Что такое компьютерный эксперимент
Компьютерный эксперимент или моделирование эксперимент эксперимент используется для изучения компьютерного моделирования, также известное как в силикомарганце системы. Эта область включает вычислительную физику , вычислительную химию , вычислительную биологию и другие подобные дисциплины.
СОДЕРЖАНИЕ
Компьютерное моделирование создается для имитации физической системы. Поскольку они предназначены для детального воспроизведения некоторых аспектов системы, они часто не дают аналитического решения. Поэтому используются такие методы, как моделирование дискретных событий или решатели методом конечных элементов . Компьютерная модель используется , чтобы сделать выводы о системе он размножается. Например, климатические модели часто используются, потому что экспериментировать с объектом размером с Землю невозможно.
Компьютерные эксперименты использовались для многих целей. Некоторые из них включают:
-
: охарактеризуйте неопределенность, присутствующую в компьютерном моделировании, возникающую из-за неизвестных во время построения компьютерного моделирования. : откройте для себя основные свойства системы на основе физических данных.
- Коррекция смещения: используйте физические данные для коррекции смещения при моделировании. : объедините несколько симуляций и физических источников данных в полную прогнозную модель. : Найдите входные данные, которые приводят к оптимальным показателям производительности системы.
При моделировании компьютерных экспериментов обычно используется байесовская структура. Байесовская статистика - это интерпретация области статистики, в которой все свидетельства об истинном состоянии мира явно выражены в форме вероятностей . В области компьютерных экспериментов байесовская интерпретация подразумевала бы, что мы должны сформировать априорное распределение, которое представляет наши априорные представления о структуре компьютерной модели. Использование этой философии для компьютерных экспериментов началось в 1980-х годах и хорошо обобщено Sacks et al. (1989) [1] . Хотя байесовский подход широко используется, частотные подходы недавно обсуждались [2] .
Основная идея этой структуры состоит в том, чтобы смоделировать компьютерное моделирование как неизвестную функцию набора входных данных. Компьютерное моделирование реализовано в виде фрагмента компьютерного кода, который может быть оценен для получения набора выходных данных. Примерами входных данных для этих симуляций являются коэффициенты в базовой модели, начальные условия и вынуждающие функции . Естественно рассматривать моделирование как детерминированную функцию, которая отображает эти входные данные в набор выходных данных . Исходя из того, что мы рассматриваем наш симулятор таким образом, принято называть набор входных данных как , саму компьютерную симуляцию как , а результирующий результат как . Оба и Икс ж ж ( Икс ) Икс ж ( Икс ) являются векторными величинами, и они могут быть очень большими наборами значений, часто индексируемых по пространству, по времени или по пространству и времени.
Хотя в принципе известно, на практике это не так. Многие тренажеры состоят из десятков тысяч строк компьютерного кода высокого уровня, недоступного интуиции. Для некоторых симуляций, таких как модели климата, оценка выходных данных для одного набора входных данных может потребовать миллионов компьютерных часов [3] . ж ( ⋅ )
Типичная модель вывода компьютерного кода - это гауссовский процесс. Для простоты обозначений предположим, что это скаляр. Благодаря байесовской структуре, мы фиксируем наше убеждение, что функция следует гауссовскому процессу , где - средняя функция, а - ковариационная функция. Популярные функции среднего - это полиномы низкого порядка, а популярная ковариационная функция - ковариация Матерна , которая включает как экспоненциальную ( ), так и гауссовскую ковариацию (as ). ж ( Икс ) ж ж ∼ GP ( м ( ⋅ ) , C ( ⋅ , ⋅ ) ) , (м (\ cdot), C (\ cdot, \ cdot)),> м C ν знак равно 1 / 2 ν → ∞
План компьютерных экспериментов существенно отличается от плана экспериментов для параметрических моделей. Поскольку предварительный гауссовский процесс имеет бесконечномерное представление, концепции критериев A и D (см. Оптимальный дизайн ), которые сосредоточены на уменьшении ошибки в параметрах, не могут быть использованы. Репликации также будут бесполезными в случаях, когда компьютерное моделирование не содержит ошибок. Критерии, которые используются для определения хорошего плана эксперимента, включают интегрированную среднеквадратичную ошибку прогноза [4] и критерии, основанные на расстоянии [5] .
В отличие от физических экспериментов, компьютерные эксперименты обычно имеют тысячи различных входных комбинаций. Поскольку стандартный вывод требует инверсии матрицы квадратной матрицы размера числа выборок ( ), затраты на расширение . Инверсия матриц больших плотных матриц также может вызывать неточности в числовом выражении. В настоящее время эта проблема решается с помощью жадных методов дерева решений, позволяющих эффективные вычисления для неограниченной размерности и размера выборки по патенту WO2013055257A1 , или ее можно избежать с помощью методов аппроксимации, например [6] . п О ( п 3 ) > (п ^ )>
Ни одно техническое достижение не повлияло так на интеллектуальную деятельность человека, как электронно-вычислительные машины. Увеличив в десятки и сотни миллионов раз скорость выполнения арифметических и логических операций, колоссально повысив тем самым производительность интеллектуального труда человека, ЭВМ вызвали коренные изменения в области обработки информации. По существу, мы являемся свидетелями своего рода “информационной революции”, подобной той промышленной революции, которую породило в 18 веке изобретение паровой машины и связанное с ним резкое повышение производительности физического труда. В настоящее время вычислительные машины проникают во все сферы интеллектуальной деятельности человека, становятся одним из решающих факторов ускорения темпов научно-технического прогресса.
К концу 20 века компьютеры стали настолько совершенными, что появилась реальная возможность использовать их в научных исследованиях, не только как большой арифмометр, но обратиться с его помощью к изучению таких разделов математики, которые ранее были практически не доступны для исследований. Это было осознано при решении ещё на несовершенных ЭВМ сложных математических задач ядерной физики, баллистики, прикладной небесной механики.
Классическая математика, как известно, в основном нацелена на изучение явлений, имеющих линейный характер, то есть способна изучать ситуации, где причина приблизительно пропорциональна следствию. Изменение причины приводит к пропорциональному изменению следствия, то есть классические уравнения рассматривают: не градиентные среды (они изучают малые отклонения маятника, мелкие волны и дифференциал и т.д.)
В дальнейшем, развиваясь и совершенствуясь при решении разнообразных задач, этот стиль теоретического анализа трансформировался в новую современную технологию и методологию проведения теоретических исследований, которая получила название вычислительного эксперимента. Основой вычислительного эксперимента является математическое моделирование, теоретической базой - прикладная математика, а технической - мощные электронно-вычислительные машины
К началу 70-х годов были обнаружены новые явления, а точнее на них обратили внимание, новые явления, которые ранее не предполагались. Важное открытие, сделанное численным (или вычислительным) экспериментом это хаос в детерминированных (описанных чёткой формулой) системах, и хотя первые наблюдения таких явлений были выполнены ещё в начале 50-х годов, долгое время они рассматривались как несовершенство компьютеров, неспособных правильно вычислять. Изучение таких явлений, в частности связанных с ними фракталов, привело к колоссальным сдвигам в современных научных представлениях. Возникла целая группа нелинейных наук, с которой связаны поистине удивительные открытия последних лет.
Научное исследование реального процесса можно проводить теоретически или экспериментально, которые проводятся независимо друг от друга. Такой путь познания истины носит односторонний характер. В современных условиях развития науки и техники стараются проводить комплексное исследование объекта. Этого можно добиться на основе новой, удовлетворяющей требованиям времени, методологии и технологии научных исследований.
Компьютерный эксперимент - это эксперимент над математической моделью объекта на ЭВМ, который состоит в том, что по одним параметрам модели вычисляются другие её параметры и на этой основе делаются выводы о свойствах явления, описываемого математической моделью.
В проведении компьютерного эксперимента участвует коллектив исследователей - специалисты с конкретной предметной области, математики теоретики, вычислители, прикладники, программисты. Это связано с тем, что моделирование реальных объектов на ЭВМ включает в себя большой объём работ по исследованию их физической и математической моделей, вычислительных алгоритмов, программированию и обработке результатов. Здесь можно заметить аналогию с работами по проведению натурных экспериментов: составление программы экспериментов, создание экспериментальной установки, выполнение контрольных экспериментов, проведение серийных опытов, обработки экспериментальных данных и их интерпретация и т.д. Таким образом, проведение крупных комплексных расчётов следует рассматривать как эксперимент, проводимый на ЭВМ или вычислительный эксперимент.
Компьютерный эксперимент играет ту же роль, что и обыкновенный эксперимент при исследованиях новых гипотез. Современная гипотеза почти всегда имеет математическое описание, над которым можно выполнять эксперименты.
При введении этого понятия следует особо выделить способность компьютера выполнять большой объем вычислений, реализующих математические исследования. Иначе говоря, компьютер позволяет произвести замену физического, химического и т. д. эксперимента экспериментом вычислительным.
При проведении компьютерного эксперимента можно убедиться в необходимости и полезности последнего, особенно в случаях, когда провести натуральный эксперимент затруднительно или невозможно. Вычислительный эксперимент, по сравнению с натурным, значительно дешевле и доступнее, его подготовка и проведение требует меньшего времени, его легко переделывать, он даёт более подробную информацию. Кроме того, в ходе компьютерного эксперимента выявляются границы применимости математической модели, которые позволяют прогнозировать эксперимент в естественных условиях. Поэтому использование компьютерного эксперимента ограничивается теми математическими моделями, которые участвуют в проведении исследования. По этой причине компьютерный эксперимент не может заменить полностью эксперимент натурный и выход из этого положения состоит в их разумном сочетании. В этом случае в проведении сложного эксперимента используется широкий спектр математических моделей: прямые задачи, обратные задачи, оптимизированные задачи, задачи идентификации.
Эффективность компьютерных экспериментов с моделями существенно зависит от выбора плана эксперимента, так как именно план определяет объем и порядок проведения вычислений на ЭВМ, приемы накопления и статистической обработки результатов моделирования системы. Поэтому основная задача планирования компьютерных экспериментов с моделью формулируется следующим образом: необходимо получить информацию об объекте моделирования, заданном в виде моделирующего алгоритма (программы), при минимальных или ограниченных затратах машинных ресурсов на реализацию процесса моделирования.
Преимуществом компьютерных экспериментов перед натурным является возможность полного воспроизведения условий эксперимента с моделью исследуемой системы. Существенным достоинством перед натурными является простота прерывания и возобновления компьютерных экспериментов, что позволяет применять последовательные и эвристические приемы планирования, которые могут оказаться нереализуемыми в экспериментах с реальными объектами. При работе с компьютерной моделью всегда возможно прерывание эксперимента на время, необходимое для анализа результатов и принятия решений об его дальнейшем ходе (например, о необходимости изменения значений характеристик модели).
Недостатком компьютерных экспериментов является то, что результаты одних наблюдений зависят от результатов одного или нескольких предыдущих, и поэтому в них содержится меньше информации, чем в независимых наблюдениях.
Применительно к базе данных компьютерный эксперимент означает манипулирование данными в соответствии с поставленной целью с помощью инструментов СУБД. Цель эксперимента может быть сформирована на основании общей цели моделирования и с учетом требований конкретного пользователя. Например, имеется база данных «Деканат». Общая цель создания этой модели – управление учебным процессом. При необходимости получения сведений об успеваемости студентов можно сделать запрос, т.е. осуществить эксперимент для выборки нужной информации.
Использование компьютерного эксперимента как средства решения сложных прикладных проблем имеет в случае каждой конкретной задачи и каждого конкретного научного коллектива свои специфические особенности. И тем не менее всегда чётко просматриваются общие характерные основные черты, позволяющие говорить о единой структуре этого процесса. В настоящее время технологический цикл компьютерного эксперимента принято подразделять на ряд технологических этапов. И хотя такое деление в значительной степени условно, тем не менее оно позволяет лучше понять существо этого метода проведения теоретических исследований. Теперь давайте рассмотрим основные этапы вычислительного эксперимента.
Компьютерный (численный) эксперимент — это эксперимент над математической моделью объекта исследования на ЭВМ, который состоит в том что, по одним параметрам модели вычисляются другие её параметры и на этой основе делаются выводы о свойствах объекта, описываемого математической моделью. Данный вид эксперимента можно лишь условно отнести к эксперименту, потому как он не отражает природные явления, а лишь является численной реализацией созданной человеком математической модели. Действительно, при некорректности в мат. модели — её численное решение может быть строго расходящимся с физическим экспериментом [1] .
Психологический эксперимент
Психологический эксперимент — проводимый в специальных условиях опыт для получения новых научных знаний посредством целенаправленного вмешательства исследователя в жизнедеятельность испытуемого.
Мысленный эксперимент
Мысленный эксперимент в философии, физике и некоторых других областях знания — вид познавательной деятельности, в которой структура реального эксперимента воспроизводится в воображении. Как правило, мысленный эксперимент проводится в рамках некоторой модели (теории) для проверки её непротиворечивости. При проведении мысленного эксперимента могут обнаружиться противоречия внутренних постулатов модели либо их несовместимость с внешними (по отношению к данной модели) принципами, которые считаются безусловно истинными (например, с законом сохранения энергии, принципом причинности и т. д.).
Критический эксперимент
Критический эксперимент — эксперимент, исход которого однозначно определяет, является ли конкретная теория или гипотеза верной. Этот эксперимент должен дать предсказанный результат, который не может быть выведен из других, общепринятых гипотез и теорий.
Пилотажный эксперимент
Пилотажный эксперимент (pilot experiment) – пробное экспериментальное исследование, в котором апробируются основная гипотеза, подходы к исследованию, план, проверяется работоспособность применяемых методик, уточняются технические моменты процедур эксперимента. Он проводится на небольшой выборке, без строгого контроля переменных. Пилотажный эксперимент позволяет устранить грубые ошибки в формулировке гипотезы, конкретизировать цель, уточнить методику проведения эксперимента, оценить возможность получения экспериментального эффекта.
В настоящее время компьютерное моделирование в научных и практических исследованиях является одним из основных элементов познания. Технология моделирования требует от исследователя умения ставить корректно проблемы и задачи, прогнозировать результаты исследования, проводить разумные оценки, выделять главные и второстепенные факторы для построения моделей, выбирать аналогии и математические формулировки, решать задачи с использованием компьютерных систем, проводить анализ компьютерных экспериментов. Для успешной работы исследователю необходимо проявлять активный творческий поиск, любознательность и обладать максимумом терпения и трудолюбия. При этом исследователь не только достигает целей исследования, но и развивает в себе все перечисленные качества, приобретая навыки, умения и знания в большом спектре фундаментальных и прикладных наук. Навыки моделирования очень важны человеку в жизни. Они помогут разумно планировать свой распорядок дня, учёбу, труд, выбирать оптимальные варианты при наличии выбора, разрешать удачно различные ситуации.
Что же такое компьютерный эксперимент?
Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. Эксперимент — это опыт, который производится с объектом или моделью. Он заключается в выполнении некоторых действий и определении, как реагирует экспериментальный образец на эти действия.
В школе вы проводите опыты на уроках биологии, химии, физики, географии.
Эксперименты проводят при испытании новых образцов продукции на предприятиях. Обычно для этого используется специально создаваемая установка, позволяющая провести эксперимент в лабораторных условиях, либо сам реальный продукт подвергается всякого рода испытаниям (натурный эксперимент). Для исследования, к примеру, эксплуатационных свойств какого-либо агрегата или узла его помещают в термостат, замораживают в специальных камерах, испытывают на вибростендах, роняют и т. п. Хорошо, если это новые часы или пылесос — не велика потеря при разрушении. А если самолет или ракета?
Лабораторные и натурные эксперименты требуют больших материальных затрат и времени, но их значение, тем не менее, очень велико.
С развитием компьютерной техники появился новый уникальный метод исследования — компьютерный эксперимент. В помощь, а иногда и на смену экспериментальным образцам и испытательным стендам во многих случаях пришли компьютерные исследования моделей. Этап проведения компьютерного эксперимента включает две стадии: составление плана эксперимента и проведение исследования.
План эксперимента
План эксперимента должен четко отражать последовательность работы с моделью. Первым пунктом такого плана всегда является тестирование модели.
Тестирование — процесс проверки правильности построенной модели.
Тест — набор исходных данных, позволяющий определить правильность построения модели.
Чтобы быть уверенным в правильности получаемых результатов моделирования, надо:
♦ проверить разработанный алгоритм построения модели;
♦ убедиться, что построенная модель правильно отражает свойства оригинала, которые учитывались при моделировании.
Для проверки правильности алгоритма построения модели используется тестовый набор исходных данных, для которых конечный результат заранее известен или предварительно определен другими способами.
Например, если вы используете при моделировании расчетные формулы, то надо подобрать несколько вариантов исходных данных и просчитать их «вручную». Это тестовые задания. Когда модель построена, вы проводите тестирование с теми же вариантами исходных данных и сравниваете результаты моделирования с выводами, полученными расчетным путем. Если результаты совпадают, то алгоритм разработан верно, если нет — надо искать и устранять причину их расхождения. Тестовые данные могут совершенно не отражать реальную ситуацию и не нести смыслового содержания. Однако полученные в процессе тестирования результаты могут натолкнуть вас на мысль об изменении исходной информационной или знаковой модели, прежде всего в той ее части, где заложено смысловое содержание.
Чтобы убедиться, что построенная модель отражает свойства оригинала, которые учитывались при моделировании, надо подобрать тестовый пример с реальными исходными данными.
Проведение исследования
После тестирования, когда у вас появилась уверенность в правильности построенной модели, можно переходить непосредственно к проведению исследования.
В плане должен быть предусмотрен эксперимент или серия экспериментов, удовлетворяющих целям моделирования. Каждый эксперимент должен сопровождаться осмыслением итогов, что служит основой анализа результатов моделирования и принятия решений.
Схема подготовки и проведения компьютерного эксперимента:
Анализ результатов моделирования
Конечная цель моделирования — принятие решения, которое должно быть выработано на основе всестороннего анализа результатов моделирования. Этот этап решающий — либо вы продолжаете исследование, либо заканчиваете. Но этап анализа результатов не может существовать автономно. Полученные выводы часто способствуют проведению дополнительной серии экспериментов, а подчас и изменению задачи.
Основой выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. Это может быть либо неправильная постановка задачи, либо слишком упрощённое построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели, то есть возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования.
Главное, надо всегда помнить: выявленная ошибка — тоже результат. Как гласит народная мудрость, на ошибках учатся. Об этом писал и великий русский поэт А. С. Пушкин:
О, сколько нам открытий чудных
Готовят просвещенья дух
И опыт, сын ошибок трудных,
И гений, парадоксов друг,
И случай, бог изобретатель.
Контрольные вопросы и задания
1. Назовите два основных типа постановки задач моделирования.
2. В известном «Задачнике» Г. Остера есть следущая задача:
Какой вопрос можно отнести к типу «что будет, если. », а какой — к типу «как сделать, чтобы. »?
3. Перечислите наиболее известные цели моделирования.
4. Формализуйте шутливую задачу из «Задачника» Г. Остера:
Из двух будок, находящихся на расстоянии 27 км одна от другой, навстречу друг другу выскочили в одно и то же время две драчливые собачки. Первая бежит со скоростью 4 км/час, а вторая — 5 км/час.
Через сколько времени начнется драка?
5. Назовите как можно больше характеристик объекта «пара ботинок ». Составьте информационную модель объекта для разных целей:
■ выбор обуви для туристского похода;
■ подбор подходящей коробки для обуви;
■ покупка крема для ухода за обувью.
6. Какие характеристики подростка существенны для рекомендации по выбору профессии?
7. По каким причинам компьютер широко используется в моделировании?
8. Назовите известные вам инструменты компьютерного моделирования.
9. Что такое компьютерный эксперимент? Приведите пример.
10. Что такое тестирование модели?
11. Какие ошибки встречаются в процессе моделирования? Что надо делать, когда ошибка обнаружена?
12. В чем заключается анализ результатов моделирования? Какие выводы обычно делаются?
Так в чем же преимущество компьютерного моделирования? Прежде всего, компьютерное моделирование позволяет получать наглядные динамические иллюстрации, воспроизводить их тонкие детали, которые часто с трудом усваиваются при словесном объяснении с демонстрацией статичных рисунков. При использовании моделей компьютер предоставляет уникальную возможность визуализации упрощённой модели.
Читайте также: