Что такое сокет в сети
Что дальше? Как насчет этого: бывают разные виды сокетов. Есть DARPA инернет-адреса (Сокеты интернет), CCITT X.25 адреса (X.25 сокеты, которые вам не нужны), и, вероятно, многие другие в зависимости от особенностей вашей ОС. Этот документ описывает только первые, Интернет-Сокеты.
Два типа интернет-сокетов
Что? Есть два типа интернет сокетов? Да. Ну ладно, нет, я вру. Есть больше, но я не хочу вас пугать. Есть ещё raw-сокеты, очень мощная штука, вам стоит взглянуть на них.
Круто. А что насчёт дейтаграммных сокетов? Почему они называются без-соединительными? В чем тут дело? Почему они ненадежны?
Ну, вот некоторые факты: если вы посылаете дейтаграмму, она может дойти. А может и не дойти. Но если уж приходит, то данные внутри пакета будут без ошибок.
Почему UDP не устанавливает соединения? Потому что вам не нужно держать открытое соединение с потоковыми сокетами. Вы просто строите пакет, формируете IP-заголовок с информацией о получателе, и посылаете пакет наружу. Устанавливать соединение нет необходимости. UDP как правило используется либо там, где стек TCP недоступен, либо там, где один-другой пропущеный пакет не приводит к концу света. Примеры приложений: TFTP (trivial file transfer protocol, младшый брат FTP), dhcpcd (DHCP клиент), сетевые игры, потоковое аудио, видео конференции и т.д.
Теория сетей и низкие уровни
Поскольку я только что упоминал слои протоколов, пришло время поговорить о том, как на самом деле работает сеть, и показать примеры того, как построены пакеты SOCK_DGRAM. На самом деле вы можете пропустить этот раздел, но он является неплохим теоретическим подспорьем.
Когда другой компьютер получает пакет, оборудование (сетевая карта) исключает Ethernet-заголовок (разворачивает пакет), ядро ОС исключает заголовки IP и UDP, программа TFTP исключает заголовок TFTP, и наконец мы получаем голые данные.
Собственно, вот все уровни полномасштабной модели:
- Прикладной
- Представительский
- Сеансовый
- Транспортный
- Сетевой
- Канальный
- Аппаратный (физический)
Для нас эта модель слишком общая и обширная. Сетевая модель, которую можем использовать мы, может выглядеть так:
- Уровень приложений (Telnet, FTP и т.д.)
- Транспортный протокол хост-хост (TCP, UDP)
- Интернет-уровень (IP и маршрутизация)
- Уровень доступа к сети (Ethernet, Wi-Fi или что угодно)
Теперь вы можете четко видеть, как эти слои соответствуют инкапсуляции исходных данных.
На этом наш краткий экскурс в теорию сетей завершен. Ах да, я забыл вам сказать: всё, что я хотел вам сказать о маршрутизации: ничего! Да-да, я ничего не буду говорить об этом. О таблице маршрутизации за вас позаботятся ОС и IP-протокол. Если вам действительно интересно, почитайте документацию в интернете, её море.
Сокеты (англ. socket — разъём) — название программного интерфейса для обеспечения обмена данными между процессами. Процессы при таком обмене могут исполняться как на одной ЭВМ, так и на различных ЭВМ, связанных между собой сетью. Сокет — абстрактный объект, представляющий конечную точку соединения.
Принципы сокетов¶
Каждый процесс может создать слушающий сокет (серверный сокет) и привязать его к какому-нибудь порту операционной системы (в UNIX непривилегированные процессы не могут использовать порты меньше 1024). Слушающий процесс обычно находится в цикле ожидания, то есть просыпается при появлении нового соединения. При этом сохраняется возможность проверить наличие соединений на данный момент, установить тайм-аут для операции и т.д.
Каждый сокет имеет свой адрес. ОС семейства UNIX могут поддерживать много типов адресов, но обязательными являются INET-адрес и UNIX-адрес. Если привязать сокет к UNIX-адресу, то будет создан специальный файл (файл сокета) по заданному пути, через который смогут сообщаться любые локальные процессы путём чтения/записи из него (см. Доменный сокет Unix). Сокеты типа INET доступны из сети и требуют выделения номера порта.
Обычно клиент явно подсоединяется к слушателю, после чего любое чтение или запись через его файловый дескриптор будут передавать данные между ним и сервером.
Основные функции¶
socket()¶
Создаёт конечную точку соединения и возвращает файловый дескриптор. Принимает три аргумента:
domain указывающий семейство протоколов создаваемого сокета
- AF_INET для сетевого протокола IPv4
- AF_INET6 для IPv6
- AF_UNIX для локальных сокетов (используя файл)
type
- SOCK_STREAM (надёжная потокоориентированная служба (сервис) или потоковый сокет)
- SOCK_DGRAM (служба датаграмм или датаграммный сокет)
- SOCK_RAW (Сырой сокет — сырой протокол поверх сетевого уровня).
protocol
Протоколы обозначаются символьными константами с префиксом IPPROTO_* (например, IPPROTO_TCP или IPPROTO_UDP). Допускается значение protocol=0 (протокол не указан), в этом случае используется значение по умолчанию для данного вида соединений.
Функция возвращает −1 в случае ошибки. Иначе, она возвращает целое число, представляющее присвоенный дескриптор.
Пример на Python
Связывает сокет с конкретным адресом. Когда сокет создается при помощи socket(), он ассоциируется с некоторым семейством адресов, но не с конкретным адресом. До того как сокет сможет принять входящие соединения, он должен быть связан с адресом. bind() принимает три аргумента:
- sockfd — дескриптор, представляющий сокет при привязке
- serv_addr — указатель на структуру sockaddr, представляющую адрес, к которому привязываем.
- addrlen — поле socklen_t, представляющее длину структуры sockaddr.
Возвращает 0 при успехе и −1 при возникновении ошибки.
Пример на Python
Автоматическое получение имени хоста.
listen()¶
Подготавливает привязываемый сокет к принятию входящих соединений. Данная функция применима только к типам сокетов SOCK_STREAM и SOCK_SEQPACKET. Принимает два аргумента:
- sockfd — корректный дескриптор сокета.
- backlog — целое число, означающее число установленных соединений, которые могут быть обработаны в любой момент времени. Операционная система обычно ставит его равным максимальному значению.
После принятия соединения оно выводится из очереди. В случае успеха возвращается 0, в случае возникновения ошибки возвращается −1.
Пример на Python
accept()¶
Используется для принятия запроса на установление соединения от удаленного хоста. Принимает следующие аргументы:
- sockfd — дескриптор слушающего сокета на принятие соединения.
- cliaddr — указатель на структуру sockaddr, для принятия информации об адресе клиента.
- addrlen — указатель на socklen_t, определяющее размер структуры, содержащей клиентский адрес и переданной в accept(). Когда accept() возвращает некоторое значение, socklen_t указывает сколько байт структуры cliaddr использовано в данный момент.
Функция возвращает дескриптор сокета, связанный с принятым соединением, или −1 в случае возникновения ошибки.
Пример на Python
connect()¶
Устанавливает соединение с сервером.
Некоторые типы сокетов работают без установления соединения, это в основном касается UDP-сокетов. Для них соединение приобретает особое значение: цель по умолчанию для посылки и получения данных присваивается переданному адресу, позволяя использовать такие функции как send() и recv() на сокетах без установления соединения.
Загруженный сервер может отвергнуть попытку соединения, поэтому в некоторых видах программ необходимо предусмотреть повторные попытки соединения.
Возвращает целое число, представляющее код ошибки: 0 означает успешное выполнение, а −1 свидетельствует об ошибке.
Пример на Python
Передача данных¶
Для передачи данных можно пользоваться стандартными функциями чтения/записи файлов read и write, но есть специальные функции для передачи данных через сокеты:
Веб-сокеты и Socket.IO, вероятно, являются двумя наиболее распространенными средствами коммуникации в режиме реального времени (далее — живое общение). Но чем они отличаются?
При построении приложения для живого общения наступает момент, когда необходимо выбрать средство для обмена данными между клиентом и сервером. Веб-сокеты и Socket.IO являются самыми популярными средствами живого общения в современном вебе. Какое из них выбрать? В чем разница между этими технологиями? Давайте выясним.
Веб-сокеты
Говоря о веб-сокетах, мы имеем ввиду протокол веб-коммуникации, представляющий полнодуплексный канал коммуникации поверх простого TCP-соединения. Проще говоря, эта технология позволяет установить связь между клиентом и сервером с минимальными затратами, позволяя создавать приложения, использующие все преимущества живого общения.
Например, представьте, что вы создаете чат: вам необходимо получать и отправлять данные как можно быстрее, верно? С этим прекрасно справляются веб-сокеты! Вы можете открыть TCP-соединение и держать его открытым сколько потребуется.
Веб-сокеты появились в 2010 году в Google Chrome 4, первый RFC (6455) опубликован в 2011.
Веб-сокеты используются в следующих случаях:
- Чаты
- Многопользовательские игры
- Совместное редактирование
- Социальные (новостные) ленты
- Приложения, работающие на основе местоположения
Socket.IO
Socket.IO — библиотека JavaScript, основанная (написанная поверх) на веб-сокетах… и других технологиях. Она использует веб-сокеты, когда они доступны, или такие технологии, как Flash Socket, AJAX Long Polling, AJAX Multipart Stream, когда веб-сокеты недоступны. Легкой аналогией может служить сравнение Fetch API и Axios.
Разница между веб-сокетами и Socket.IO
Главными преимуществами Socket.IO является следующее:
Во-первых, веб-сокеты поддерживаются всеми современными браузерами. Поэтому вы редко нуждаетесь в поддержке других технологий, предоставляемой Socket.IO.
Если говорить о сетевом трафике, то веб-сокеты отправляют всего два запроса:
- GET для получения HTML страницы
- UPGRADE для соединения с веб-сокетами
- GET для получения HTML страницы
- Клиентская библиотека Socket.IO (207кб)
- Три long polling (длинные опросы) Ajax-запроса
- UPGRADE для соединения с веб-сокетами
В npm существует пакет «websocket-vs-socket.io», который позволяет сравнить сетевой трафик этих технологий:
Сетевой трафик веб-сокетов:
Сетевой трафик Socket.IO:
Пишем код
Простой сервер на веб-сокетах
Простой сервер на Socket.IO
Это было не сложно. Может ли Socket.IO сделать это еще проще? Как нам написать такой же сервер на Socket.IO?
Код получился почти наполовину короче! Как видите, метод «broadcast» не отправляет уведомление отправителю, поэтому мы вынуждены делать это вручную.
Существует проблема: код нельзя протестировать на обычном клиенте веб-сокетов. Это связано с тем, что, как отмечалось ранее, Socket.IO использует не чистые веб-сокеты, а множество технологий для поддержки всех возможных клиентов. Так как же нам проверить его работоспособность?
Необходимо использовать специальный клиент. В приведенном примере мы загружаем его из CDN. Этот клиент позволяет нам провести быстрые (грязные) тесты в браузере.
В далеком для меня 2010 году я писал статью для начинающих про сокеты в Python. Сейчас этот блог канул в небытие, но статья мне показалась довольно полезной. Статью нашел на флешке в либровском документе, так что это не кросспост, не копипаст — в интернете ее нигде нет.
Что это
Для начала нужно разобраться что такое вообще сокеты и зачем они нам нужны. Как говорит вики, сокет — это программный интерфейс для обеспечения информационного обмена между процессами. Но гораздо важнее не зазубрить определение, а понять суть. Поэтому я тут постараюсь рассказать все как можно подробнее и проще.
Существуют клиентские и серверные сокеты. Вполне легко догадаться что к чему. Серверный сокет прослушивает определенный порт, а клиентский подключается к серверу. После того, как было установлено соединение начинается обмен данными.
Рассмотрим это на простом примере. Представим себе большой зал с множеством небольших окошек, за которыми стоят девушки. Есть и пустые окна, за которыми никого нет. Те самые окна — это порты. Там, где стоит девушка — это открытый порт, за которым стоит какое-то приложение, которое его прослушивает. То есть, если, вы подойдете к окошку с номером 9090, то вас поприветствуют и спросят, чем могут помочь. Так же и с сокетами. Создается приложение, которое прослушивает свой порт. Когда клиент устанавливает соединение с сервером на этом порту именно данное приложение будет ответственно за работу этим клиентом. Вы же не подойдете к одному окошку, а кричать вам будут из соседнего :)
После успешной установки соединения сервер и клиент начинают обмениваться информацией. Например, сервер посылает приветствие и предложение ввести какую-либо команду. Клиент в свою очередь вводит команду, сервер ее анализирует, выполняет необходимые операции и отдает клиенту результат.
Сервер
Сейчас создайте два файла — один для сервера, а другой для клиента.
В Python для работы с сокетами используется модуль socket:
Прежде всего нам необходимо создать сокет:
Здесь ничего особенного нет и данная часть является общей и для клиентских и для серверных сокетов. Дальше мы будем писать код для сервера. Это вполне логично — зачем нам писать клиентское приложение, если некуда подключаться :)
Теперь нам нужно определиться с хостом и портом для нашего сервера. Насчет хоста — мы оставим строку пустой, чтобы наш сервер был доступен для всех интерфейсов. А порт возьмем любой от нуля до 65535. Следует отметить, что в большинстве операционных систем прослушивание портов с номерами 0 — 1023 требует особых привилегий. Я выбрал порт 9090. Теперь свяжем наш сокет с данными хостом и портом с помощью метода bind, которому передается кортеж, первый элемент (или нулевой, если считать от нуля) которого — хост, а второй — порт:
Теперь у нас все готово, чтобы принимать соединения. С помощью метода listen мы запустим для данного сокета режим прослушивания. Метод принимает один аргумент — максимальное количество подключений в очереди. Напряжем нашу бурную фантазию и вспомним про зал с окошками. Так вот этот параметр определяет размер очереди. Если он установлен в единицу, а кто-то, явно лишний, пытается еще подстроится сзади, то его пошлют :) Установим его в единицу:
Ну вот, наконец-то, мы можем принять подключение с помощью метода accept, который возвращает кортеж с двумя элементами: новый сокет и адрес клиента. Именно этот сокет и будет использоваться для приема и посылке клиенту данных.
Вот и все. Теперь мы установили с клиентом связь и можем с ним «общаться». Т.к. мы не можем точно знать, что и в каких объемах клиент нам пошлет, то мы будем получать данные от него небольшими порциями. Чтобы получить данные нужно воспользоваться методом recv, который в качестве аргумента принимает количество байт для чтения. Мы будем читать порциями по 1024 байт (или 1 кб):
Как мы и говорили для общения с клиентом мы используем сокет, который получили в результате выполнения метода accept. Мы в бесконечном цикле принимаем 1024 байт данных с помощью метода recv. Если данных больше нет, то этот метод ничего не возвращает. Таким образом мы можем получать от клиента любое количество данных.
Дальше в нашем примере для наглядности мы что-то сделаем с полученными данными и отправим их обратно клиенту. Например, с помощью метода upper у строк вернем клиенту строку в верхнем регистре.
Теперь можно и закрыть соединение:
Собственно сервер готов. Он принимает соединение, принимает от клиента данные, возвращает их в виде строки в верхнем регистре и закрывает соединение. Все просто :) В итоге у вас должно было получиться следующее:
Клиент
Думаю, что теперь будет легче. Да и само клиентское приложение проще — нам нужно создать сокет, подключиться к серверу послать ему данные, принять данные и закрыть соединение. Все это делается так:
Думаю, что все понятно, т.к. все уже разбиралось ранее. Единственное новое здесь — это метод connect, с помощью которого мы подключаемся к серверу. Дальше мы читаем 1024 байт данных и закрываем сокет.
Читайте также: