Что происходит с водой при испарении с поверхности кожи
Механизм потоотделения при акклиматизации. Теплоотдача при одышке
а) Механизм образования пота во время акклиматизации к жаре. Роль альдостерона. Здоровый неакклиматизированный человек редко продуцирует пота более 1 л/ч, но когда человек подвергается действию жары в течение 1-6 нед, он начинает резко потеть, часто увеличивая потоотделение до 2-3 л/ч. Испарение такого количества пота может увеличивать отдачу тепла более чем в 10 раз по сравнению с базальным уровнем теплоотдачи. Возрастание эффективности механизма потоотделения объясняется внутренними изменениями деятельности потовых желез, приводящими к увеличению потоотделения.
С акклиматизацией связано дальнейшее снижение концентрации хлорида натрия в поте, что позволяет последовательно улучшать сохранность солей в организме. Большая часть эффектов акклиматизации связана с увеличением продукции альдостерона корой надпочечников, что является результатом небольшого снижения концентрации хлорида натрия во внеклеточной жидкости и плазме. Неакклиматизированные люди при обильном потоотделении часто теряют от 15 до 30 г солей ежесуточно в течение первых нескольких дней. После 4-6 нед акклиматизации потери солей сводятся к 3-5 г/сут.
б) Теплоотдача посредством одышки. Многие животные не обладают способностью к теплоотдаче с поверхности тела по двум причинам:
(1) поверхность кожи покрыта шерстью;
(2) у животных нет потовых желез, что не позволяет совершаться теплоотдаче путем испарения с поверхности кожи.
Заменой этого механизма может быть механизм, опосредованный одышкой, используемый большинством животных с целью теплоотдачи.
Механизм форсированного дыхания (одышка) запускается гипоталамическим центром терморегуляции. Это означает, что когда кровь слишком нагрета, гипоталамус инициирует нервный сигнал с целью снижения температуры. Один из таких сигналов сопряжен с появлением одышки. Одышка регулируется специальным центром — центром одышки, связанным с пневмотаксическим дыхательным центром, локализованным в мозге.
Появление у животного одышки на фоне быстрого чередования вдоха и выдоха, когда большие количества новых порций воздуха поступают извне и контактируют с поверхностью воздухоносных путей, охлаждает кровь. В слизистых воздухоносных путей кровь также охлаждается в результате испарения воды с поверхности слизистой и, что особенно существенно, испарения слюны с поверхности языка.
Одышка не увеличивает альвеолярную вентиляцию более чем необходимо для адекватной регуляции газового состава крови в связи с тем, что дыхание в этом случае становится поверхностным, поэтому большая часть воздуха, поступающего в альвеолы, является скорее воздухом мертвого пространства, чем атмосферным воздухом.
в) Регуляция температуры тела. Роль гипоталамуса. На рисунке ниже показано, что происходит с температурой «сердцевины» тела обнаженного человека после нескольких часов пребывания в сухом воздухе при изменении температуры воздуха от -1 до 72°С.
Влияние высокой и низкой температуры воздуха на регистрируемую в течение нескольких часов температуру «сердцевины» тела. Внутренняя температура остается стабильной, несмотря на значительные изменения температуры воздуха
Точные значения температуры, представленные в виде кривой, зависят от движения, влажности воздуха и даже окружающей природы. В целом обнаженный человек в сухом воздухе, температура которого меняется от 13 до 55°С, способен поддерживать нормальную температуру тела на уровне между 32,5 и 38,2°С.
Температура тела регулируется механизмом обратной связи, опосредованным нервной системой и управляемым центром терморегуляции, локализованным в гипоталамусе. Для обеспечения функционирования механизма обратной связи должны быть способы обнаружения отклонений температуры от нормальных значений, когда она становится слишком высокой или низкой.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Испарение как фактор теплоотдачи. Одежда и испарение с поверхности тела
а) Испарение. При испарении воды с поверхности тела расходуется 0,58 Ккал тепла на каждый 1 г испаряющейся воды. Даже если человек не потеет, вода продолжает незаметно испаряться с поверхности кожи и легких со скоростью около 600-700 мл/сут, обусловливая постоянную теплоотдачу со скоростью 16-19 Ккал/ч. Это незаметное испарение с поверхности кожи и легких не может выполнять функцию терморегуляции, т.к. является результатом постоянной диффузии молекул воды через кожу и поверхность легких.
Интенсивность потоотделения регулируется, и теплоотдача посредством испарения при потоотделении может служить средством этой терморегуляции, что будет рассмотрено в данной главе.
Механизмы теплоотдачи
б) Испарение является необходимым механизмом теплоотдачи. Как только температура кожи становится выше температуры окружающей среды, теплоотдача может осуществляться процессами теплоизлучения и теплопроведения. Однако как только температура окружающей среды становится выше температуры кожи, вместо теплоотдачи организм начинает получать тепло посредством тех же механизмов. В таких условиях единственным способом освобождения организма от избытка тепла становится испарение.
Все, что препятствует адекватному испарению, когда температура окружающей среды становится выше температуры тела, может быть причиной повышения температуры глубоких частей тела. Такая возможность существует в случаях врожденного отсутствия потовых желез. Такие люди выдерживают низкие температуры, но они почти погибают от теплового удара в тропических зонах, потому что без охлаждения посредством испарения они не могут предупредить подъем температуры тела, когда температура воздуха выше температуры тела.
в) Влияние одежды на теплоотдачу посредством теплопроведения. Одежда создает прослойку воздуха между одеждой и кожей и таким образом увеличивает протяженность так называемой интимной зоны воздуха, соседствующей с кожей, наряду со снижением конвекционных потоков воздуха. Следовательно, интенсивность теплоотдачи путем теплопроведения и конвекции резко снижается. Обычный костюм снижает теплоотдачу на 50% по сравнению с той, что была у обнаженного тела, но вид одежды, используемой в арктических широтах, может свести потери тепла до уровня менее 1/6.
Почти половина тепла отдается одежде с поверхности кожи путем излучения, а не путем теп-лопроведения через небольшое промежуточное пространство между кожей и одеждой, поэтому покрытие одежды изнутри тонким слоем золота, возвращающего излучаемое тепло обратно телу, повышает изолирующие свойства одежды. Такую одежду можно использовать в арктических условиях, т.к. эта технология уменьшает вес одежды почти на 50%.
Влияние одежды на поддержание температуры тела почти полностью утрачивается, когда одежда промокает, в связи с высокой теплопроводностью воды, увеличивающей скорость отдачи тепла через одежду в 20 раз и более, поэтому одним из наиболее важных факторов защиты тела от холода в арктических широтах является защита одежды от промокания. Следует также заботиться и о предупреждении перегревания, пусть и не долгого, т.к. выделяемый пот ухудшает изолирующие свойства одежды.
Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021
Теплоотдача. Излучение. Теплопроведение. Конвекция. Испарение.
Существуют следующие пути отдачи тепла организмом в окружающую среду: излучение, теплопроведение, конвекция и испарение.
Излучение — это способ отдачи тепла в окружающую среду поверхностью тела человека в виде электромагнитных волн инфракрасного диапазона (а = 5—20 мкм). Количество тепла, рассеиваемого организмом в окружающую среду излучением, пропорционально площади поверхности излучения и разности средних значений температур кожи и окружающей среды. Площадь поверхности излучения — это суммарная площадь поверхности тех частей тела, которые соприкасаются с воздухом. При температуре окружающей среды 20 °С и относительной влажности воздуха 40—60 % организм взрослого человека рассеивает путем излучения около 40—50 % всего отдаваемого тепла. Теплоотдача путем излучения возрастает при понижении температуры окружающей среды и уменьшается при ее повышении. В условиях постоянной температуры окружающей среды излучение с поверхности тела возрастает при повышении температуры кожи и уменьшается при ее понижении. Если средние температуры поверхности кожи и окружающей среды выравниваются (разность температур становится равной нулю), отдача тепла излучением становится невозможной. Снизить теплоотдачу организма излучением можно за счет уменьшения площади поверхности излучения («сворачивания тела в клубок»). Если температура окружающей среды превышает среднюю температуру кожи, тело человека, поглощая инфракрасные лучи, излучаемые окружающими предметами, согревается.
Рис. 13.4. Виды теплоотдачи. Пути отдачи тепла организмом во внешнюю среду можно условно подразделить на «влажную» теплоотдачу, связанную с испарением пота и влаги с кожи и слизистых оболочек, и на «сухую» теплоотдачу, которая не связана с потерей жидкости.
Теплопроведение — способ отдачи тепла, имеющий место при контакте, соприкосновении тела человека с другими физическими телами. Количество тепла, отдаваемого организмом в окружающую среду этим способом, пропорционально разнице средних температур контактирующих тел, площади контактирующих поверхностей, времени теплового контакта и теплопроводности контактирующего тела. Сухой воздух, жировая ткань характеризуются низкой теплопроводностью и являются теплоизоляторами. Использование одежды из тканей, содержащих большое число маленьких неподвижных «пузырьков» воздуха между волокнами (например, шерстяные ткани), дает возможность организму человека уменьшить рассеяние тепла путем теплопроводности. Влажный, насыщенный водяными парами воздух, вода характеризуются высокой теплопроводностью. Поэтому пребывание человека в среде с высокой влажностью при низкой температуре сопровождается усилением теплопотерь организма. Влажная одежда также теряет свои теплоизолирующие свойства.
Конвекция — способ теплоотдачи организма, осуществляемый путем переноса тепла движущимися частицами воздуха (воды). Для рассеяния тепла конвекцией требуется обтекание поверхности тела потоком воздуха с более низкой температурой, чем температура кожи. При этом контактирующий с кожей слой воздуха нагревается, снижает свою плотность, поднимается и замещается более холодным и более плотным воздухом. В условиях, когда температура воздуха равна 20 °С, а относительная влажность — 40—60 %, тело взрослого человека рассеивает в окружающую среду путем теплопро-ведения и конвекции около 25—30 % тепла (базисная конвекция). При увеличении скорости движения воздушных потоков (ветер, вентиляция) значительно возрастает и интенсивность теплоотдачи (форсированная конвекция).
Отдача тепла организмом путем теплопроведения, конвекции и излучения, называемых вместе «сухой» теплоотдачей, становится неэффективной при выравнивании средних температур поверхности тела и окружающей среды.
Теплоотдача путем испарения — это способ рассеяния организмом тепла в окружающую среду за счет его затраты на испарение пота или влаги с поверхности кожи и влаги со слизистых оболочек дыхательных путей («влажная» теплоотдача). У человека постоянно осуществляется выделение пота потовыми железами кожи («ощутимая», или железистая, потеря воды), увлажняются слизистые оболочки дыхательных путей («неощутимая» потеря воды) (рис. 13.4). При этом «ощутимая» потеря воды организмом оказывает более существенное влияние на общее количество отдаваемого путем испарения тепла, чем «неощутимая».
При температуре внешней среды около 20 "С испарение влаги составляет около 36 г/ч. Поскольку на испарение 1 г воды у человека затрачивается 0,58 ккал тепловой энергии, нетрудно подсчитать, что путем испарения организм взрослого человека отдает в этих условиях в окружающую среду около 20 % всего рассеиваемого тепла. Повышение внешней температуры, выполнение физической работы, длительное пребывание в теплоизолирующей одежде усиливают потоотделение и оно может возрасти до 500— 2000 г/ч. Если внешняя температура превышает среднее значение температуры кожи, то организм не может отдавать во внешнюю среду тепло излучением, конвекцией и теплопроведением. Организм в этих условиях начинает поглощать тепло извне, и единственным способом рассеяния тепла становится усиление испарения влаги с поверхности тела. Такое испарение возможно до тех пор, пока влажность воздуха окружающей среды остается меньше 100 %. При интенсивном потоотделении, высокой влажности и малой скорости движения воздуха, когда капли пота, не успевая испариться, сливаются и стекают с поверхности тела, теплоотдача путем испарения становится менее эффективной.
Информация на сайте подлежит консультации лечащим врачом и не заменяет очной консультации с ним.
См. подробнее в пользовательском соглашении.
Развесили белье, а оно и высохло. Чай разлили, лужа долго высыхает, а если «размазать» — процесс пойдет быстрее. Вообще в жизни много чего испаряется, хотим мы этого или нет.
О чем эта статья:
Испарение: что это за процесс
Процесс перехода из жидкого состояния в газообразное называется парообразованием. У этого процесса есть две разновидности: испарение и кипение.
Например, мы заварили себе горячий чай. Над чашкой мы точно увидим пар, так как вода только что поучаствовала в процессе кипения.
Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. Это действительно так, при этом эти два процесса могут происходить параллельно.
- Испарение — это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости при температуре ниже температуры кипения. Если поверхность жидкости открыта и с нее начинается переход вещества из жидкого состояния в газообразное, это будет называться испарением.
- Кипение — процесс интенсивного парообразования, который происходит в жидкости при определенной температуре.
Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.
Физика объясняет испарение тем, что жидкость обычно несколько холоднее окружающего воздуха — из-за разницы температур происходит испарение. Как будто бы это фазовый переход, о котором мы говорим в статье об агрегатных состояниях .
Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.
Интересно то, что направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:
- из глубины жидкости к поверхности, а затем в воздух;
- только из жидкости к поверхности;
- к поверхности из воды и газовой среды одновременно;
- к площади поверхности только от воздуха.
Подытожим, чтобы не запутаться: в чем главная разница между испарением и кипением:
Испарение | Кипение |
При любой температуре, с поверхности жидкости | При определенной температуре, во всем объеме жидкости |
Испарение на уровне молекул
Давайте вспомним об особенностях разных агрегатных состояний вещества.
Агрегатные состояния
Свойства
Расположение молекул
Расстояние между молекулами
Движение молекулы
сохраняет форму и объем
в кристаллической решетке
соотносится с размером молекул
колеблется около своего положения в кристаллической решетке
близко друг к другу
малоподвижны, при нагревании скорость движения молекул увеличивается
занимают предоставленный объем
много больше размеров молекул
хаотичное и непрерывное
Из этой таблицы видно, что молекулы в жидкостях находятся близко друг другу, но хаотично, то есть не имеют кристаллической решетки, как в твердых телах. Эти молекулы движутся (причем, чем выше температура, тем быстрее движутся) и в ходе движения сталкиваются. Столкновения меняют направление и скорость движения — из-за этого молекулы иногда быстро устремляются к поверхности жидкости и вылетают из нее. Это и есть испарение.
В предыдущем абзаце мы не случайно заметили, что молекулы движутся быстрее при увеличении температуры — ведь из-за этого испарение идет интенсивнее. В этом случае происходит охлаждение: нагретую жидкость уже покинули все самые быстрые молекулы и температура самой жидкости понижается.
Как раз из-за того, что нагретую жидкость быстро покидают быстрые молекулы, и температура жидкости снижается.
Интенсивность испарения
Интенсивностью испарения называют количество воды, которое испаряется с поверхности площадью 1 см2 за одну секунду.
Интенсивность испарения зависит от следующих факторов:
- Температура поверхности. Чем выше температура, тем больше испарение. После дождя в Санкт-Петербурге улицы долгое время остаются влажными, а вот в Таиланде даже в сезон дождей все высыхает быстро — из-за высокой температуры. Но это только если в сезон дождей дождь умудрился прекратиться :)
- Ветер. Чем больше скорость ветра, тем больше испарение. Фен для волос работает на этом принципе — по сути, он создает портативный ветер, который помогает высушить ваши волосы.
- Дефицит влажности. Интенсивность испарения будет выше там, где больше дефицит влажности. Вряд ли многие из нас были Сахаре, но что это такое представляют все. В любой пустыне колоссально низкая влажность — из-за этого испарение идет интенсивнее.
- Давление. Чем больше давление, тем меньше испарение. Мы уже выяснили, что не смотря на разницу между кипением и испарением, эти два процесса между собой связаны. Таким образом, температура кипения воды на вершине Эвереста равна 69 градусам Цельсия. В то время, как в нашей повседневной жизни она равна 100. Это возвращает нас к первому фактору — температуре.
Скорость испарения — количество жидкости, которая испаряется со свободной поверхности в единицу времени.
Интенсивность испарения — количество жидкости, которая испаряется с единицы площади поверхности в единицу времени.
По сути, это два очень близких друг к другу понятия, поэтому разница будет лишь в величинах и единицах измерения, а суть процесса отражают обе формулировки.
Насыщенный пар
Процесс испарения напрямую связан с круговоротом воды в природе. Вода, испаряясь, превращается в водяной пар и поднимается вверх, где происходит конденсация пара, образуются облака, и вода возвращается на землю в виде осадков.
Вследствие конденсации водяного пара, который живет в воздухе, образуются облака и туман. По этой же причине холодное стекло запотевает, соприкасаясь с теплым воздухом.
На рисунке — процессы испарения и конденсации в плотно закрытом сосуде, когда жидкость и пар находятся в динамическом равновесии. Это значит, что одновременно конденсируется и испаряется одинаковое количество вещества.
Влажность воздуха говорит нам о том, сколько в воздухе содержится водяного пара. Но бесконечное количество пара в воздух не запихнешь. Поэтому, во-первых, его там очень мало, а во-вторых, происходит конденсация — это когда образуется роса.
Допустим, зимой при температуре -20 градусов в 1 литре воздуха содержится 1 миллиграмм пара. Относительная влажность в таком случае равна 100% — испарения не будет, больше пара в этот воздух уже не запихнешь.
Но если мы тот же воздух поместим в коробку объемом 1 м 3 с температурой +20 градусов, то в него может испариться уже до 17 миллиграмм пара. Значит его влажность будет равна 1/17 = 6%. Человеку комфортнее всего находиться при значении влажности 40-50%.
Попробуйте курсы подготовки к ЕГЭ по физике с опытным преподавателем в онлайн-школе Skysmart!
Испарение в жизни
И действительно: чего в этой жизни только не испаряется — мы встречаемся с этим каждый день. Давайте узнаем, зачем этот процесс вообще нужен, и как люди научились извлекать из него пользу.
Испарение в организме человека и животных
Выше мы разбирали вопрос, почему если облиться теплой водой, нам все равно станет холодно. По этому же принципу работает ощущение холода после того, как мы вспотели — в какой-то момент нам становится холодно.
Само потоотделение — важный процесс терморегуляции организма. Если мы достигаем высокой температуры (из-за внешних воздействий или же из-за болезни), то организм стремится себя охладить, чтобы не умереть из-за превращения белков в нашем организме в яичницу.
Пот выделяется через поры кожи, а затем испаряется — все это позволяет нашему организму быстро избавиться от лишней энергии, охладить тело и нормализовать температуру.
При высокой влажности холод и тепло воспринимаются более чувствительно. Это связано с потливостью человека при высокой температуре. Такой механизм помогает нам бороться с жарой и «скинуть» избыточное тепло, но при высокой влажности пот не может испариться.
При низкой влажности происходит нечто похожее. Как ни странно, в мороз мы тоже потеем (намного меньше, но все-таки это происходит). Если влажность на улице низкая, то пот испарится из-под куртки и нам будет комфортно. А при высокой влажности — он там задержится и будет проводить тепло наружу, забирая у нас драгоценные Джоули тепла. Поэтому зимой в Петербурге холоднее, чем в Москве.
У животных этот механизм работает схожим образом. Но, например, собакам испарения с кожи недостаточно, поэтому они часто открывают пасть, высовывают язык и дышат порой ну очень смешно 🐶
Именно гортань и язык собаки идеально подходят для испарения влаги и охлаждения тела животного.
Испарение у растений
Удивительно, но у растений механизм испарения тоже работает схожим образом. Растения очень любят воду, поэтому домашние растения мы поливаем, а в пустынях их просто нет.
Ту воду, которую цветы поглотили, они могут испарять, чтобы не перегреться под жарким солнцем. Да, вода нужна, чтобы растения питались, но в жаркие дни еще и для температурной саморегуляции. Поэтому не забывайте поливать цветы, а в очень жаркие дни делайте это еще интенсивнее.
Испарение в природе и окружающей среде
Процесс испарения напрямую связан с круговоротом воды в природе. Именно круговоротом воды в природе обеспечивается жизнь на Земле — так как влага разносится по всему миру, растения в дикой природе способны жить без наших попыток полить большую пальму из леечки.
Испарение воды с поверхности рек, озер, морей и океанов создает дождевые тучи, которые затем, проливаясь дождем, поливают растения и деревья. Многие дождь не любят, мол, он мокрый, мерзкий и затекает в ботинки, но он очень нужен засушливым регионам — Северной Африке или Центральной Индии, которые часто страдают от засухи.
Испарение в промышленности и быту
С бытом совсем все просто: мы сушим вещи, готовим еду, покупаем увлажнители воздуха или размазываем разлитую лужу по полу.
В случае с промышленностью для нас все не так очевидно. Промышленная техника, работающая на основе испарения, разрабатывается по схожей схеме: в ней всегда максимально увеличена площадь поверхности жидкости, чтобы испарение шло интенсивно.
Например, испаритель, изображенный на схеме, состоит из совокупности соединенных между собой испарителей. В основе его действия — пар, полученный в одной ступени, который используют в качестве источника тепла для следующей ступени. По мере того, как температура уменьшается от одной ступени к другой, вакуум увеличивается, так что температура кипения становится ниже и испарение поддерживается. Он предназначен для того, чтобы очистить воду от отходов.
Оказывается, у насыщенного пара и бизнес-центра много общего, а чтобы вскипятить чайник при температуре меньше 100°C, нужно забраться на Эльбрус.
О чем эта статья:
Фазовые переходы: изменение агрегатных состояний вещества
Прежде чем говорить о насыщенном паре, нужно освежить знания об агрегатных состояниях и фазовых переходах между ними. Если вы забыли, какие бывают агрегатные состояния, то можете сбегать в нашу статью про них.
При изменении внешних условий (например, если внутренняя энергия тела увеличивается или уменьшается в результате нагревания или охлаждения) могут происходить фазовые переходы — изменения агрегатных состояний вещества.
Вот какие бывают фазовые переходы:
Переход из твердого состояния в жидкое — плавление;
Переход из жидкого состояния в твердое — кристаллизация;
Переход из газообразного состояния в жидкое — конденсация;
Переход из жидкого состояния в газообразное — парообразование;
Переход из твердого состояния в газообразное, минуя жидкое — сублимация;
Переход из газообразного состояния в твердое, минуя жидкое — десублимация.
На схеме — названия всех фазовых переходов:
Фазовые переходы — важная штука. Все живое не Земле существует лишь благодаря тому, что вода умеет превращаться в лед или пар. С кристаллизацией, плавлением, парообразованием и конденсацией связаны многие процессы в металлургии и микроэлектронике.
Парообразование
Итак, парообразование — это переход из жидкого состояния в газообразное.
При парообразовании всегда происходит поглощение энергии: к веществу необходимо подводить теплоту, чтобы оно испарялось. Из-за этого внутренняя энергия вещества увеличивается.
У процесса парообразования есть две разновидности: испарение и кипение.
Испарение — это превращение или переход жидкости в газ (пар) со свободной поверхности жидкости. Если поверхность жидкости открыта и с нее начинается переход вещества из жидкого состояния в газообразное, это будет называться испарением.
Кипение — процесс интенсивного парообразования, который происходит в жидкости при определенной температуре.
Например, мы заварили себе горячий чай. Над чашкой мы увидим пар, так как вода только что поучаствовала в процессе кипения.
Подождите-ка, мы ведь только что сказали, что кипение и испарение — разные вещи. 🤔 Это действительно так, но при этом оба процесса могут происходить параллельно.
Испарение может происходить и без кипения, просто тогда оно не будет для нас заметно. Например, вода в озере испаряется, хотя мы этого и не замечаем. Кипение по сути своей — это интенсивное испарение, которое вызвали внешними условиями — доведя вещество до температуры кипения.
Физика объясняет испарение тем, что жидкость обычно несколько холоднее окружающего воздуха, и из-за разницы температур происходит испарение.
Если нет каких-то внешних воздействий, испарение жидкостей происходит крайне медленно. Молекулы покидают жидкость из-за явления диффузии.
Направление тепловых потоков при испарении может идти в разной последовательности и комбинациях:
из глубины жидкости к поверхности, а затем в воздух;
только из жидкости к поверхности;
к поверхности из воды и газовой среды одновременно;
к площади поверхности только от воздуха.
Подытожим, чтобы не запутаться, в чем главная разница между испарением и кипением:
при любой температуре
с поверхности жидкости
при определенной температуре
с поверхности жидкости
Температура кипения
При температуре кипения давление насыщенного пара становится равным внешнему давлению на жидкость — чаще всего это атмосферное давление. Значит, чем больше внешнее давление, тем при более высокой температуре начнется кипение.
При нормальном атмосферном давлении, которое приблизительно равно 100 кПа, температура кипения воды равна 100°C. Поэтому можно сразу сказать, что давление насыщенного водяного пара при температуре 100 градусов по Цельсию равно 100 кПа. Это значение пригодится при решении задач.
Чем выше мы поднимаемся, тем меньше становится атмосферное давление, потому что масса атмосферы над нами уменьшается. Так, например, на вершине Эльбруса атмосферное давление составляет 5 × 104 Па — в два раза меньше, чем нормальное атмосферное давление. Поэтому и температура кипения на вершине Эльбруса будет ниже, чем на уровне моря. Вода там закипит при температуре 82°C.
Температура кипения при нормальном атмосферном давлении — это строго определенная величина для каждой жидкости.
Испарение и конденсация
Молекулы в жидкости непрерывно и хаотично движутся. Это значит, что направление движения отдельно взятых молекул — это случайные направления. При этом жидкость сохраняет свой объем. Также молекулы силами притяжения притягиваются друг к другу, из-за чего не могут покинуть Омск жидкость.
Значения скоростей молекул случайны. Из-за этого среди всех молекул обязательно есть те, что движутся очень быстро. Если такая молекула окажется вблизи поверхности раздела жидкости и окружающей среды, то ее кинетическая энергия может достигнуть большого значения, и молекула покинет жидкость.
Собственно, именно так происходит процесс испарения (мы говорили о нем выше, когда речь шла о фазовых переходах). Когда испарившихся молекул становится много, образуется пар.
Обратный процесс тоже возможен: вырвавшиеся за пределы жидкости молекулы вернутся в жидкость. Это конденсация, о ней мы тоже говорили.
Если открыть сосуд с жидкостью, то испарившиеся молекулы будут покидать пространство над жидкостью и не возвращаться обратно. Количество жидкости таким образом будет уменьшаться. То есть жидкость испаряется, а пар обратно не конденсируется (потому что молекулы этого пара удаляются от жидкости) — так происходит высыхание.
Испарение может происходить с разной скоростью. Чем больше силы притяжения молекул друг к другу, тем меньшее число молекул в единицу времени окажется в состоянии преодолеть эти силы притяжения и вылететь наружу, и тем меньше скорость испарения.
Быстро испаряются такие жидкости, как эфир, ацетон, спирт. Из-за этого свойства их иногда называют летучими жидкостями. Медленнее — вода. Намного медленнее воды испаряются масло и ртуть.
Курсы подготовки к ОГЭ по физике помогут снять стресс перед экзаменом и получить высокий балл.
Определение насыщенного пара
Оставим стакан воды на столе и будем замерять уровень воды в нем каждый день. Если записать эти измерения и сравнить их, станет очевидно: уровень воды стал меньше, то есть вода испарилась.
Теперь давайте накроем стакан сверху. Молекулы пара уже не смогут покидать пространство над жидкостью, по мере испарения их количество начнет расти, а значит, будет расти и количество молекул, которые конденсируются в единицу времени.
Сначала количество конденсирующихся молекул за единицу времени будет меньше количества испаряющихся молекул. Но по мере роста концентрации пара (то есть увеличении количества молекул в единице объема пара) поток конденсирующихся молекул вырастет. Это приведет к состоянию, которое называется динамическим равновесием.
Пар, находящейся в динамическом равновесии, называют насыщенным.
Представьте себе огромный бизнес-центр с не менее огромными дверями. У сотрудников бизнес-центра разный график работы, поэтому люди одновременно заходят в здание и выходят из него в произвольном количестве. Допустим, в 6 часов вечера 100 человек заходят в здание, чтобы попасть на деловую встречу, а другие 100 человек уже закончили работать и идут домой. Количество заходящих в бизнес-центр и выходящих из него будет одинаковым — это и есть состояние насыщения.
Значение давления насыщенного пара и его плотности являются максимальными при заданном значении температуры. Если это не так, то пар ненасыщенный.
Свойства насыщенного пара
При постоянной температуре плотность насыщенного пара не зависит от его объема.
Представьте, что объем сосуда с насыщенным паром уменьшили, не изменив температуры.
Количество молекул, переходящих от пара к жидкости, превысит количество испаряющихся молекул, но при этом часть пара сконденсируется, а оставшийся пар снова придет в динамическое равновесие. В итоге плотность этого пара будет равна начальной плотности.
Давление насыщенного пара не зависит от его объема.
Это связано с тем, что давление и плотность связаны через уравнение Менделеева-Клапейрона, и следует из первого свойства насыщенного пара.
Кстати, уравнение Менделеева-Клапейрона справедливо для насыщенного пара. При этом нужно быть внимательным с частными случаями. Так, например, закон Бойля-Мариотта для насыщенного пара не выполняется.
pV = νRT
p — давление газа [Па]
V — объем [м3]
ν — количество вещества [моль]
T — температура [К]
R — универсальная газовая постоянная
R = 8,31 м 2 × кг × с -2 × К -1 × моль -1
При неизменном объеме плотность насыщенного пара растет с повышением температуры и уменьшается с понижением температуры.
В начальный момент испарения динамическое равновесие будет нарушено (некоторая часть жидкости испарится дополнительно). Плотность пара будет расти, пока динамическое равновесие не восстановится.
Давление и температура насыщенного пара растут быстрее, чем по линейному закону, который справедлив для идеального газа.
В случае идеального газа рост давления обусловлен только ростом температуры, а в случае с насыщенном паром имеют значение два фактора: температура и масса пара.
В случае нагревания насыщенного пара молекулы начинают ударяться чаще, так как их в целом стало больше, потому что пара стало больше.
Главное отличие насыщенного пара от идеального газа: пар сам по себе не является замкнутой системой, а находится в постоянном контакте с жидкостью.
Решение задач по теме «Насыщенный пар»
Применим свойства насыщенного пара при решении задач.
Задачка раз
В цилиндрическом сосуде под поршнем длительное время находятся вода и ее пар. Поршень начинают вдвигать в сосуд. При этом температура воды и пара остается неизменной. Как будет меняться при этом масса жидкости в сосуде? Ответ поясните.
Решение
Так как пар и вода находятся в контакте длительное время, пар является насыщенным. При уменьшении объема сосуда давление насыщенного пара не меняется. Из уравнения Менделеева-Клапейрона следует, что для того, чтобы давление пара не менялось, его количество вещества (а значит и масса) должно уменьшаться.
В этом процессе происходит конденсация, часть молекул пара переходят в жидкость, поэтому масса жидкости увеличивается.
Ответ
Масса жидкости увеличивается.
Задачка два
Какова плотность насыщенного пара при температуре 100°С?
Решение
При нормальном давлении (p = 105 Па) 100°С — это температура кипения воды. Значит, давление насыщенного пара при этой температуре равно атмосферному давлению.
Найдем связь между давлением и плотностью через уравнение Менделеева-Клапейрона.
Подставим значение давления в уравнение состояния идеального газа, предварительно переведя температуру в Кельвины: T = 100 + 273 = 373 K
Читайте также: