Что такое компьютерное моделирование в биологии
Моделирование биологических систем является важной задачей системной и математической биологии. Вычислительные системы биологии нацелены на развитие и использование эффективных алгоритмов, структурных данных, визуализации и средств коммуникации для компьютерного моделирования биологических систем. Это предполагает использование компьютерного симулирования биологических систем, включая как клеточные подсистемы (например, сети метаболитов и ферментов, которые содержат обмен веществ, сигнальные пути и генные регуляторные сети), так и анализ и визуализацию сложных соединений этих клеточных процессов. Искусственная жизнь или виртуальная эволюция пытается понять эволюционные процессы с помощью компьютерного моделирования простых форм жизни.
Обзор
Стандарты
Специализированные задачи
Клеточная модель
Моделирование многоклеточных организмов
Моделирование с открытым исходным кодом C. Элеганс на клеточном уровне изучается сообществом OpenWorm. До сих пор построение физического двигателя Gepetto и модели нейронной связи и мышечных клеток были созданы в формате NeuroML.
Белковая структура
Биологические системы человека
Мозговая модель
Проект «Голубого Гена» является попыткой создать синтетический мозг с помощью реверсивной инженерии мозга млекопитающих до молекулярного уровня. Цель проекта, основанного в мае 2005 года в Политехнической школе Института мозга в Лозанне, Швейцария является изучение архитектурных и функциональных принципов мозга. Проект возглавляет директор Института, Генри Маркрам. Использование нейронного программного обеспечения Майкла Хайнса на суперкомпьютере Голубого Гена отличается тем, что моделирование состоит не просто из искусственной нейронной сети, но и частично включает в себя биологически реалистичную модель нейронов. Его сторонники надеются, что в конечном итоге она прольет свет на природу сознания. Есть ряд подпроектов, в том числе «Cajal Blue Brain», который координируется с одной стороны суперкомпьютеров и Центром Визуализация Мадрида с другой (CeSViMa), и другие управляемые университетами и независимыми лабораториями в Великобритании, США и Израиля. Проект «Человеческий мозг» основывается на проекте «Голубого мозга» .Это один из шести основных проектов в Технологической Исследовательской Программе Развития Будущей инженерии Европейской комиссии, конкурирующих за финансирование в миллиард евро.
Модель иммунной системы
В последнее десятилетие мы стали свидетелями появления все большего числа симуляций иммунной системы.
Виртуальная печень
Модель дерева
Экологические модели
Модели в экотоксикологии
Целью моделей в экотоксикологии есть понимание, моделирование и прогнозирование эффектов, вызванных токсикантами в окружающей среде. Большинство современных моделей описывают воздействие на один из многих разных уровней биологической организации (например, организм или популяцию). Задача состоит в разработке моделей, которые способны предвидеть последствия в биологических масштабах. «Экотоксикология и модели» рассматривает некоторые типы экотоксикологического моделей и предоставляет ссылки на многие другие.
Моделирование инфекционного заболевания
Можно моделировать прогресс большинства инфекционных заболеваний, математически выявить вероятные последствия эпидемии или помочь управлять с помощью вакцинации. Эта область пытается найти параметры для различных инфекционных заболеваний и использовать эти параметры, чтобы сделать полезные расчеты влияния программы массовой вакцинации.
Биология зародилась изначально как описательная наука. Со временем арсенал методов расширялся. В современной биологии используют 5 основных методов.
- Описание объектов и явлений, выявление их свойств.
- Сравнение — одновременное сопоставление объектов и явлений, выявление их сходств и различий.
- Сравнительно-исторический — сопоставление объектов и явлений из разных временных периодов, установление недоступных наблюдению взаимосвязей.
- Эксперимент — целенаправленное создание ситуации для изучения явления.
- Моделирование.
Биологическая модель — это упрощенное отображение объекта, явления, процесса или системы, которое отражает существенные особенности реального прототипа.
Изучение такой упрощенной системы позволяет получить информацию о другой, более сложной реальной системе. В этом изучении и состоит суть моделирования — процесса построения моделей для исследования.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Для чего и в каких случаях используется
Моделирование применяется для изучения абсолютно разных биологических феноменов. Поскольку системы природного мира зачастую являются сложными структурно-функциональными единицами, изучать их с помощью большинства обычных методов довольно тяжело.
С помощью упрощенных моделей можно изучать:
- объекты: клетки и их составляющие, ткани, органы и системы органов, организмы, сообщества, биосферу, космические объекты и т. д;
- явления: сезонные явления природы, особенности поведения животных, корневое давление и т. д.;
- процессы: происходящие в отдельных клетках, процессы жизнедеятельности, разложение и т. д.
Значение моделей в том, что они позволяют изучать объекты, процессы и явления на всех уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Также с их помощью можно изучать явления и объекты неживой природы в любом масштабе.
Моделирование имеет ряд преимуществ перед другими методами, используемыми в биологии как науке. Она дает ряд возможностей:
- Сохранять и передавать информацию об объекте наблюдения: репортаж, рисунок, фотографию или копию предмета.
- Предугадать и наглядно показать, как будет выглядеть объект, которого еще нет, или который еще не удалось обнаружить. К примеру, методом моделирования пользовались физики, предугадывая свойства бозона Хиггса до его открытия.
- Изучить предмет, которого уже не существует. Например, большинство знаний о динозаврах и живых существах тех времен основаны на изучении останков и окаменелостей. Используя их, были выстроены модели доисторических животных.
- Изучить характеристики объекта, работа с которым опасна — например, из-за радиоактивности.
- Узнать свойства конкретного объекта сложной структуры. Так, можно изучать строение сердца на модели отдельно от других систем организма.
- Исследовать свойства объекта, который слишком велик или мал: Солнечная система или атом.
- Изучить процесс, который протекает очень быстро или медленно: геологические модели, модель движения частиц воздуха.
- Избежать реального вмешательства в систему, которое может повлиять на результаты исследования, а также эффекта наблюдателя.
- Некоторые эксперименты невозможно проводить по этическим соображениям, но их можно провести на модели.
Основы моделирования биологических процессов и систем
Чтобы модель действительно отображала свойства отображаемого объекта или явления и могла рассматриваться как научный метод, необходимо правильно составить ее. Упрощенно алгоритм можно представить следующим образом.
- Определить и описать цель моделирования: объект, задачи, требования к качеству, критерии оценки.
- Проанализировать свойства объекта-прототипа, выделить из них существенные.
- Выбрать вид модели.
- Построить модель.
- Исследовать модель.
- Сделать выводы на основе моделирования, выявить свойства, присущие объекту-прототипу.
Какие виды моделей применяются
Модели в целом можно разделить на две большие категории:
- материальные или предметные: анатомические муляжи, вещественные макеты;
- информационные:
- образные: рисунки и чертежи;
- знаковые: словесные описания, формулы;
- смешанные: таблицы, графики, схемы, диаграммы, блок-схемы и т. д.
Можно также выделить 2 разновидности моделей, в зависимости от фактора времени:
Основных типов моделей в биологии 3:
- биологические;
- физико-химические;
- математические и компьютерные.
В биологических моделях используют настоящих животных. На них ученые изучают различные состояния, в т. ч. болезни, встречающиеся как у этого вида животных, так и у человека.
Такие модели широко распространены в генетике, физиологии и фармакологии.
Сущность физико-химических моделей в том, что они воспроизводят структуру биологических структур или процессов. Это напоминает наблюдение за естественным явлением, но смоделированное. К примеру, немецкий ученый М. Траубе в XIX веке сымитировал рост живой клетки. Современные модели нервной деятельности основаны в основном на принципах электроники и электротехники.
Некоторые растворы (к примеру, растворы Рингера, Тироде, Локка и др.) состоят из органических и неорганических веществ и имитируют внутреннюю среду живого организма.
С развитием IT-технологий большую роль отводят компьютерным моделям. Их возможно применить почти во всех сферах биологии. С помощью компьютерного анализа можно проанализировать исходные данные, в том числе изображения, и получить на выходе необходимые свойства, предсказание явления или поведения объекта.
Компьютерные модели работают как виртуальные эксперименты, в которых исследователь контролирует каждую переменную и фактор воздействия. Это дает виртуальным экспериментам преимущество перед реальными, в которых многие факторы неподконтрольны ученым, а также позволяет рассмотреть тщательно процесс, вне зависимости от времени его протекания в реальной жизни.
Метод моделирования как средство достижения метапредметных результатов
Моделирование в процессе обучения способно не только облегчить понимание биологических процессов, но и развить метапредметные навыки.
Когда обучающийся сам составляет модель, он проходит через все этапы алгоритма. Информация собирается, анализируется и обобщается, прежде чем воплотиться в модель. Такой интерактивный способ способствует лучшему усвоению материала.
На протяжении длительного периода времени биология была описательной наукой, мало приспособленной для прогнозирования наблюдаемых явлений. С развитием компьютерных технологий ситуация изменилась. Сначала наиболее используемыми в биологии были методы математической статистики, которые позволяли выполнять корректную обработку данных экспериментов и оценивать определенную значимость для принятия определенных решений и получения выводов. Со временем, когда методы химии и физики вошли в биологию, начали использовать сложные математические модели, которые позволяли обрабатывать данные реальных экспериментов и предсказывать протекание биологических процессов в ходе виртуальных экспериментов.
Модели в биологии
Моделирование биологических систем представляет собой процесс создания моделей биологических систем с характерными для них свойствами. Объектом моделирования может быть любая из биологических систем.
В биологии применяется моделирование биологических структур, функций и процессов на молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом уровнях организации живых организмов. Применяется моделирование также к разным биологическим феноменам, условиям жизнедеятельности отдельных особей, популяций, экосистем.
Биологические системы – это очень сложные структурно-функциональные единицы.
Используется компьютерное и наглядное моделирование биологических компонентов. Примеров таких биологических моделей огромное количество. Приведем некоторые примеры биологических моделей:
Готовые работы на аналогичную тему
Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимостьНаблюдается быстро возрастающее значение моделей компьютерного моделирования почти во всех областях биологии. Компьютерное моделирование используется для анализа расчетных данных, к которому относится и обработка изображений, для анализа нуклеотидных последовательностей, кодирующих ген и отдельных белков, для компьютерного обучения современной биологии и т.д. При помощи проведения «виртуальных» экспериментов на персональных компьютерах можно контролировать все переменные и факторы воздействия, что позволяет выполнять анализ биологических систем, разработку физических моделей для компонентов этих систем, которые нельзя провести в реальных экспериментах.
Основные виды моделей в биологии
Биологические модели на лабораторных животных воспроизводят определенные состояния или заболевания, которые встречаются у животных или человека. Их использование позволяет изучать при проведении экспериментов механизмы возникновения данного состояния или заболевания, его протекание и исход, воздействовать на его протекание. Примерами биологических моделей являются искусственно вызванные генетические нарушения, инфекционный процесс, интоксикация, воспроизведение гипертонических и гипоксических состояний, злокачественных новообразований, гиперфункция или гипофункция некоторых органов, неврозы и эмоциональные состояния.
Для создания биологических моделей воздействуют на генетический аппарат, применяется заражение микробами, вводят токсины, удаляют отдельные органы и т.д. Физико-химические модели воспроизводят с помощью химических или физических средств биологические структуры, функции или процессы и, обычно, они представляют собой далекое подобие биологического явления, которое моделируется.
Значительные успехи были достигнуты в создании моделей физико-химических условий существования живых организмов, их органов и клеток. Например, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), которые имитируют внутреннюю среду организма и поддерживают существование изолированных органов или культивируемых клеток внутри организма.
Моделирование биологических мембран позволяет выполнять исследование физико-химических основ процессов транспортировки ионов и влияния на него разных факторов. С помощью химических реакций, которые протекают в растворах в автоколебательном режиме, моделируются характерные для многих биологических феноменов колебательные процессы.
Математические модели (описание структуры, связей и закономерностей функционирования живых систем) построены на основе данных эксперимента или представляют собой формализованное описание гипотезы, теории или открытой закономерности какого-либо биологического феномена и для них необходима дальнейшая опытная проверка. Разные варианты таких экспериментов определяют границы использования математических моделей и представляют материал для ее дальнейшего корректирования. Испытание математической модели биологического явления на персональном компьютере дает возможность предвидеть характер изменения исследуемого биологического процесса в условиях, которые трудно воспроизвести с помощью эксперимента.
Математические модели дают возможность предсказать в отдельных случаях некоторые явления, которые были ранее неизвестны исследователю. Например, модель сердечной деятельности, которую предложили голландские ученые ван дер Пол и ван дер Марк, основанная на теории релаксационных колебаний, показала возможность особого нарушения сердечного ритма, которое впоследствии обнаружили у человека. Математической моделью физиологических явлений является также модель возбуждения нервного волокна, которая была разработана английскими учеными А. Ходжкином и А. Хаксли. Существуют логико-математические модели взаимодействия нейронов, построенные на основе теории нервных сетей, которые были разработаны американскими учеными У. Мак-Каллоком и У. Питсом.
Моделирование - это исследование объектов познания на их моделях; построение и изучение моделей реально существующих предметов и явлений (живых и неживых систем, инженерных конструкций, разнообразных процессов - физических, химических, биологических и др.) и конструируемых объектов (для определения, уточнения их характеристик, рационализации способов построения).Для моделирования сложных систем и процессов, например, биологических, используется теория больших систем, модели сложных динамических систем живой природы. Применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций, экосистем.
В биологии применяются в основном три вида моделей: биологические, физико-химические и математические (логико-математические).
Описание задач и их решений с помощью компьютерного моделирования : 1. Задача - Как исследовать строение оригинала если его нет в действительности?
В реальном времени нужный для науки оригинал может уже не существовать или же существовать, но в разных частях света ( например вымирание Динозавров ) и чтобы собрать общую картину похожую на оригинал нам будет необходимо компьютерное моделирование.
2. Задача - Как наглядно изучить свойства и взаимосвязи в организме?
С помощью компьютерного моделирования мы можем создавать наглядные примеры внутренних органов и всего организма в целом.
3. Задача - Оригинал либо очень велик, либо очень мал, как его исследовать?
Чтобы рассмотреть модель клетки мы можем использовать компьютерное моделирование и узнать строение досконально.
4.Задача - Исследование может привести к гибели организма, как можно исследовать организм не нанося ущерб?
При помощи компьютерного моделирования мы можем создать модель всех внутренних органов и исследовать их не нанося ущерб здоровью организма.
Вывод : Компьютерное моделирование очень важно для будущего науки в Биологии, так как с помощью него мы можем исследовать все аспекты жизнедеятельности организма, изучать строение живых существ даже если их уже не существует.
В основе Федерального государственного образовательного стандарта лежит системно-деятельностный подход. В парадигме системно-деятельностного подхода образовательный процесс трактуется не как трансляция научных знаний, их усвоение, воспроизводство, а как развитие познавательных способностей, основных психических новообразований . Для его реализации учитель должен создавать на уроке такие условия, при которых ученики не просто получают готовую информацию, а сами добывают ее. Для того чтобы стимулировать учащихся на поиск и обработку информации, педагогами используются разные методы. Одним из действенных методов является метод моделирования.
Моделирование – это процесс построения моделей для исследования и изучения объектов, процессов, явлений.
Модели в биологии применяются для изучения биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций и экосистем.
Цель применения метода: повышение эффективности процесса обучения за счет увеличения наглядности, активизация образного мышления обучающихся, значительное повышение их интереса к биологии и создание условий для самореализации школьника.
Задачи :
1.Повысить эффективность обработки и структурирования информации.
2.Отработать умения выделять объект изучения в центральном образе; устанавливать логические связи между вспомогательными блоками.
3.Способствовать повышению эффективности хранения информации.
Новизна метода состоит в том, что учитель:
управляет познавательной деятельностью ученика, т.е. переходит с позиции носителя знаний в позицию организатора собственно познавательной деятельности обучающихся;
мотивирует познавательную деятельность ученика на уроке за счет коммуникации, взаимопонимания и добивается положительного отношения к биологии;
организует самостоятельную работу на уроке и дома;
создает ситуацию успеха, т.е. предлагает посильные задания каждому ученику;
создает положительную эмоциональную атмосферу учебного сотрудничества, которое реализуется в системе гуманных учебных взаимоотношений.
Использование метода моделирования возможно на всех этапах урока: изучение нового материала, закрепление изученного на уроке, проверка домашнего задания.
Моделирование может быть использовано как при организации индивидуальной работы учащихся, так и при работе в парах или малых группах.
В процессе создания моделей любого типа необходимо придерживаться общих правил:
Ставим цель моделирования.
Анализируем все известные свойства объекта моделирования.
Вычленяем существенные признаки объекта.
Выбираем форму представления модели.
Переносим полученные сведения на изучаемый объект .
На своих уроках я использую метод моделирования материальных объектов и процессов и информационное структурно-логическое моделирование.В чем особенности каждого метода? Моделирование материальных объектов заключается в воссоздании образа того или иного объекта в упрощенном виде, доступном для восприятия учащимися в соответствии с возрастными и психофизическими особенностями, т.е. один и тот же объект может воссоздаваться несколько раз по мере накопления знаний. Например, одним из фундаментальных понятий в биологии является клетка. Эта тема многократно повторяется при изучении ботаники, зоологии, строения организма человека и в разделе «Общая биология». Однако учащиеся старших классов, так же, как и учащиеся младших классов, могут испытывать трудности при овладении этой темой. Это объясняется тем, что тема трудна для восприятия из-за объемности материала и сжатых сроков для её изучения. Как работает метод моделирования? В младших классах (5-6) создаются полуобъемные модели из пластилина на картоне или прозрачном носителе. В процессе создания модели учащиеся знакомятся с основными структурами клетки. В 7-8 классах модели становятся более детальными, с их помощью можно выявлять черты сходства и различия в строении клеток разных типов. В старших классах создаются объемные (3- D ) модели из пластилина, пенопласта, желатина и т.д. На каждом этапе усиливается детализация образа, закрепляются знания.
Моделирование процессов так же позволяет учащимся глубже вникнуть в суть изучаемых процессов и явлений, получить образное представление об изучаемом процессе. Например, такие сложные для усвоения темы как «Митоз и деление клетки», «Репликация ДНК», «Биосинтез белка» и др. более эффективно усваиваются на динамических моделях. Материал усваивается лучше, чем при изучении с помощью таблиц и видеодемонстраций, т. к. позволяет учащимся работать в собственном ритме, осмысливая каждый этап изучаемого процесса.
Помимо процесса создания динамических моделей, весьма эффективным методом является моделирование процессов на компьютере при помощи различных программ. Наиболее простой и доступный способ – моделирование процессов в программе PowerPoint . Такие модели позволяют красочно иллюстрировать различные процессы, отображать динамику явлений. Их изготовление требует от учащихся навыков работы с графическими редакторами, что способствует развитию их творческого потенциала, повышает ИКТ-компетенцию.
В процессе материального моделирования учащиеся приобретают навыки преобразования информации, её структурирования, учатся выделять существенные признаки и отбрасывать второстепенные. Все эти навыки позволяют перейти к следующему этапу в обучении моделированию – созданию информационных структурно-логических моделей. Уже в 5-6 классах учащиеся вполне успешно овладевают техникой составления кластеров, схем, таблиц. Начиная с 7 класса учащиеся приобретают навыки составления интеллект-карт.
Составление интеллект-карты исключает бездумные механические процессы запоминания, активизируя операции логического мышления для организации поиска информации, её критической оценки и систематизации. Интеллект-карта реализуется в виде диаграммы, на которой изображены слова, идеи, задачи или другие понятия, связанные ветвями, отходящими от центрального понятия или идеи. В основе этой техники лежит принцип «радиантного мышления», относящийся к ассоциативным мыслительным процессам, отправной точкой или точкой приложения которых является центральный объект, и выражающийся в визуализации – сопровождении мыслительного процесса рисованием блок-схем, фиксирующих новые мысли, заключения и переходы между ними.
Правила составления интеллект-карт:
1. Начинайте работу с середины листа. Таким образом мысль сможет развиваться во всех направлениях без ограничений. Важной особенностью интеллект-карт является «концентрация на центральной части» мысли. Новые мысли, высказывания, термины группируются из одного центрального образа, как бы «отпочковываясь» от него. В то же время каждая «почка» становится центром следующей ассоциации. Выделение некоторых «направлений мысли» (в виде совокупности «узлов» и ветвей) отдельными цветами позволяет намного повысить выразительность «дерева» и улучшить его запоминание.
2. Если возможно, передайте основную идею рисунком. Одним рисунком Вы выражаете тысячу слов, к тому же при его создании задействуется воображение. Рисунок в центре листа привлекает внимание, не позволяет отвлекаться, активизирует мыслительный процесс.
3. Используйте разные цвета, не менее 3-х. Цвета активизируют мыслительный процесс не меньше, чем рисунки. Такая карта, раскрашенная цветными фломастерами, ручками или карандашами, становится живее и выразительнее, способствует творческому процессу и радует глаз. При этом необходимо помнить, что использование большого количества цветов, равно как и бессистемного их применения, нарушает композицию интеллект-карты, а, следовательно, внешний вид и удобочитаемость карты.
4. Соедините основные ответвления с рисунком в центре листа, а второстепенные и все остальные — друг с другом. В основе мыслительного процесса лежат ассоциации, следовательно, соединяя ответвления, вы лучше запоминаете информацию. Соединяя основные ответвления, вы тем самым создаете логическую основу для мыслительного процесса. Так ветки дерева расходятся во все стороны от общего ствола. Если между ветками и стволом (или большими и маленькими ветками) появятся промежутки, то ветки отвалятся. Тот же принцип действует и при создании интеллект-карт: если между основной идеей и ответвлениями нет связи, то все развалится (знания забудутся и улетучатся). Поэтому не забывайте о соединениях!
5. Ответвления должны быть не прямыми, а изогнутыми. Почему? Потому что прямые линии неинтересны мозгу, утомляют его. Изогнутые ответвления на интеллект-картах напоминают ветки дерева, и взгляду хочется проследить все их изгибы до конца. Ветви образуют связанную узловую структуру. Интеллект-карта представляет собой набор узлов и стрелок – «ветвей», которые прорастают из одного центра. От других, дочерних узлов также прорастают новые ветви и т.п. Таким образом, интеллект-карта образует связанную узловую структуру. При этом ветви расходятся во все стороны и никогда не сходятся в одну точку.
6. На каждой линии должно быть по одному ключевому слову. В этом случае интеллект-карта будет более выразительной и гибкой, ведь каждое слово или рисунок — это своеобразный множитель, вызывающий новые ассоциации и образующий новые связи. Отдельное слово вызывает целый ряд мыслей и идей, чего не скажешь о слове, входящем во фразу или предложение. Карта с ключевыми словами похожа на ладонь, в которой суставы всех пальцев подвижны, а карта с фразами или предложениями напоминает ладонь с расставленными и загипсованными пальцами. Нельзя делать «несколько одинаковых сущностей» на одной карте. Это значит, что каждое ключевое слово должно появиться на интеллект-карте только один раз. Недопустимо «закольцовывать» ключевые слова на интеллект-карте. Если необходимо «связать» стрелками несколько понятий с одним, это необходимо делать отдельными стрелками.
7. При рисовании интеллект-карт вместо длинного поясняющего текста старайтесь чаще использовать сокращения и аббревиатуры. Это необходимо не только для экономии места. Психология утверждает, что человек лучше запоминает короткие, необычные, привлекающие внимание слова, чем длинные мысли. При запоминании длинных мыслей возможно искажение смысла, что не бывает при запоминании аббревиатур. Также учтите, что аббревиатуру и сокращение легче записать и легче запомнить, что ускоряет составление интеллект карт. При составлении интеллект-карт используйте как уже известные и употребительные сокращения, так и созданные, изобретенные самими. Помните! Интеллект-карта, как бы красиво она ни была оформлена, всего лишь инструмент для лучшего запоминания, для написания конспекта, документа или произведения, но никак не заменяет его! Поэтому степень «детализации » интеллект-карты Вы определяете сами.
Обучение составлению интеллект-карт – длительный поэтапный процесс. Учащиеся должны научиться определять главную мысль текста, вычленять уровни и подуровни понятий, сопровождающие текст, научиться ассоциировать понятия и устанавливать связи между ними.
Читайте также: