Что такое p v t
Простейшим объектом исследования в молекулярной физике является идеальный газ. Под идеальным газом понимается газ, взаимодействие между молекулами которого (притяжение, отталкивание) можно не учитывать, то есть когда расстояние между молекулами гораздо больше их размеров. Если часть воздуха из сосуда откачать, то этот воздух можно считать идеальным газом.
Пусть в сосуде под поршнем находится идеальный газ у которого температура и давление во всех частях сосуда одинаковы, то есть газ находится в состоянии термодинамического равновесия. Давление газа находится как отношение силы удара молекул о поршень к площади поршня:
Опыты показали что, если газ перешёл из состояния 1 в состояние 2, то для него выполняется равенство:
то есть отношение произведения давления газа на объём, делённое на абсолютную температуру остаётся величиной постоянной:
Эту постоянную, названную универсальной газовой постоянной R , можно найти, зная, что моль любого газа при нормальных условиях
Уравнение Клапейрона-Менделеева (уравнение состояния идеального газа).
Уравнение Клапейрона-Менделеева (1834 г) устанавливает связь между объемом V, давлением P и абсолютной температурой Т для газа:
n – число молей газа ;
T – абсолютная температура газа, К;
R – универсальная газовая постоянная 8,314 Дж/моль×K.
Если объём газа выражен в литрах, то уравнение Клапейрона-Менделеева записывается в виде:
Физика для чайников. Урок 14. Уравнение состояния идеального газа
На прошлом уроке я обещал, что объясню, что такое 1 градус температуры через работу идеального газа. Для начала, давайте определимся, а что такое идеальный газ ? В природе, конечно, идеальных газов не существует, это лишь математическая модель. Но многие реальные газы при обычных условиях (если нет экстремальных плотностей, температур и давлений) ведут себя практически как идеальный газ (с небольшими отклонениями).
И так, идеальный газ обладает следующими свойствами (допущениями):
· Потенциальной энергией взаимодействия молекул можно пренебречь.
· Суммарный объем самих молекул газа пренебрежительно мал.
· Соударения между молекулами абсолютно упругие.
· Временем взаимодействия молекул между собой так же можно пренебречь.
Такой вот идеальный газ описывается формулой, которая еще и называется уравнение Клапейрона-Менделеева:
Здесь p – это давление газа, V - его объем, m – масса газа, M – это такая хитрая величина, называемая молярная масса, которая обозначает массу одного моля вещества. А моль – это 6,022•1023 молекул. Буквой T обозначена температура в градусах Кельвина, R - универсальная газовая постоянная, равная 8,314 Дж/(моль•K). Физический смысл универсальной газовой постоянной состоит в том, что она равна работе(энергии), которую совершает идеальный газ при расширения, когда его нагревают на 1 градус при постоянном давлении (это называется изобарическим расширением ).
Таким образом, у нас теперь есть определение, что такое 1 градус. Это 8,314 Дж энергии на каждый моль идеального газа. А что такое Джоуль? Это энергия, затраченная при работе силы в 1 Ньютон при перемещении тела на 1 метр. Подробнее смотри урок ( Физика для чайников. Урок 11. Энергия. Закон сохранения энергии ). Стоит, однако заметить, что в случае реального газа, а также жидкого или твёрдого вещества, это соотношение не соблюдается. Почему? Помните, в уроке ( Физика для чайников. Урок 13. Что такое температура ) я давал определение температуры через энтропию? Так вот, на энтропию влияет взаимодействие между атомами и молекулами. Именно поэтому теплоемкость (количество энергии, которое нужно, чтобы нагреть на 1 градус единицу вещества) газов и не газов может быть совершенно разная.
А теперь вернемся к уравнению состояния идеального газа. Что такое V (объем), думаю, понятно. Константу R и соотношение m/M мы тоже разобрали. Теперь разберем, что такое давление, если кто не знает. Давление – это отношение силы к площади, на которую давит данная сила. Давление тем больше, чем меньше площадь (а значит, действие силы). Простая иллюстрация: вы идет по снегу, и проваливаетесь. Но стоит встать на лыжи – и вы можете нормально передвигается по тому же самому снегу. Сила тяжести осталась та же самая – ваш вес почти не изменился (добавился вес лыж – но это не существенно). Так почему вы теперь не проваливаетесь? А потому, что площадь лыж больше, чем площадь ваших ступней.
Теперь некоторые следствия из уравнения Клапейрона-Менделеева:
· Если сжать газ при постоянной температуре, его давление повыситься.
· Если нагревать газ при постоянном давлении, он будет расширятся.
· Если нагревать газ при постоянном объеме (например, в замкнутом сосуде), то давление повыситься. Сосуд, кстати, если он непрочный, может разорвать.
· Если накачивать газ в некий сосуд, при этом сохраняя постоянную температуру, то давление газа на стенки сосуда так же повыситься.
Уравнение состояния идеального газа
Математическая запись универсального газового закона проста:
pV = nRT *
Она содержит основные характеристики поведения газов: p, V и T — соответственно давление, объем и абсолютная температура газа (в градусах Кельвина), R — универсальная газовая постоянная, общая для всех газов, а n — число, пропорциональное числу молекул или атомов газа (так называемое число молей газа — см. Закон Авогадро).
Чтобы понять, как работает этот закон, давайте представим, что температура газа постоянна. В этом случае в правой части уравнения получается константа. Значит, произведение давления и объема при неизменной температуре оказывается неизменным. Повышение давления сопровождается уменьшением объема, и наоборот. Это не что иное, как закон Бойля—Мариотта — одна из первых экспериментально полученных формул, описывающих поведение газов. С другой стороны, при постоянном давлении (например, внутри воздушного шарика, где давление газа равно атмосферному) повышение температуры сопровождается увеличением объема. А это — закон Шарля, другая экспериментальная формула поведения газов. Закон Авогадро и закон Дальтона также являются следствиями универсального газового закона.
Этот закон представляет собой то, что в физике принято называть уравнением состояния вещества, поскольку он описывает характер изменения свойств вещества при изменении внешних условий. Строго говоря, этот закон в точности выполняется только для идеального газа. Идеальный газ представляет собой упрощенную математическую модель реального газа: молекулы считаются движущимися хаотически, а соударения между молекулами и удары молекул о стенки сосуда — упругими, то есть не приводящими к потерям энергии в системе. Такая упрощенная модель очень удобна, поскольку позволяет обойти очень неприятную трудность — необходимость учитывать силы взаимодействия между молекулами газа. И это себя оправдывает, поскольку в природных условиях поведение большинства реальных газов практически не отличается от поведения идеального газа — отклонения в поведении практически всех природных газов, например атмосферного азота и кислорода, от поведения идеального газа не превышают 1%. Это позволяет ученым спокойно включать уравнение состояния идеального газа даже в весьма сложные теоретические расчеты. Например, астрономы при моделировании горячих звезд обычно считают вещество звезды идеальным газом и весьма точно прогнозируют давления и температуры внутри них. (Заметьте, что вещество внутри звезды ведет себя как идеальный газ, хотя его плотность несопоставимо выше плотности любого вещества в земных условиях. А дело в том, что вещество звезды состоит из полностью ионизированных ядер водорода и гелия — то есть из частиц значительно меньшего диаметра, чем диаметр атомов земных газов.) В будущем, по мере совершенствования теоретических методов, возможно, будут выведены более точные уравнения для описания состояния реальных газов с учетом их характеристик на молекулярном уровне.
* Эта формула была получена в 1874 году Д. И. Менделеевым путем объединения закона Авогадро и общего газового закона (pV/ T = const), сформулированного в 1834 году Б. П. Э. Клапейроном. Поэтому этот закон (в Европе, по крайней мере) принято называть законом Менделеева—Клапейрона. По существу, этот закон позволил ввести все ранее сделанные эмпирические заключения о характере поведения газов в рамки новой молекулярно-кинетической теории. (Примечание переводчика)
Читайте также: