Что служит для хранения данных в компьютере
Данные – это самое главное для обычных пользователей и современного бизнеса. Если в системе ПК возникнет сбой, необходимо иметь возможность восстановить личные и рабочие файлы. Поэтому важно хранить информацию вне компьютера. При этом следует убедиться, что будет легко получить доступ к этим файлам и управлять ими.
Данные – это самое главное для обычных пользователей и современного бизнеса. Если в системе ПК возникнет сбой, необходимо иметь возможность восстановить личные и рабочие файлы. Поэтому важно хранить информацию вне компьютера. При этом следует убедиться, что будет легко получить доступ к этим файлам и управлять ими.
Хранение – ключевой компонент цифровых устройств, поскольку пользователи и компании привыкли полагаться на него для сохранения информации, начиная личными фотографиями и заканчивая важными для бизнеса документами.
Технология хранения со временем улучшается. Мы начали с мэйнфреймов, а теперь можно записывать все на быстрые SSD.
Как работает хранилище
Термин «хранилище» может относиться как к данным пользователя в целом, так и к интегрированным системам аппаратного и программного обеспечения, используемым для сбора, управления и определения приоритетов данных. Сюда входит информация в приложениях, базах данных, хранилищах данных, архивации, устройствах резервного копирования и «облаках».
Требования к емкости определяют, сколько хранилища необходимо для запуска приложения, набора приложений или наборов данных. Требования к емкости учитывают типы данных. Например, для простых документов может потребоваться емкость в килобайтах, в то время как файлы с большим количеством графики могут занимать мегабайты, а видеофайлы – гигабайты.
Локальное хранилище
Это традиционный метод. При этом компании будут сами управлять серверами и владеть ими. У предприятий достаточно денег, чтобы построить собственный центр обработки данных. Однако у большинства из них есть выделенная комната, где они могут хранить свои серверы.
Сервера можно арендовать или купить в собственность. Приобрести можно как новые, так и б/у серверы.
Если данные хранятся на своем внутреннем сервере, необходимо создать и поддерживать свою IT-инфраструктуру. Однако также придется вложить много денег в создание этой инфраструктуры. Нужно иметь дело с расходами на содержание центра обработки данных. Если оборудование старое, то необходимо его заменить. При этом следует регулярно обновлять программное обеспечение, регулировать протоколы доступа.
Некоторые компании хотят иметь полный контроль над своими ресурсами и файлами. Таким образом, стоит подумать о создании собственного дата-центра.
Облачное хранилище
При использовании «облака» нет необходимости покупать собственное оборудование. Можно передать свои операции облачному провайдеру. Используя облако, пользователь легко получает доступ к дополнительным вычислительным ресурсам или хранилищу. Это гарантирует удовлетворение растущих потребностей.
Кроме того, партнеры могут получить доступ к папкам из любой точки мира. Это очень важно, поскольку большинство людей сейчас работают удаленно.
Еще один вариант – комбинировать облачные технологии с периферийными. Это поможет собрать больше данных и управлять ими, расширить охват своей сети, не покупая новое сетевое оборудование.
Типы устройств
Когда дело доходит до физического хранилища, рекомендуется использовать различные типы устройств. Каждое устройство предлагает несколько разные преимущества и недостатки с точки зрения надежности и производительности, поэтому важно понимать, как каждое из них работает, как они могут дополнять друг друга.
HDD, или жесткие диски
Самое известное запоминающее устройство, доступное на рынке, – жесткий диск. На HDD информация будет храниться на оптическом и круглом диске. Данные считываются и записываются с помощью сенсорного рычага. Этот принцип очень похож на компакт-диск или проигрыватель. Если нужна более высокая скорость передачи данных, то можно увеличить вращение диска. Таким образом, HDD будет предлагать лучшую производительность.
Однако на самом деле эта скорость ограничена вращением диска. Большинство жестких дисков предлагают до 7000 об/мин. Если использовать дорогие HDD, скорость может достигать 15000 об/мин. Срок их службы – около 3-5 лет. Однако они дешевле по сравнению с другими устройствами.
SSD, или твердотельные накопители
Твердотельные накопители отличаются от HDD, поскольку у них нет вращающихся или движущихся частей. Эти диски используют флэш-память NAND. Твердотельные накопители почти в 4-10 раз быстрее жестких дисков. Они также более долговечны.
Однако SSD дороже по сравнению с HDD. Каждый блок памяти может хранить ограниченные данные, считаются ненадежными для резервных копий.
Ленточные накопители
Самая старая форма приводов, доступных на рынке. Ленточные накопители в основном используются компаниями, которые хранят большой объем архивных файлов, когда не нужно быстро получать к ним доступ. Жизненный цикл большинства цифровых ленточных накопителей составляет более 30 лет. Кроме того, не нужно беспокоиться о его поддержании. Это идеальное решение для резервного копирования.
Хотя сами ленты довольно дешевы, приводная система, необходимая для чтения и записи информации, дорога в обслуживании и сложна в управлении. Многие компании, использующие ответвительные диски для обеспечения отказоустойчивого восстановления после сбоев, предпочитают одну и ту же систему в течение многих лет и избегают перехода на более сложную технологию (или «облако») из-за затрат на миграцию и внедрение.
Пятимерное (5D) хранилище
Представляет собой новую разработку, где используются диски из плавленого кварца, которые могут кодировать данные в трех стандартных измерениях (ширина, длина, глубина) и двух оптических измерениях. Последнее достигается изменением поляризации и интенсивности лазерного света в процессе записи. Это позволяет небольшим стеклянным дискам 5D хранить 360 ТБ. Диски 5D невероятно долговечны и теоретически могут прожить миллиарды лет при комнатной температуре.
Но в качестве экспериментальной технологии 5D по-прежнему не является рентабельным или практичным способом для хранения рабочих и личных файлов. Возникают вопросы о том, сможет ли кварцевый состав поддерживать несколько записей, не говоря уже о том, какое оборудование потребуется для чтения закодированной информации.
Тем не менее, технология является многообещающей в качестве будущего долгосрочного архивного решения для хранения данных благодаря надежности и доступной памяти.
Корпоративные сети и серверная флэш-память
Поставщики корпоративных хранилищ предоставляют интегрированные системы NAS, которые помогают собирать большие объемы информации и управлять ими. Аппаратное обеспечение включает в себя массивы или серверы хранения, оснащенные жесткими дисками, флэш-накопителями или их гибридной комбинацией, а также программное обеспечение для предоставления услуг обработки данных на основе массивов.
С 2011 года все большее число предприятий внедряют массивы all-flash, оснащенные только твердотельными накопителями на базе флэш-памяти NAND, в качестве дополнения или замены дисковых массивов.
В отличие от дисков, устройства флэш-памяти не полагаются на движущиеся механические части, что обеспечивает более быстрый доступ к информации и меньшую задержку. Флэш-память является энергонезависимой, что позволяет информации сохраняться в памяти, даже если система теряет питание. При этом для дисковых систем требуется встроенная резервная батарея или конденсаторы.
Но флэш-память еще не достигла уровня выносливости, эквивалентного диску, что привело к созданию гибридных массивов, объединяющих оба типа носителей.
Существует 3 основных варианта сетевых систем хранения. В своей простейшей конфигурации хранилище с прямым подключением (DAS) включает внутренний жесткий диск отдельного компьютера. На предприятии DAS может быть кластером дисков на сервере или группой внешних дисков, которые подключаются непосредственно к серверу через интерфейс малых компьютерных систем (SCSI), последовательный интерфейс SCSI (SAS), волоконный канал (FC) или Интернет.
NAS – это архитектура, в которой несколько файловых узлов совместно используются пользователями обычно через подключение к локальной сети (LAN) на основе Ethernet. Преимущество NAS в том, что файловым серверам не требуется полнофункциональная операционная система корпоративного хранилища. Устройства NAS управляются с помощью служебной программы на основе браузера, и каждому узлу в сети назначается уникальный IP-адрес.
С горизонтально масштабируемым NAS тесно связано хранилище объектов, которое устраняет необходимость в файловой системе. Каждый объект представлен уникальным идентификатором. Все объекты представлены в едином плоском пространстве имен.
Сеть хранения данных (SAN) может быть спроектирована для охвата нескольких местоположений дата-центров, которым требуется высокопроизводительное блочное хранилище. В среде SAN блочные устройства воспринимаются хостом как локально подключенное хранилище. Каждый сервер в сети может получить доступ к общему хранилищу, как если бы это был диск с прямым подключением.
Достижения в области флэш-памяти NAND в сочетании с падением цен в последние годы проложили путь к программно-определяемым хранилищам. Используя эту конфигурацию, предприятие устанавливает твердотельные накопители по стандартной цене на сервер на базе x86, используя стороннее ПО или собственный открытый исходный код для управления хранилищем.
Энергонезависимая память Express (NVMe) – это развивающийся отраслевой протокол для флэш-памяти. Отраслевые обозреватели ожидают, что NVMe станет стандартом для флэш-хранилищ. NVMe позволит приложениям напрямую взаимодействовать с центральным процессором (ЦП) через каналы связи PCIe, минуя наборы команд SCSI, передаваемые на сетевой адаптер главной шины. NVMe-oF предназначен для ускорения передачи данных между хост-компьютером и целевой флэш-памятью с использованием установленного сетевого подключения Ethernet, FC или InfiniBand.
Энергонезависимый двухрядный модуль памяти (NVDIMM) представляет собой гибридную память NAND и DRAM со встроенным резервным питанием, который подключается к стандартному слоту DIMM на шине памяти. Модули NVDIMM используют только флэш-память для резервного копирования, выполняя обычные вычисления в DRAM.
NVDIMM помещает флэш-память ближе к материнской плате, предполагая, что производитель компьютера модифицировал сервер и разработал базовые драйверы системы ввода-вывода (BIOS) для распознавания устройства. Модули NVDIMM – это способ расширить системную память или добавить высокопроизводительное хранилище, а не увеличить емкость. Текущие модули NVDIMM на рынке достигают максимум 32 ГБ, но плотность в форм-факторе увеличилась с 8 ГБ до 16 ГБ всего за несколько лет.
Долговременная (внешняя) память — это энергонезависимая память, предназначенная для длительного хранения информации.
Процессор не имеет прямого доступа к содержимому внешней памяти. Чтобы процессор мог обработать данные из долговременной памяти, они должны быть сначала загружены в оперативную память. В настоящее время к основным устройствам долговременной памяти относятся жесткие магнитные диски, накопители на оптических дисках, устройства флеш-памяти. Ранее для длительного хранения информации использовались также магнитные ленты, дискеты, магнито-оптические диски.
Основным устройством внешней памяти является жесткий магнитный диск (рисунок 1). Внутри жесткого диска находятся одна или несколько пластин, насаженных на общий шпиндель. Данные обычно записываются на обеих сторонах каждой пластины, хотя в некоторых жестких дисках производители наряду с двухсторонними пластинами могут использовать и односторонние. Запись и чтение информации осуществляются с помощью головок чтения/записи. Под пластинами располагается двигатель, который вращает их с достаточно большой скоростью. Скорость вращения пластин измеряется в оборотах в минуту (rpm). Первые жесткие диски имели скорость вращения 3600 rpm. В современных жестких дисках скорость вращения возросла до 7200, 10 000 и 15 000 оборотов в минуту.
Рисунок 1 - Жесткий диск
В процессе записи цифровая информация, хранящаяся в оперативной памяти, преобразуется в переменный электрический ток, который поступает на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Перед использованием жесткого диска необходимо выполнить операцию его форматирования.
Форматирование включает в себя три этапа.
1. Низкоуровневое форматирование диска. При этом процессе на жестком диске создаются физические структуры: дорожки, секторы, управляющая информация. Этот процесс выполняется заводом-изготовителем на пластинах, которые не содержат еще никакой информации.
2. Разбиение на разделы. Этот процесс разбивает жесткий диск на логические диски (С:, D: и т. д.). Эту функцию выполняет операционная система.
3. Высокоуровневое форматирование. Этот процесс также выполняется операционной системой и зависит от ее типа. При высокоуровневом форматировании создаются логические структуры, ответственные за правильное хранение файлов, а также, в некоторых случаях, системные загрузочные файлы в начале диска.
Жесткие диски изначально создавались в качестве внутренних устройств и не были предназначены для резервного копирования и переноса информации с одного компьютера на другой. Около 20 лет назад самым распространенным устройством, предназначенным для этих целей, были дискеты (гибкие магнитные диски). Однако их емкость по современным меркам была очень мала (1,44 Мбайт), поэтому на смену им пришли оптические диски CD (компакт-диски), позволяющие хранить достаточно большие объемы информации (650-800 Мбайт) и намного превосходящие дискеты по степени надежности. Для работы с компакт-дисками на компьютере необходимо наличие специального привода (оптического накопителя).
Обзор жесткого диска представлен на видео 1:
Обзор жесткого диска.MTS
Различают диски «только для чтения» (CD-ROM), изготавливаемые промышленным способом, для однократной записи (CD-R) и для многократной записи (CD-RW). Диски последних двух типов предназначены для записи на специальных пишущих оптических накопителях. Все типы дисков имеют одинаковую структуру хранения информации. Данные с помощью луча красного лазера записываются на спиральную дорожку, идущую от центра диска к его периферии. Вдоль дорожки располагаются углубления, называемые питами (pit — «углубление»). На записываемых дисках питы имитируются темными пятнами специального регистрирующего слоя, получившимися в результате нагрева нужного участка лазером. Чередованием углублений и промежутков между ними и кодируется любая информация.
Диски DVD имеют более высокую плотность записи данных, чем CD-диски. Существуют диски, на которых запись информации производится в два слоя. В зависимости от указанных выше параметров DVD-диски могут иметь объем 4,7 Гб или 8,5 Гб. Все компакт-диски (и CD, и DVD) имеют одинаковую структуру хранения информации. Скорость чтения/записи оптических приводов измеряется в единицах, кратных базовой скорости (обозначается 16х, 24х, 48х и т. д.). Для приводов CD базовая скорость равна 150 Кб/с, для DVD — 1,385 Мб/с.
Blu-ray (Blu-ray Disc) является названием формата оптического диска следующего поколения. В Blu-Ray для записи и чтения данных вместо красного лазера, который используется в DVD и CD-ROM, применен синий лазер. У синего лазера длина волны значительно меньше длины волны красного лазера. Это позволяет сделать толщину дорожки данных тоньше, что приводит к значительному увеличению емкости носителя. Формат был разработан для обеспечения возможности записи, перезаписи и воспроизведения видео высокого разрешения (HD-video), а также для хранения больших объемов данных. Емкость нового формата — от 25 до 50 Гб.
По устройству флеш-память (flash-память) напоминает микросхему динамической энергозависимой памяти, в которой вместо конденсаторов в ячейках памяти установлены транзисторы. При подаче напряжения транзистор принимает одно из фиксированных положений — закрытое или открытое. Он остается в этом положении до тех пор, пока на него не будет подан новый электрический заряд, изменяющий его состояние. Таким образом, последовательность логических нулей и единиц формируется в этом типе памяти подобно статической памяти: закрытые для прохождения электрического тока ячейки распознаются как логические единицы, открытые — как логические нули.
USB flash drive (флеш-накопитель, рисунок 2) — устройство на основе флеш-памяти для хранения и переноса данных с одного компьютера на другой.
Компьютеры используют различные устройства хранения данных, которые разделяются по двум признакам: 1) сохраняются ли на них данные при отключении электропитания; 2) насколько далеко они находятся от процессора (ЦП). Оба типа хранилищ должны быть на всех компьютерах. В персональном компьютере память не сохраняет данные, когда электричество выключается, но, когда оно включается, память обеспечивает быстрый доступ к открытым файлам. Однако накопитель позволяет постоянно хранить данные, поэтому он доступен всегда при включении компьютера.
Энергозависимое и энергонезависимое хранилище
По первой классификации хранилища компьютерных данных делятся на энергозависимые и энергонезависимые хранилища. Примером энергозависимого хранилища является память (ОЗУ), которая хранит данные только до тех пор, пока на устройство подается электроэнергия. ОЗУ позволяет вашему компьютеру держать несколько файлов открытыми и мгновенно переключаться между ними. Еще один пример энергозависимых устройств хранения данных — это калькуляторы.
Энергонезависимое хранилище — это хранилище, которое сохраняет данные даже после отключения электричества, питающего устройство. Примером может служить жесткий диск (HDD) или твердотельный накопитель (SSD), который содержит все данные, сохраненные на вашем компьютере. Существуют и другие энергонезависимые хранилища, такие как DVD-диски или флеш-накопители. Подробнее о различиях между памятью и хранилищем читайте здесь.
Иерархия хранилищ
Устройства хранения компьютерных данных также классифицируются по тому, насколько они удалены от процессора или ЦП. Ближайшим хранилищем является оперативная память или ОЗУ. Это единственный вид хранилища данных, который напрямую обращается к ЦП. Память включает регистры процессора и кэш процессора, но они включены в модуль памяти.
Память — это энергозависимое хранилище, поэтому любая информация, которая поступает в память, должна быть записана на основное запоминающее устройство для долгосрочного хранения. Поскольку данные передаются из памяти на устройство хранения, оно считается вторичным хранилищем.
Для большинства персональных компьютеров основным устройством хранения данных является вторичное хранилище. На жестком диске или твердотельном диске хранятся все данные: файлы, фотографии, программы, музыка и фильмы, которые пользователь хочет сохранить. Съемные внешние устройства хранения данных, такие как флеш-накопители, CD и DVD-диски для чтения и записи, также являются вторичными хранилищами. Однако компьютер не может работать без накопителя. Накопитель также содержит всю информацию, которая необходима для запуска компьютера.
Третичное хранилище — это компьютерное хранилище данных, которое использует съемные носители, такие как ленточный накопитель, и робота для извлечения данных. Такой тип редко используется в персональных ПК.
Вывод
В общем случае жесткий диск или твердотельный накопитель обычно называют накопителем. Поскольку память энергозависима, ее трудно назвать устройством хранения. А так как персональные компьютеры редко используют третичные хранилища, накопитель является основным и часто единственным энергонезависимым устройством хранения данных на компьютере. Узнайте подробнее о различиях между жесткими дисками и твердотельными накопителями.
В оперативной памяти компьютера любая информация хранится только до выключения компьютера. Если вам нужно сохранить документ и вернуться к работе над ним завтра, его нужно записать на долговременное устройство хранения, обычно – на диск. Вот самые распространенные типы дисков и устройств хранения.
1. Дискеты: 3,5-дюймовые дискеты емкостью 1,44 Мбайт когда-то были «вездесущим» средством хранения информации, но сейчас они безнадежно устарели. Можете считать, что дисковод для них в вашем компьютере необязателен. Вот так она выглядела.
3. Жесткие диски, или винчестеры: купите самый емкий жесткий диск, какой сможете себе позволить. Цифровые фотографии всегда занимают больше места, чем вы рассчитывали, а музыкальная коллекция вашего сына наверняка занимает больше, чем весь архив ЦРУ. Хотя в целом считается, что более дорогие жесткие диски надежнее дешевых, индивидуальные результаты бывают разными, и трудно утверждать что-то наверняка.
Быстродействие, т.е. скорость, с которой жесткий диск записывает и считывает данные, менее важно, чем емкость. Быстродействие станет более важным, если вы будете регулярно работать с большими объемами данных, например с видеозаписями. Однако стоит подумать о том, чтобы за несколько дополнительных долларов купить винчестер с новым интерфейсом SATA этот интерфейс быстро приходит на смену устаревшему и более медленному IDE (также известному как ATA или PATA). Кроме того, кабели SATA уже и гибче, чем широкие и неудобные кабели IDE.
Также обратите внимание на внешние жесткие диски, которые обычно подключаются к компьютеру через USB-кабель(внешние жесткие диски). Они работают почти так же быстро, как внутренние жесткие диски, и их можно подключать к компьютеру и отключать по мере необходимости. Кроме того, они не вносят своего вклада в нагрев, что находится в корпусе компьютера.
Если вы покупаете новый винчестер, пусть его установит в компьютер продавец. При установке жесткого диска нужно обращать внимание на ряд мелочей, малопонятных неспециалисту.
4. Приводы CD и DVD: эти приводы позволяют читать и записывать диски с различной информацией (от текстовых документов до музыки и видео) на обычные компакт-диски (CD) помещается порядка 700 Мбайт данных; на DVD помещается порядка 4,5 Гбайт, а на двухслойные DVD – около 8 Гбайт. Не жадничайте – купите себе привод, поддерживающий двухслойные DVD (DVD+RW DL), даже если двухслойные диски дорого стоят. Если вы не знаете, как установить этот привод, купите себе внешний USB-вариант – Windows отлично работает с такими приводами.
Приведенный выше список отнюдь не является исчерпывающим – существует множество более экзотических устройств хранения информации: магнитооптические, ленточные накопители и т.д.
Читайте также: