и ATM позволяют строить сети, гарантирующие качество обслуживания по производительности.
Второй подход состоит в том, что сеть обслуживает пользователей в соответствии с их приоритетами: гарантируется не качество обслуживания, а только уровень привилегий. Такое обслуживание называется обслуживанием best effort — «с наибольшим старанием». Сеть старается по возможности более качественно обслужить конечного пользователя, но ничего при этом не гарантирует.
Производительность . Существует несколько основных характеристик производительности сети:
- время реакции;
- пропускная способность;
- задержка передачи и вариация задержки передачи.
Время реакции сети является интегральной характеристикой производительности сети и определяется как интервал времени между возникновением запроса к какой-либо сетевой службе и получением на него ответа.
Пропускная способность отражает объем данных, переданных сетью или ее частью в единицу времени. Она измеряется либо в битах в секунду, либо в пакетах в секунду. Пропускная способность может быть мгновенной, максимальной и средней.
Средняя пропускная способность вычисляется путем деления общего объема переданных данных на время их передачи, причем выбирается достаточно длительный промежуток времени — час, день или неделя.
Мгновенная пропускная способность отличается от средней тем, что для усреднения выбирается очень маленький промежуток времени — например, 10 мс, или 1 с .
Максимальная пропускная способность — это наибольшая мгновенная пропускная способность, зафиксированная в течение периода наблюдения.
Иногда полезно оперировать с общей пропускной способностью сети, которая определяется как среднее количество информации, переданной между всеми узлами сети в единицу времени. Этот показатель характеризует качество сети в целом, не дифференцируя его по отдельным сегментам или устройствам.
Задержка передачи определяется как задержка между моментом поступления пакета на вход какого-либо сетевого устройства или части сети и моментом появления его на выходе этого устройства. Обычно качество сети характеризуют величинами максимальной задержки передачи и вариацией задержки.
Одной из первоначальных целей создания распределенных систем, к которым относятся и вычислительные сети, являлось достижение большей надежности по сравнению с отдельными вычислительными машинами.
Готовность или коэффициент готовности ( availability ) означает долю времени, в течение которого система может быть использована. Готовность может быть улучшена введением избыточности в структуру системы: ключевые элементы системы должны существовать в нескольких экземплярах, чтобы при отказе одного из них функционирование системы обеспечивали другие.
Чтобы систему можно было отнести к высоконадежным, она должна обеспечить сохранность данных и защиту их от искажений. Кроме этого, должна поддерживаться согласованность (непротиворечивость) данных, например, если для повышения надежности на нескольких файловых серверах хранится несколько копий данных, то нужно постоянно обеспечивать их идентичность.
Другой характеристикой надежности является вероятность доставки i пакета узлу назначения без искажений. Наряду с этой характеристикой могут использоваться и другие показатели: вероятность потери пакета, вероятность искажения отдельного бита передаваемых данных, отношение потерянных пакетов к доставленным .
Другим аспектом общей надежности является безопасность ( security ), то есть способность системы защитить данные от несанкционированного доступа.
Также характеристикой надежности является отказоустойчивость ( fault tolerance ). В сетях под отказоустойчивостью понимается способность системы скрыть от пользователя отказ отдельных ее элементов. В отказоустойчивой системе отказ одного из ее элементов приводит к некоторому снижению качества ее работы (деградации), а не к полному останову.
Расширяемость ( extensibility ) означает возможность сравнительно легкого добавления отдельных элементов сети (пользователей, компьютеров, приложений, служб), наращивания длины сегментов сети и замены существующей аппаратуры более мощной.
Масштабируемость ( scalability ) означает, что сеть позволяет наращивать количество узлов и протяженность связей в очень широких пределах, при этом производительность сети не ухудшается. Для обеспечения масштабируемости сети приходится применять дополнительное коммуникационное оборудование и специальным образом структурировать сеть.
Например, локальная сеть Ethernet , построенная на основе одного сегмента толстого коаксиального кабеля, обладает хорошей расширяемостью, поскольку позволяет легко подключать новые станции. Однако такая сеть имеет ограничение на число станций (не выше 30-40). Наличие такого ограничения и является признаком плохой масштабируемости системы при хорошей расширяемости.
Прозрачность ( transparency ) сети достигается в том случае, когда сеть представляется пользователям не как множество отдельных компьютеров, связанных между собой сложной системой кабелей, а как единая традиционная вычислительная машина с системой разделения времени.
Поддержка разных видов трафика . Компьютерные сети изначально предназначены для совместного доступа пользователя к ресурсам компьютеров: файлам, принтерам и т. п. 90-е годы стали годами проникновения в компьютерные сети трафика мультимедийных данных, представляющих в цифровой форме речь и видеоизображение.
Особую сложность представляет совмещение в одной сети традиционного компьютерного и мультимедийного трафика. Передача исключительно мультимедийного трафика компьютерной сетью вызывает меньшие трудности. Наиболее близки к этой цели сети на основе технологии ATM, разработчики которой изначально учитывали случай сосуществования разных типов трафика в одной сети.
Управляемость сети подразумевает возможность централизованно контролировать состояние основных элементов сети, выявлять и разрешать проблемы, возникающие при работе сети, выполнять анализ производительности и планировать развитие сети.
Совместимость или интегрируемость означает, что сеть способна включать в себя самое разнообразное программное и аппаратное обеспечение, то есть в ней могут сосуществовать различные операционные системы, поддерживающие разные стеки коммуникационных протоколов, и работать аппаратные средства и приложения от разных производителей. Сеть, состоящая из разнотипных элементов, называется неоднородной или гетерогенной , а если гетерогенная сеть работает без проблем, то она является интегрированной. Основной путь построения интегрированных сетей — использование модулей, выполненных в соответствии с открытыми стандартами и спецификациями.
Развитие вычислений базируется на инновациях в области материалов, сборки и конструирования, которые используются для обработки, хранения и взаимодействия с информацией. Вычисления распадаются на несколько областей, таких как централизованные облачные вычисления, квантовые вычисления, обработка данных в нейронных сетях, хранение биологических данных, оптические вычисления и вычисления в сетях. Эти средства требуют разрабатывать новое ПО и новые формы криптографии. Они позволяют ставить и решать задачи в области кибербезопасности, предоставляя поддержку обработке естественного языка и обещая в перспективе огромное повышение эффективности в таких областях, как применение в медицине и моделировании физических и химических процессов. Новые вычислительные технологии, возможно, помогут решить часть самых сложных проблем, которые стоят перед нами. Но без бдительного управления, гарантирующего равный доступ к достижениям и контроль за безопасностью новых технологий, последние могут создавать значительные риски.
Продление демократизирующего влияния закона Мура
Закон Мура носит имя сооснователя компании Intel Гордона Мура (Gordon Moore) и основан на том наблюдении, что с середины 1960-х годов плотность транзисторов на интегральной схеме удваивается с периодом 1,5-2 года. Это означает, что размер компьютеров уменьшается, а быстродействие повышается с экспоненциальной скоростью, при этом стоимость ежегодно снижается примерно на 30%. Если бы не закон Мура, мы были бы лишены потребительских мобильных вычислений, в которых используются очень маленькие процессоры и средства хранения данных. Также мы бы не знали мобильной телефонии. Как показывают результаты исследований центра Pew Research Center, именно благодаря влиянию мобильной телефонии 43% людей в мире обладает смартфоном того или иного типа. Кроме того, исследователям, предпринимателям в области технологий и корпорациям была бы недоступна невиданная скорость современных быстрых компьютеров.
Чтобы продолжить экспоненциальный рост вычислительных мощностей, потребуется другой подход к совершенствованию систем, отличный от простого уменьшения размера транзисторов. В 2016 году в Институте инженеров электротехники и электроники признали необходимость нового подхода: многие годы IEEE направлял инвестиции в разработку кристаллов, публикуя отчеты о сокращении размера транзисторов, но в будущем в IEEE переориентируются на разработку «Международного плана по развитию устройств и систем» (International Roadmap for Devices and Systems), который призван «сформулировать новый «закон Мура» для производительности компьютеров и ускорить появление на рынке новых, инновационных технологий вычислений». Новые пути повышения производительности и эффективности предполагается искать в создании новейших материалов, новых архитектур и системного подхода к вычислениям. Это означает, что повсеместные и недорогие вычисления станут доступными все большему числу людей и организаций.
Квантовые вычисления: революционная теория и сложности реализации
Если нам удастся построить стабильный и мощный квантовый компьютер, то у этой технологии появится шанс стать самой новаторской среди технологий Четвертой промышленной революции. Но это случится не сразу. Квантовые компьютеры меняют сам принцип вычислений, используя причудливые законы квантовой механики. Вместо применения транзисторов, в основе которых лежат бинарные значения, представляющие нули и единицы (биты) и используемые классическими компьютерами для хранения информации и выполнения различных операций, в квантовых компьютерах применяются квантовые биты, или кубиты. В отличие от обычных битов, которые способны принимать только значения «1» или «0», значение кубита представляет собой суперпозицию возможных состояний и заранее может быть известна только вероятность, с которой можно получить то или иное значение при его измерении. Это позволяет кубитам в каждый момент времени представлять несколько состояний.
Большое влияние все более компактных и быстрых компьютеров
В 1991 году Марк Уэйзер (Mark Weiser) написал:
Но эти возможности сопряжены с вызовами и рисками. Расширение возможностей двустороннего потока информации между нами и окружающей средой требует постоянного расширения пропускной способности канала обмена, а также совершенствования технологий сжатия. Громадные объемы данных, создаваемых в цифровом мире, требуют новых подходов, которые позволили бы создать плотное и долгосрочное хранилище. Одно из решений заключается в использовании ДНК для хранения информации. В 2012 году ученый Джордж Черч (George Church) из Гарвардского университета продемонстрировал возможность хранения данных в ДНК с плотностью, в 100 тыс. раз превышающей возможности лучшей флеш-памяти. Данные оставались стабильными в широком диапазоне температур. Черч утверждает:
Негативные последствия для окружающей среды будут усугубляться по мере распространения вычислительных технологий. В развитых странах центры обработки данных уже потребляют около 2% всей вырабатываемой электроэнергии. В Соединенных Штатах это 70 млрд киловатт-часов, что больше годового потребления электроэнергии такой страны, как Австрия. Если мы хотим быть ответственными хозяевами своей планеты, то при продвижении разработанных исследователями и компаниями новых материалов, предназначенных для следующей волны инноваций в области вычислений, мы должны применять такие механизмы продвижения на рынке, которые повысят возобновляемость и энергоэффективность вычислительных методов и оборудования. При разработке новых типов процессоров главная задача должна заключаться в обеспечении возобновляемости ресурсов.
Наконец, как говорилось в предисловии, наблюдается кризис доверия к институтам и технологиям. По мере того как компьютеры становятся неотъемлемой частью повседневной жизни все большего числа людей в мире, безопасность и защита личной информации становятся жизненно важными для восстановления доверия между гражданами, государством и корпорациями.
Читайте также: