Что обеспечивает целостное функционирование компьютерной сети интернет
ИНФОРМАТИКА- НАУКА, ИЗУЧАЮЩАЯ СПОСОБЫ АВТОМАТИЗИРОВАННОГО СОЗДАНИЯ, ХРАНЕНИЯ, ОБРАБОТКИ, ИСПОЛЬЗОВАНИЯ, ПЕРЕДАЧИ И ЗАЩИТЫ ИНФОРМАЦИИ.
ИНФОРМАЦИЯ – ЭТО НАБОР СИМВОЛОВ, ГРАФИЧЕСКИХ ОБРАЗОВ ИЛИ ЗВУКОВЫХ СИГНАЛОВ, НЕСУЩИХ ОПРЕДЕЛЕННУЮ СМЫСЛОВУЮ НАГРУЗКУ.
ЭЛЕКТРОННО-ВЫЧИСЛИТЕЛЬНАЯ МАШИНА (ЭВМ) ИЛИ КОМПЬЮТЕР (англ. computer- -вычислитель)-УСТРОЙСТВО ДЛЯ АВТОМАТИЗИРОВАННОЙ ОБРАБОТКИ ИНФОРМАЦИИ. Принципиальное отличие использования ЭВМ от всех других способов обработки информации заключается в способности выполнения определенных операций без непосредственного участия человека, но по заранее составленной им программе. Информация в современном мире приравнивается по своему значению для развития общества или страны к важнейшим ресурсам наряду с сырьем и энергией. Еще в 1971 году президент Академии наук США Ф.Хандлер говорил: "Наша экономика основана не на естественных ресурсах, а на умах и применении научного знания".
В развитых странах большинство работающих заняты не в сфере производства, а в той или иной степени занимаются обработкой информации. Поэтому философы называют нашу эпоху постиндустриальной. В 1983 году американский сенатор Г.Харт охарактеризовал этот процесс так: "Мы переходим от экономики, основанной на тяжелой промышленности, к экономике, которая все больше ориентируется на информацию, новейшую технику и технологию, средства связи и услуги.."
2. КРАТКАЯ ИСТОРИЯ РАЗВИТИЯ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ.
Вся история развития человеческого общества связана с накоплением и обменом информацией (наскальная живопись, письменность, библиотеки, почта, телефон, радио, счеты и механические арифмометры и др.). Коренной перелом в области технологии обработки информации начался после второй мировой войны.
В вычислительных машинах первого поколения основными элементами были электронные лампы. Эти машины занимали громадные залы, весили сотни тонн и расходовали сотни киловатт электроэнергии. Их быстродействие и надежность были низкими, а стоимость достигала 500-700 тысяч долларов.
Появление более мощных и дешевых ЭВМ второго поколения стало возможным благодаря изобретению в 1948 году полупроводниковых устройств- транзисторов. Главный недостаток машин первого и второго поколений заключался в том, что они собирались из большого числа компонент, соединяемых между собой. Точки соединения (пайки) являются самыми ненадежными местами в электронной технике, поэтому эти ЭВМ часто выходили из строя.
В ЭВМ третьего поколения (с середины 60-х годов ХХ века) стали использоваться интегральные микросхемы (чипы)- устройства, содержащие в себе тысячи транзисторов и других элементов, но изготовляемые как единое целое, без сварных или паяных соединений этих элементов между собой. Это привело не только к резкому увеличению надежности ЭВМ, но и к снижению размеров, энергопотребления и стоимости (до 50 тысяч долларов).
История ЭВМ четвертого поколения началась в 1970 году, когда ранее никому не известная американская фирма INTEL создала большую интегральную схему (БИС), содержащую в себе практически всю основную электронику компьютера. Цена одной такой схемы (микропроцессора) составляла всего несколько десятков долларов, что в итоге и привело к снижению цен на ЭВМ до уровня доступных широкому кругу пользователей.
СОВРЕМЕННЫЕ КОМПЬТЕРЫ- ЭТО ЭВМ ЧЕТВЕРТОГО ПОКОЛЕНИЯ, В КОТОРЫХ ИСПОЛЬЗУЮТСЯ БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ.
90-ые годы ХХ-го века ознаменовались бурным развитием компьютерных сетей, охватывающих весь мир. Именно к началу 90-ых количество подключенных к ним компьютеров достигло такого большого значения, что объем ресурсов доступных пользователям сетей привел к переходу ЭВМ в новое качество. Компьютеры стали инструментом для принципиально нового способа общения людей через сети, обеспечивающего практически неограниченный доступ к информации, находящейся на огромном множестве компьюторов во всем мире - "глобальной информационной среде обитания".
6.ПРЕДСТАВЛЕНИЕ ИНФОРМАЦИИ В КОМПЬЮТЕРЕ И ЕЕ ОБЪЕМ.
ЭТО СВЯЗАНО С ТЕМ, ЧТО ИНФОРМАЦИЮ, ПРЕДСТАВЛЕННУЮ В ТАКОМ ВИДЕ, ЛЕГКО ТЕХНИЧЕСКИ СМОДЕЛИРОВАТЬ, НАПРИМЕР, В ВИДЕ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ. Если в какой-то момент времени по проводнику идет ток, то по нему передается единица, если тока нет- ноль. Аналогично, если направление магнитного поля на каком-то участке поверхности магнитного диска одно- на этом участке записан ноль, другое- единица. Если определенный участок поверхности оптического диска отражает лазерный луч- на нем записан ноль, не отражает- единица.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО ИЗ ДВУХ СИМВОЛОВ-0 ИЛИ 1, НАЗЫВАЕТСЯ 1 БИТ (англ. binary digit- двоичная единица). 1 бит- минимально возможный объем информации. Он соответствует промежутку времени, в течение которого по проводнику передается или не передается электрический сигнал, участку поверхности магнитного диска, частицы которого намагничены в том или другом направлении, участку поверхности оптического диска, который отражает или не отражает лазерный луч, одному триггеру, находящемуся в одном из двух возможных состояний.
Итак, если у нас есть один бит, то с его помощью мы можем закодировать один из двух символов- либо 0, либо 1.
Если же есть 2 бита, то из них можно составить один из четырех вариантов кодов: 00 , 01 , 10 , 11 .
Если есть 3 бита- один из восьми: 000 , 001 , 010 , 100 , 110 , 101 , 011 , 111 .
1 бит- 2 варианта,
2 бита- 4 варианта,
3 бита- 8 вариантов;
Продолжая дальше, получим:
4 бита- 16 вариантов,
5 бит- 32 варианта,
6 бит- 64 варианта,
7 бит- 128 вариантов,
8 бит- 256 вариантов,
9 бит- 512 вариантов,
10 бит- 1024 варианта,
N бит - 2 в степени N вариантов.
В обычной жизни нам достаточно 150-160 стандартных символов (больших и маленьких русских и латинских букв, цифр, знаков препинания, арифметических действий и т.п.). Если каждому из них будет соответствовать свой код из нулей и единиц, то 7 бит для этого будет недостаточно (7 бит позволят закодировать только 128 различных символов), поэтому используют 8 бит.
ДЛЯ КОДИРОВАНИЯ ОДНОГО ПРИВЫЧНОГО ЧЕЛОВЕКУ СИМВОЛА В КОМПЬЮТЕРЕ ИСПОЛЬЗУЕТСЯ 8 БИТ, ЧТО ПОЗВОЛЯЕТ ЗАКОДИРОВАТЬ 256 РАЗЛИЧНЫХ СИМВОЛОВ.
СТАНДАРТНЫЙ НАБОР ИЗ 256 СИМВОЛОВ НАЗЫВАЕТСЯ ASCII ( произносится "аски", означает "Американский Стандартный Код для Обмена Информацией"- англ. American Standart Code for Information Interchange).
ОН ВКЛЮЧАЕТ В СЕБЯ БОЛЬШИЕ И МАЛЕНЬКИЕ РУССКИЕ И ЛАТИНСКИЕ БУКВЫ, ЦИФРЫ, ЗНАКИ ПРЕПИНАНИЯ И АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ И Т.П.
A - 01000001, B - 01000010, C - 01000011, D - 01000100, и т.д.
Таким образом, если человек создает текстовый файл и записывает его на диск, то на самом деле каждый введенный человеком символ хранится в памяти компьютера в виде набора из восьми нулей и единиц. При выводе этого текста на экран или на бумагу специальные схемы - знакогенераторы видеоадаптера (устройства, управляющего работой дисплея) или принтера образуют в соответствии с этими кодами изображения соответствующих символов.
Набор ASCII был разработан в США Американским Национальным Институтом Стандартов (ANSI), но может быть использован и в других странах, поскольку вторая половина из 256 стандартных символов, т.е. 128 символов, могут быть с помощью специальных программ заменены на другие, в частности на символы национального алфавита, в нашем случае - буквы кириллицы. Поэтому, например, передавать по электронной почте за границу тексты, содержащие русские буквы, бессмысленно. В англоязычных странах на экране дисплея вместо русской буквы Ь будет высвечиваться символ английского фунта стерлинга, вместо буквы р - греческая буква альфа, вместо буквы л - одна вторая и т.д.
ОБЪЕМ ИНФОРМАЦИИ, НЕОБХОДИМЫЙ ДЛЯ ЗАПОМИНАНИЯ ОДНОГО СИМВОЛА ASCII НАЗЫВАЕТСЯ 1 БАЙТ.
Очевидно что, поскольку под один стандартный ASCII-символ отводится 8 бит,
Остальные единицы объема информации являются производными от байта:
1 КИЛОБАЙТ = 1024 БАЙТА И СООТВЕТСТВУЕТ ПРИМЕРНО ПОЛОВИНЕ СТРАНИЦЫ ТЕКСТА,
1 МЕГАБАЙТ = 1024 КИЛОБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 500 СТРАНИЦАМ ТЕКСТА,
1 ГИГАБАЙТ = 1024 МЕГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ,
1 ТЕРАБАЙТ = 1024 ГИГАБАЙТАМ И СООТВЕТСТВУЕТ ПРИМЕРНО 2000 КОМПЛЕКТАМ ЭНЦИКЛОПЕДИИ.
Обратите внимание, что в информатике смысл приставок кило- , мега- и других в общепринятом смысле выполняется не точно, а приближенно, поскольку соответствует увеличению не в 1000, а в 1024 раза.
СКОРОСТЬ ПЕРЕДАЧИ ИНФОРМАЦИИ ПО ЛИНИЯМ СВЯЗИ ИЗМЕРЯЕТСЯ В БОДАХ.
1 БОД = 1 БИТ/СЕК.
В частности, если говорят, что пропускная способность какого-то устройства составляет 28 Килобод, то это значит, что с его помощью можно передать по линии связи около 28 тысяч нулей и единиц за одну секунду.
7. СЖАТИЕ ИНФОРМАЦИИ НА ДИСКЕ
ИНФОРМАЦИЮ НА ДИСКЕ МОЖНО ОБРАБОТАТЬ С ПОМОЩЬЮ СПЕЦИАЛЬНЫХ ПРОГРАММ ТАКИМ ОБРАЗОМ, ЧТОБЫ ОНА ЗАНИМАЛА МЕНЬШИЙ ОБЪЕМ.
Существуют различные методы сжатия информации. Некоторые из них ориентированы на сжатие текстовых файлов, другие - графических, и т.д. Однако во всех них используется общая идея, заключающаяся в замене повторяющихся последовательностей бит более короткими кодами. Например, в романе Л.Н.Толстого "Война и мир" несколько миллионов слов, но большинство из них повторяется не один раз, а некоторые- до нескольких тысяч раз. Если все слова пронумеровать, текст можно хранить в виде последовательности чисел - по одному на слово, причем если повторяются слова, то повторяются и числа. Поэтому, такой текст (особенно очень большой, поскольку в нем чаще будут повторяться одни и те же слова) будет занимать меньше места.
Сжатие информации используют, если объем носителя информации недостаточен для хранения требуемого объема информации или информацию надо послать по электронной почте
Программы, используемые при сжатии отдельных файлов называются архиваторами. Эти программы часто позволяют достичь степени сжатия информации в несколько раз.
Цель: ознакомиться со структурой и основными принципами работы всемирной сети Интернет, с базовыми протоколами Интернет и системой адресации.
Архитектура и принципы работы сети Интернет
Глобальные сети, охватывая миллионы людей, полностью изменили процесс распространения и восприятия информации.
Глобальные сети (Wide Area Network, WAN) – это сети, предназначенные для объединения отдельных компьютеров и локальных сетей, расположенных на значительном удалении (сотни и тысячи километров) друг от друга. Глобальные сети объединяют пользователей, расположенных по всему миру, используя при этом самые разнообразные каналы связи.
Современный Интернет — весьма сложная и высокотехнологичная система, позволяющая пользователю общаться с людьми, находящимися в любой точке земного шара, быстро и комфортно отыскивать любую необходимую информацию, публиковать для всеобщего сведения данные, которые он хотел бы сообщить всему миру.
В действительности Internet не просто сеть, — это структура, объединяющая обычные сети. Internet — это «сеть сетей».
Чтобы описать сегодняшний Internet , полезно воспользоваться строгим определением.
В своей книге « The Matrix : Computer Networks and Conferencing Systems Worldwide » Джон Квотерман описывает Internet как «метасеть, состоящую из многих сетей, которые работают согласно протоколам семейства TCP/IP, объединены через шлюзы и используют единое адресное пространство и пространство имен».
В Internet нет единого пункта подписки или регистрации, вместо этого вы контактируете с поставщиком услуг, который предоставляет вам доступ к сети через местный компьютер. Последствия такой децентрализации с точки зрения доступности сетевых ресурсов также весьма значительны. Среду передачи данных в Internet нельзя рассматривать только как паутину проводов или оптоволоконных линий. Оцифрованные данные пересылаются через маршрутизаторы, которые соединяют сети и с помощью сложных алгоритмов выбирают наилучшие маршруты для информационных потоков (рис.1).
В отличие от локальных сетей, в составе которых имеются свои высокоскоростные каналы передачи информации, глобальная (а также региональная и, как правило, корпоративная) сеть включает подсеть связи (иначе: территориальную сеть связи, систему передачи информации), к которой подключаются локальные сети, отдельные компоненты и терминалы (средства ввода и отображения информации) (рис. 2).
Подсеть связи состоит из каналов передачи информации и коммуникационных узлов, которые предназначены для передачи данных по сети, выбора оптимального маршрута передачи информации, коммутации пакетов и реализации ряда других функций с помощью компьютера (одного или нескольких) и соответствующего программного обеспечения, имеющихся в коммуникационном узле. Компьютеры, за которыми работают пользователи-клиенты, называются рабочими станциями, а компьютеры, являющиеся источниками ресурсов сети, предоставляемых пользователям, называются серверами. Такая структура сети получила название узловой.
Рис.1 Схема взаимодействия в сети Интернет
Интернет – это глобальная информационная система, которая:
· логически взаимосвязана пространством глобальных уникальных адресов, основанных на Интернет-протоколе (IP);
· способна поддерживать коммуникации с использованием семейства протокола управления передачей - TCP/IP или его последующих расширений/преемников и/или других IP-совместимых протоколов;
· обеспечивает, использует или делает доступными на общественной или частной основе высокоуровневые услуги, надстроенные над описанной здесь коммуникационной и иной связанной с ней инфраструктурой.
Инфраструктура Интернет (рис.2):
1. магистральный уровень (система связанных высокоскоростных телекоммуникационных серверов).
2. уровень сетей и точек доступа (крупные телекоммуникационные сети), подключенных к магистрали.
3. уровень региональных и других сетей.
4. ISP – интернет-провайдеры.
К техническим ресурсам сети Интернет относятся компьютерные узлы, маршрутизаторы, шлюзы, каналы связи и др.
Рис.2 Инфраструктура сети Интернет
T CP / IP — технология межсетевого взаимодействия
Наиболее распространенным протоколом управления обменом данных является протокол TCP/IP. Главное отличие сети Internet от других сетей заключается именно в ее протоколах TCP/IP, охватыва ющих целое семейство протоколов взаимодействия между компью терами сети. TCP/IP — это технология межсетевого взаимодействия, технология Internet . Поэтому г лобальная сеть, объединяющая мно жество сетей с технологией TCP/IP , называется Internet .
Протокол TCP/IP — это семейство программно реализованных протоколов старшего уровня, не работающих с аппаратными пре рываниями. Технически протокол TCP/IP состоит из двух частей — IP и TCP .
Протокол IP ( Internet Protocol — межсетевой протокол) является главным протоколом семейства, он реализует распространение ин формации в IP -сети и выполняется на третьем (сетевом) уровне моде ли ISO / OSI . Протокол IP обеспечивает дейтаграммную доставку паке тов, его основная задача — маршрутизация пакетов. Он не отвечает за надежность доставки информации, за ее целостность, за сохране ние порядка потока пакетов. Сети, в которых используется протокол IP , называются IP -сетями. Они работают в основном по аналоговым каналам (т.е. для подключения компьютера к сети требуется IP -мо дем) и являются сетями с коммутацией пакетов. Пакет здесь называ ется дейтаграммой.
Высокоуровневый протокол TCP ( Transmission Control Protocol — протокол управления передачей) работает на транспортном уровне и частично — на сеансовом уровне. Это протокол с установлением ло гического соединения между отправителем и получателем. Он обес печивает сеансовую связь между двумя узлами с гарантированной доставкой информации, осуществляет контроль целостности переда ваемой информации, сохраняет порядок потока пакетов.
Для компьютеров протокол TCP/IP — это то же, что правила раз говора для людей. Он принят в качестве официального стандарта в сети Internet , т.е. сетевая технология TCP/IP де-факто стала техноло гией всемирной сети Интернет.
АДРЕСАЦИЯ В СЕТИ ИНТЕРНЕТ
Основные протоколы сети Интернет
Работа сети Internet основана на использовании семейств коммуникационных протоколов TCP/IP ( Transmission Control Protocol / Internet Protocol ). TCP/IP используется для передачи данных как в глобальной сети Internet , так и во многих локальных сетях.
Название TCP/IP определяет семейство протоколов передачи данных сети. Протокол — это набор правил, которых должны придерживаться все компании, чтобы обеспечить совместимость производимого аппаратного и программного обеспечения. Эти правила гарантируют совместимость производимого аппаратного и программного обеспечения. Кроме того, TCP / IP – это гарантия того, что ваш персональный компьютер сможет связаться по сети Internet с любым компьютером в мире, также работающим с TCP/IP. При соблюдении определенных стандартов для функционирования всей системы не имеет значения, кто является производителем программного обеспечения или аппаратных средств. Идеология открытых систем предполагает использование стандартных аппаратных средств и программного обеспечения. TCP/IP — открытый протокол и вся специальная информация издана и может быть свободно использована.
Различный сервис, включаемый в TCP/IP, и функции этого семейства протоколов могут быть классифицированы по типу выполняемых задач. Упомянем лишь основные протоколы, так как общее их число насчитывает не один десяток:
· транспортные протоколы — управляют передачей данных между двумя машинами:
· TCP / IP ( Transmission Control Protocol ),
· UDP ( User Datagram Protocol );
· протоколы маршрутизации — обрабатывают адресацию данных, обеспечивают фактическую передачу данных и определяют наилучшие пути передвижения пакета:
· IP (Internet Protocol),
· ICMP (Internet Control Message Protocol),
· RIP (Routing Information Protocol)
· протоколы поддержки сетевого адреса — обрабатывают адресацию данных, обеспечивают идентификацию машины с уникальным номером и именем:
· DNS (Domain Name System),
· ARP (Address Resolution Protocol)
· протоколы прикладных сервисов — это программы, которые пользователь (или компьютер) использует для получения доступа к различным услугам:
· FTP ( File Transfer Protocol ),
· NNTP (NetNewsTransfer Protocol)
Сюда включается передача файлов между компьютерами, удаленный терминальный доступ к системе, передача гипермедийной информации и т.д.;
· EGP (Exterior Gateway Protocol),
· GGP (Gateway-to-Gateway Protocol),
· IGP (Interior Gateway Protocol);
· SMTP (Simple Mail Transfer Protocol),
· NFS ( Network File System ).
IP -адресация
Теперь подробнее остановимся на понятии IP -адреса.
Каждый компьютер в Internet (включая любой ПК, когда он устанавливает сеансовое соединение с провайдером по телефонной линии) имеет уникальный адрес, называемый IP -адрес.
IP -адрес имеет длину 32 бита и состоит из четырех частей по 8 бит, именуемых в соответствии с сетевой терминологией октетами ( octets ). Это значит, что каждая часть IP-адреса может принимать значение в пределах от 0 до 255. Четыре части объединяют в запись, в которой каждое восьмибитовое значение отделяется точкой. Когда речь идет о сетевом адресе, то обычно имеется в виду IP -адрес.
С понятием IP -адреса тесно связано понятие хоста ( host ). Некоторые просто отождествляют понятие хоста с понятием компьютера, подключенного к Internet . В принципе, это так, но в общем случае под хостом понимается любое устройство, использующее протокол TCP/IP для общения с другим оборудованием. То есть кроме компьютеров, это могут быть специальные сетевые устройства — маршрутизаторы ( routers ), концентраторы ( habs ) и другие. Эти устройства так же обладают своими уникальными I Р-адресами,— как и компьютеры узлов сети пользователей.
Любой IP -адрес состоит из двух частей: адреса сети (идентификатора сети, Network ID ) и адреса хоста (идентификатора хоста, Host ID ) в этой сети. Благодаря такой структуре IP -адреса компьютеров в разных сетях могут иметь одинаковые номера. Но так как адреса сетей различны, то эти компьютеры идентифицируются однозначно и не могут быть перепутаны друг с другом.
IP-адреса выделяются в зависимости от размеров организации и типа ее деятельности. Если это небольшая организация, то, скорее всего в ее сети немного компьютеров (и, следовательно, IP -адресов). Напротив, у большой корпорации могут быть тысячи (а то и больше) компьютеров, объединенных во множество соединенных между собой локальных сетей. Для обеспечения максимальной гибкости IP -адреса разделяются на классы: А, В и С. Еще существуют классы D и Е, но они используются для специфических служебных целей.
Адрес сети класса A определяется первым октетом IP -адреса (считается слева направо). Значение первого октета, находящееся в пределах 1-126, зарезервировано для гигантских транснациональных корпорации и крупнейших провайдеров. Таким образом, в классе А в мире может существовать всего лишь 126 крупных компаний, каждая из которых может содержать почти 17 миллионов компьютеров.
Класс B использует 2 первых октета в качестве адреса сети, значение первого октета может принимать значение в пределах 128—191. В каждой сети класса В может быть около 65 тысяч компьютеров, и такие сети имеют крупнейшие университеты и другие большие организации.
Соответственно, в классе C под адрес сети отводится уже три первых октета, а значение первого октета может быть в пределах 192-223. Это самые распространенные сети, их число может превышать более двух миллионов, а число компьютеров (хостов) в каждой сети — до 254. Следует отметить, что «разрывы» в допустимых значениях первого октета между классами сетей появляются из-за того, что один или несколько битов зарезервированы в начале IP -адреса для идентификации класса.
Если любой IP -адрес символически обозначить как набор октетов w . x . y . z , то структуру для сетей различных классов можно представить в таблице 1.
Компьютерная сеть — это группа (два и более) компьютеров, соединенных каналами передачи данных.
Компьютерные сети обеспечивают:
— быстрый обмен данными;
— совместное использование ресурсов (сканеров, модемов, принтеров и т. д.);
— совместное использование программного обеспечения и баз данных;
— совместную работу пользователей над некоторым заданием и проектом;
— возможность удаленного управления компьютерами.
В зависимости от выполняемых в сети функций различают компьютеры-серверы и компьютеры-клиенты:
- Сервер — это компьютер, предоставляющий доступ к собственным ресурсам или управляющий распределением ресурсов сети.
- Клиент-компьютер, использующий ресурсы сервера.
По территориальному признаку сети разделяются на локальные и глобальные. Локальные сети — это сети, состоящие из близко расположенных компьютером (сеть здания, помещения и т. д.).
Глобальные сети — это сети, охватывающие большие территории и включающие большое число компьютеров.
По архитектуре различают: одноранговые сети и сети с выделенным сервером.
Одноранговые сети — это сети, в которых каждый может представлять свои ресурсы другим компьютерам сети и использовать другие.
Сети с выделенным сервером — это сети, в которых один или несколько компьютеров являются серверами, а все остальные — клиентами.
Компьютерные сети могут разделяться по скорости передачи данным. Пропускная способность сети — это максимальное количество бит, которые могут быть переданы за одну секунду.
Давайте рассмотрим локальные сети. Во многом большинство характеристик локальных сетей определяется конфигурацией или топологией сетей. Топология — это конфигурация сети, способ соединения ее элементов друг с другом.
Чаще всего используются следующие топологии сетей:
- Шинная топология. Все компьютеры сети подключаются к одному кабелю.
- Кольцевая топология. Данные передаются по кольцу от одного компьютера к другому.
- Радиальная топология. Каждый компьютер через специальные сетевой адаптер подключается отдельным кабелем к объединяющему устройству.
- Древовидная топология. Образуется соединением между собой несколькими звездообразных топологий.
Локальные сети ориентированы прежде всего на сравнительно небольшое количество компьютеров.
Что же касается глобальных сетей, то она ориентирована на обслуживание неограниченного круга пользователей. Самый впечатляющий пример глобальной сети — это ИНТЕРНЕТ.
Интернет — это глобальная сеть, в которой многочисленные научные, корпоративные, государственные и другие сети, а также персональные компьютеры отдельных пользователей соединены между собой каналам передачи данных.
Основной аппаратной структурой сети Интернет можно считать мощные компьютеры (узлы) и связывающие их высокоскоростные магистральные каналы передачи данных. Организации, имеющие в собственности и обслуживающие такое оборудование, называются провайдерами.
За каждым компьютерным узлом в Интернете закреплён постоянный адрес, называемый IP-адресом. Давайте рассмотрим технологию IP- адресации.
Такие адреса получают и пользователи сети Интернет, но в отличии от адресов узлов они действуют только во время подключения пользователя к сети и изменяются при каждом новом сеансе.
IP-адрес представляет собой 32-битный идентификатор, например:
Так как человеку сложно воспринимать такую длинную строку, ее делят на 4 равные части:
Чтобы пользователи было еще удобнее работать с IP-адресом каждую часть переводят в 10-ую систему счисления:
Таким образом число в IP-адресе не может превышать 255.
Мы говорили уже о том, что Интернет представляет собой сеть сетей, поэтому технология IP-адресов учитывает этот факт следующим образом:
Любой IP адрес состоит из двух частей: IP-адрес сети и IP-адрес узла этой сети. При этом деление адреса на части происходит с помощью маски — 32-битным числом, в двоичной записи которого сначала стоят единицы, потом — нули. Первая часть IP- адреса, соответствующая единичным битам маски, относится к адресу сети, а вторая, соответствующая нулям маски, — определяет числовой адрес узла сети. Адрес сети получается в результате поразрядной конъюнкции к IP адреса узла и маски.
Напомним, Конъю́нкция — логическая операция, по своему применению максимально приближённая к союзу "и". Пример:
Пусть дан IP-адрес узла 217.9.142.131 и с помощью маски 255.255.192.0 надо получить IP-адрес сети.
Сначала переведем IP-адрес узла и маски в двоичный вид и произведен поразрядную конъюнкцию:
При этом часть IP-адреса сети, соответствующая единицам в маске, указывает на IP-адрес сети, к которой привязана сеть, а часть, соответствующая нулям, отдается на нумерацию компьютеров пользователей этой сети.
Желтым цветом выделена часть IP-адреса сети, указывающей на узел, а зеленым — на нумерацию пользователей.
Таким образом на нумерацию пользователей такой IP-адрес сети выделяет 14 бит, при этом два адреса из них не используется (адрес сети и широковещательный) А значит она позволяет пользоваться одновременно 16382 компьютера.
Список обязательной и дополнительной литература для углубленного изучения темы
— Босова Л. Л., Босова А. Ю. Информатика. 11 класс. Базовый уровень. — М.: БИНОМ, 2016
— Угринович Н. Д. Информатика и ИКТ. Базовый курс. Учебник для 7—9 классов/ М.: БИНОМ. Лаборатория знаний, 2005
— Семакин И. Г., Е. К. Хеннер. Информатика и ИКТ. 10—11 класс/ М.: БИНОМ. Лаборатория знаний, 2008
— К. Ю. Поляков, Е. А. Еремин. Информатика. 11 класс. Базовый и углубленный уровни: учебник в 2 ч. Ч. 1 / М.: БИНОМ. Лаборатория знаний, 2016
Интернет объединяет в одно целое множество компьютерных сетей и отдельных ЭВМ, работающих по единым правилам.
В основе функционирования Интернета заключаются три составляющие: техническая, технологическая, организационная.
Техническая основа - составляет опорная сеть, структура которой образована узлами, соединенными между собой линиями связи с высокой помехозащищенностью. К узлам опорной сети подключены индивидуальные пользователи или локальные сети. Узел опорной сети составляют мощные компьютеры, называются хост-компьютерами, они работают в круглосуточном режиме, постоянно подключены к сети. Эти компьютеры должны обладать большим объемом памяти и быстродействием.
На рисунке 1 представлена принципиальная схема сети Интернет.
Рисунок - 1 Принципиальная схема сети Интернет
Технологическую основу составляют сетевые протоколы. Протокол - набор правил, позволяющий осуществлять соединение и обмен данных между включенными в сеть устройствами.
В протоколе TCP информация делится на пакеты, которые нумеруется для получения информации, которую можно правильно собрать. При помощи протокола IP все части собираются получателю, и при помощи TCP проверяется, все ли части получил пользователь, порядок частей может быть нарушен. При получении TCP проверяет, все ли части пришли, располагает в правильном порядке и собирает их.
IP протокол добавляет служебную информацию, из которой можно узнать адреса отправителя и получателя информации. IP работает как обычная почта, на конверте пишется адресат и обеспечивает доставку. Правильно оформленные IP - пакеты доходят до получателя.
Отличительной особенностью Интернета является высокая надежность. Если один из компьютеров вышел из строя, то линия связи сети будут продолжать функционировать. Сетевая структура Интернета всегда обеспечивает несколько путей передачи информации.
На рисунке 2 представлена схема, поясняющая принцип работы гипертекстовой информационной системы.
Рисунок 2 - Схема, поясняющая принцип работы гипертекстовой информационной системы
Организационную основу составляет система адресации.
Символьные адреса или доменные имена предназначены для запоминания людьми. Их легко использовать как в небольших, так и крупных сетях.
Числовые составные IP-адреса. Этот адрес имеет фиксированный и компактный формат и делится на старшую часть - номер сети и младшую - номер узла.
URL - это адрес любого ресурса в Интернете, который указывает о месте нахождения этого ресурса.
Формат URL включает:
Запись такого адреса имеет вид:
Задание 1. Работа в графическом редакторе
Нарисовать и выполнить в цвете с помощью графического редактора Paint рисунок на тему: «Осень в городе». Изображение внедрить в текст курсовой работы, используя технологию OLE, и подписать с помощью WordArt.
В этом разделе следует описать назначение графических редакторов, дать определение растровым и векторным графическим редакторам и, в частности, охарактеризовать графический редактор Paint.
В этом разделе следует описать процесс создания рисунка.
Задание 2. Работа в табличном процессоре
Подготовить и отформатировать с помощью табличного процессора Microsoft EXCEL прайс-лист на покупку: «Компьютерных мышей». Таблицу внедрить в текст курсовой работы.
В этом разделе следует описать назначение и возможности табличных процессоров вообще и, в частности, охарактеризовать табличный процессор Microsoft Excel.
Читайте также: