Что такое разрядность ячеек памяти
Тебе известно, что компьютер работает только с двоичным кодом. \(0\) и \(1\) обозначают два устойчивых состояния: вкл/выкл, есть ток/нет тока и т. д. Оперативная память представляет собой контейнер, который состоит из ячеек. В каждой ячейке хранится одно из возможных состояний: \(0\) или \(1\). Одна ячейка — \(1\) бит информации или представляет собой разряд некоторого числа.
Целые числа в памяти компьютера хранятся в формате с фиксированной запятой . Такие числа могут храниться в \(8\), \(16\), \(32\), \(64\)-разрядном формате.
Для целых неотрицательных чисел в памяти компьютера выделяется \(8\) ячеек (бит) памяти.
Минимальное число для такого формата: \(00000000\). Максимальное: \(11111111\).
Переведём двоичный код в десятичную систему счисления и узнаем самое большое число, которое можно сохранить в восьмибитном формате.
1 × 2 7 + 1 × 2 6 + 1 × 2 5 + 1 × 2 4 + 1 × 2 3 + 1 × 2 2 + 1 × 2 1 + 1 × 2 0 = 255 10 .
Если целое неотрицательное число больше \(255\), то оно будет храниться в \(16\)-разрядном формате и занимать \(2\) байта памяти, то есть \(16\) бит.
Подумай! Какое самое большое число можно записать в \(16\)-разрядном формате?
Чем больше ячеек памяти отводится под хранение числа, тем больше диапазон значений.
В таблице указаны диапазоны значений для \(8\), \(16\) и \(32\)-разрядных форматов.
Для \(n\)-разрядного представления диапазон чисел можно вычислить следующим образом: от \(0\) до 2 n − 1 .
Запишем целое беззнаковое число \(65\) в восьмиразрядном представлении. Достаточно перевести это число в двоичный код.
Это же число можно записать и в \(16\)-разрядном формате.
Для целых чисел со знаком в памяти отводится \(2\) байта информации (\(16\) бит). Старший разряд отводится под знак: \(0\) — положительное число; \(1\) — отрицательное число. Такое представление числа называется прямым кодом.
Для хранения отрицательных чисел используют дополнительный и обратный коды, которые упрощают работу процессора. Но об этом ты узнаешь в старших классах.
Урок 6
Видео YouTube
Видео YouTube
Видео YouTube
Оперативная память компьютера состоит из ячеек, каждая из которых представляет собой физическую систему, состоящую из некоторого числа однородных элементов. Эти элементы обладают двумя устойчивыми состояниями, одно из которых соответствует нулю, а другое — единице. Каждый такой элемент служит для хранения одного из битов — разряда двоичного числа. Именно поэтому каждый элемент ячейки называют битом или разрядом (рис. 1.2).
Для компьютерного представления целых чисел используется несколько различных способов, отличающихся друг от друга количеством разрядов (под целые числа обычно отводится 8, 16, 32 или 64 разряда) и наличием или отсутствием знакового разряда. Беззнако вое представление можно использовать только для неотрицательных целых чисел, отрицательные числа представляются только в знаковом виде.
Беззнаковое представление используется для таких объектов, как адреса ячеек, всевозможные счётчики (например, число символов в тексте), а также числа, обозначающие дату и время, размеры графических изображений в пикселях и т. д.
Максимальное значение целого неотрицательного числа достигается в случае, когда во всех разрядах ячейки хранятся единицы. Для n-разрядного представления оно будет равно 2 n -1. Минимальное число соответствует n нулям, хранящимся в n разрядах памяти, и равно нулю.
Ниже приведены максимальные значения для беззнаковых целых n-разрядных чисел:
Для получения компьютерного представления беззнакового целого числа достаточно перевести число в двоичную систему счисления и дополнить полученный результат слева нулями до стандартной разрядности.
Пример 1. Число 5310 = 1101012 в восьмиразрядном представлении имеет вид:
Это же число 53 в шестнадцати разрядах будет записано следующим образом:
При представлении со знаком самый старший (левый) разряд отводится под знак числа, остальные разряды — под само число. Если число положительное, то в знаковый разряд помещается 0, если число отрицательное — 1. Такое представление чисел называется прямым кодом. В компьютере прямые коды используются для хранения положительных чисел в запоминающих устройствах, для выполнения операций с положительными числами.
Тест по информатике Основополагающие принципы устройства ЭВМ для 10 класса с ответами. Тест включает 10 заданий с выбором ответа.
1. Какой престижной награды удостоен С.А. Лебедев?
2. Из каких частей состоит процессор компьютера?
1) ОЗУ и ПЗУ
2) АЛУ и УУ
3) из арифметической и логической
3. Какую кодировку используют все современные компьютеры для хранения и обработки информации?
1) двоичную
2) десятичную
3) шестнадцатеричную
4. В чем состоит принцип однородности памяти?
1) ни одна область памяти не имеет преимуществ перед другой
2) команды программ и данные хранятся в одной и той же памяти и внешне неразличимы
3) внутренняя и внешняя память выполняют одни и те же функции
5. Что такое разрядность ячеек памяти?
1) используемая в них система счисления
2) скорость доступа к содержащейся в них информации
3) количество битов в ячейке
6. Какое из этих требований предъявляется к памяти компьютера?
1) ее объем должен быть как можно больше
2) время доступа к ней должно быть как можно меньше
3) оба этих требования
7. В чем состоит принцип иерархической организации памяти?
1) в использовании нескольких различных видов памяти, связанных друг с другом
2) в разделении памяти на разные классы производительности
3) в создании разных уровней прав доступа к памяти
8. Каково главное отличие компьютеров от всех других технических устройств?
1) многозадачность
2) программное управление их работой
3) широкий спектр применения
9. Что такое контроллер?
1) центральный процессор компьютера
2) специальный микропроцессор, предназначенный для управления внешними устройствами
3) специальная программа, предназначенная для управления внешними устройствами
10. В чем состоит главное достоинство магистрально-модульной архитектуры компьютера?
1) в высокой скорости работы
2) в компактных размерах
3) в возможности легко изменять конфигурацию компьютера
SDRAM: Определение
Микросхемы SDRAM: Физическая организация и принцип работы
Важно заметить, что с динамической матрицей памяти связан особый буфер статической природы, именуемый «усилителем уровня» (SenseAmp), размер которого равен размеру одной строки, необходимый для осуществления операций чтения и регенерации данных, содержащихся в ячейках памяти. Поскольку последние физически представляют собой конденсаторы, разряжающиеся при совершении каждой операции чтения, усилитель уровня обязан восстановить данные, хранящиеся в ячейке, после завершения цикла доступа (более подробно участие усилителя уровня в цикле чтения данных из микросхемы памяти рассмотрено ниже).
Кроме того, поскольку конденсаторы со временем теряют свой заряд (независимо от операций чтения), для предотвращения потери данных необходимо периодически обновлять содержимое ячеек. В современных типах памяти, которые поддерживают режимы автоматической регенерации (в «пробужденном» состоянии) и саморегенерации (в «спящем» состоянии), обычно это является задачей внутреннего контроллера регенерации, расположенного непосредственно в микросхеме памяти.
Схема обращения к ячейке памяти в самом общем случае может быть представлена следующим образом:
В современных микросхемах SDRAM схема обращения к ячейкам памяти выглядит аналогично. Далее, в связи с обсуждением задержек при доступе в память (таймингов памяти), мы рассмотрим ее более подробно.
Микросхемы SDRAM: Логическая организация
Модули SDRAM: Организация
Модули памяти: Микросхема SPD
Тайминги памяти
Схема доступа к данным микросхемы SDRAM
1. Активизация строки
Повторная активизация какой-либо другой строки того же банка не может быть осуществлена до тех пор, пока предыдущая строка этого банка остается открытой (т.к. усилитель уровня, содержащий буфер данных размером в одну строку банка и описанный в разделе «Микросхемы SDRAM: Физическая организация и принцип работы», является общим для всех строк данного банка микросхемы SDRAM). Таким образом, минимальный промежуток времени между активизацией двух различных строк одного и того же банка определяется минимальным временем цикла строки (Row Cycle Time, tRC).
2. Чтение/запись данных
Возвращаясь к чтению данных, заметим, что существует две разновидности команды чтения. Первая из них является «обычным» чтением (READ), вторая называется «чтением с автоматической подзарядкой» (Read with Auto-Precharge, «RD+AP»). Последняя отличается тем, что после завершения пакетной передачи данных по шине данных микросхемы автоматически будет подана команда подзарядки строки (PRECHARGE), тогда как в первом случае выбранная строка микросхемы памяти останется «открытой» для осуществления дальнейших операций.
3. Подзарядка строки
Соотношения между таймингами
В заключение этой части, посвященной задержкам при доступе к данным, рассмотрим основные соотношения между важнейшими параметрами таймингов на примере более простых операций чтения данных. Как мы рассмотрели выше, в самом простейшем и самом общем случае — для пакетного считывания заданного количества данных (2, 4 или 8 элементов) необходимо осуществить следующие операции:
1) активизировать строку в банке памяти с помощью команды ACTIVATE;
2) подать команду чтения данных READ;
3) считать данные, поступающие на внешнюю шину данных микросхемы;
4) закрыть строку с помощью команды подзарядки строки PRECHARGE (как вариант, это делается автоматически, если на втором шаге использовать команду «RD+AP»).
Наконец, промежуток времени между четвертой операцией и последующим повтором первой операции цикла составляет «время подзарядки строки» (tRP).
В то же время, минимальному времени активности строки (от подачи команды ACTIVATE до подачи команды PRECHARGE, tRAS), по его определению, как раз отвечает промежуток времени между началом первой и началом четвертой операции. Отсюда вытекает первое важное соотношение между таймингами памяти:
Читайте также: