Что можно сделать из латра своими руками
В настоящее время производится много регуляторов напряжения и большинство из них изготовлены на тиристорах и симисторах, которые создают значительный уровень радиопомех. Предлагаемый регулятор помех не даёт совсем и может использоваться для питания различных устройств переменного тока, без каких – либо ограничений, в отличие от симисторных и тиристорных регуляторов.
В Советском Союзе выпускалось очень много автотрансформаторов, которые, в основном, применялись для повышения напряжения в домашней электрической сети, когда по вечерам напряжение очень сильно падало, и ЛАТР (лабораторный автотрансформатор) был единственным спасением для людей, желающих посмотреть телевизор. Но главное в них то, что на выходе из этого автотрансформатора получается такая же правильная синусоида, как и на входе, не зависимо от напряжения. Этим свойством активно пользовались радиолюбители.
Выглядит ЛАТР так:
Напряжение в этом приборе регулируется при помощи качения графитового ролика по оголённым виткам обмотки:
В предлагаемом журналом регуляторе не искажается форма выходного сигнала, но низкий коэффициент полезного действия и невозможность получения повышенного напряжения (выше напряжения сети), а также устаревшие комплектующие, которые найти сегодня проблематично, сводят на нет все преимущества данного прибора.
Схема электронного ЛАТРа
Я решил по возможности избавиться от некоторых недостатков регуляторов, перечисленных выше и сохранить их главные достоинства.
От ЛАТРа возьмём принцип автотрансформации и применим его на обычном трансформаторе, тем самым повысим напряжение выше напряжения сети. Мне понравился трансформатор от блока бесперебойного питания. В основном тем, что его не нужно перематывать. Всё нужное в нём есть. Марка трансформатора: RT-625BN.
Как видно из схемы, в нём присутствует, помимо основной обмотки на 220 вольт, ещё две, выполненные обмоточным проводом того же диаметра, и две вторичные мощные. Вторичные обмотки отлично подходят для питания цепи управления и работы кулера охлаждения силового транзистора. Две дополнительные обмотки соединяем последовательно с первичной обмоткой. На фотографиях видно, как это сделано по цветам.
Плюс две обмотки. Итого получается 280 вольт.
Если нужно большее напряжение, то можно домотать ещё провода до заполнения окна трансформатора, предварительно сняв вторичные обмотки. Только мотать нужно обязательно в том же направлении, что и предыдущая обмотка, и соединять конец предыдущей обмотки с началом следующей. Витки обмотки должны, как бы продолжать предыдущую обмотку. Если намотаете навстречу, то при включении нагрузки будет большая неприятность!
Повышать напряжение можно, лишь бы регулирующий транзистор выдержал это напряжение. Транзисторы из импортных телевизоров встречаются до 1500 вольт, так что простор есть.
Трансформатор можно взять и любой другой, подходящий вам по мощности, удалить вторичные обмотки и домотать провод до нужного вам напряжения. В этом случае, напряжение управления можно получить от дополнительного вспомогательного маломощного трансформатора на 8 – 12 вольт.
Если кому – то захочется повысить КПД регулятора, то можно и здесь найти выход. Транзистор бесполезно расходует электроэнергию на нагрев тогда, когда ему приходится сильно убавлять напряжение. Чем сильнее нужно убавить напряжение, тем сильнее нагрев. В открытом состоянии, нагрев незначителен.
Если изменить схему автотрансформатора и сделать на нём много выводов нужных вам уровней напряжения, то можно при помощи переключения обмоток подать на транзистор напряжение близкое к нужному вам в данный момент. Ограничения в количестве выводов трансформатора не имеется, нужен только соответствующий количеству выводов переключатель.
Транзистор в этом случае будет нужен только для незначительной точной корректировки напряжения и КПД регулятора повысится, а нагрев транзистора уменьшится.
Изготовление ЛАТРа
С такой схемой можно значительно повышать верхний порог напряжения. С добавлением автоматического кулера, снизился риск перегрева регулирующего транзистора.
Корпус можно взять от старого компьютерного блока питания.
Сразу нужно прикинуть порядок размещения блоков устройства внутри корпуса и предусмотреть возможность их надёжного закрепления.
На выход я поставил розетку для подключения нагрузки и контроля напряжения. Вольтметр можно поставить любой другой, на соответствующее напряжение, но не меньше 300 Вольт.
Понадобится
- Радиатор охлаждения с кулером (любой).
- Макетная плата.
- Контактные колодки.
- Детали можно подбирать исходя из наличия и соответствия номинальным параметрам, я ставил то, что первым под руку попало, но выбирал более или менее подходящее.
- Диодные мосты VD1 – на 4 - 6А – 600 В. Из телевизора, кажется. Или собрать из четырёх отдельных диодов.
- VD2 - на 2 - 3 А – 700 В.
- T1 – C4460. Транзистор я поставил от импортного телевизора на 500V и мощностью рассеяния 55W. Можете попробовать любой другой подобный высоковольтный, мощный.
- VD3 – диод 1N4007 на 1A 1000 В.
- C1 – 470mf х 25 В, лучше ёмкость ещё увеличить.
- C2 – 100n.
- R1 – 1 кОм потенциометр любой проволочный, от 500 Ом и выше.
- R2 – 910 - 2 Вт. Подбор по току базы транзистора.
- R3 и R4 - по 1 кОм.
- R5 – подстрочный резистор на 5 кОм.
- NTC1 - терморезистор на 10 кОм.
- VT1 – любой полевой транзистор. Я поставил RFP50N06.
- M – кулер на 12 В.
- HL1 и HL2 – любые сигнальные светодиоды, их можно вовсе не ставить вместе с гасящими резисторами.
Когда схема собрана, настаёт время её предварительного испытания. Но нужно это делать очень осторожно. Все детали находятся под напряжением сети.
Для испытания устройства я спаял две лампочки на 220 вольт последовательно, чтобы они не сгорели, когда на них пойдёт напряжение 280 вольт. Одинаковой мощности лампочек не нашлось и поэтому накал спиралей сильно различается. Нужно иметь ввиду, что без нагрузки регулятор работает очень некорректно. Нагрузка в данном устройстве является частью схемы. При первом включении лучше поберегите глаза (вдруг что – то напутали).
Включаем напряжение и потенциометром проверяем плавность регулировки напряжения, но не долго, во избежание перегрева транзистора.
После испытаний начинаем собирать схему автоматической работы кулера, в зависимости от температуры.
У меня не нашлось терморезистора на 10 кОм, пришлось взять два по 22 кОм и соединить их параллельно. Получилось около десяти кОм.
Устанавливаем остальные детали и припаиваем. Не забудьте удалить медные контактные площадки макетной платы между проводниками, как на фото, иначе при включении высокого напряжения может произойти замыкание в этих местах.
Осталось отрегулировать подстроечным резистором начало работы кулера, когда температура радиатора возрастёт.
Смотрите видео
В основе этого аппарата - легко поддающийся модернизации 9-амперный лабораторный автотрансформатор ЛАТР2 и самодельный тиристорный мини-регулятор с выпрямительным мостом. Они позволяют не только безопасно подключаться к бытовой осветительной сети переменного тока с напряжением 220В, но и изменять Uсв на электроде, а значит, выбирать нужную величину тока сварки.
Режимы работы задают с помощью потенциометра. Совместное конденсаторами C2 и C3 он образует фазосдвигающие цепочки, каждая из которых, срабатывая во время своего полупериода, открывает соответствующий тиристор на некоторый промежуток времени. В результате на первичной обмотке сварочного Т1 оказываются регулируемые 20-215 В. Трансформируясь во вторичной обмотке, требуемые -Uсв позволяют легко зажечь дугу для сварки на переменном (клеммы Х2, Х3) или выпрямленном (Х4, Х5) токе.
Схема превращающая ЛАТР в сварочный аппарат
Сварочный трансформатор на бaзe широко распространённого ЛАТР2 (а), его подключение к принципиальной электрической схеме самодельного регулируемого аппарата для сварки на переменном или постоянном токе (б) и эпюра напряжении поясняющая работу транзисторного регулятора режима горения злектродуги.
Резисторы R2 и R3 шунтируют цепи управления тиристоров VS1 и VS2. Конденсаторы C1, C2 снижают до допустимого уровень радиопомех, сопровождающих дуговой разряд. В роли светового индикатора HL1, сигнализирующего о включении аппарата в бытовую электросеть, используется неоновая лампочка с токоограничительным резистором R1.
Как показывает практика, устанавливать на сварочном аппарате какие бы то ни было предохранители (противоперегрузочные автоматы) не имеет смысла. Здесь приходится иметь дело с такими токами, при превышении которых обязательно сработает защита на вводе сети в квартиру.
Для изготовления вторичной обмотки с базового ЛАТР2 снимают кожух-ограждение, токосъёмный ползунок и крепежную арматуру. Затем на имеющуюся обмотку 250 В (отводы 127 и 220 В остаются невостребованными) накладывают надёжную изоляцию (например, из лакоткани), поверх которой размещают вторичную (понижающую) обмотку. А это 70 витков изолированной медной или алюминиевой шины, имеющей в поперечнике 25 мм 2 . Приемлемо выполнение вторичной обмотки из нескольких параллельных проводов с таким же общим сечением.
Намотку удобнее осуществлять вдвоём. В то время как один, стараясь не повредить изоляцию соседних витков, осторожно протягивает и укладывает провод, другой удерживает свободный конец будущей обмотки, предохраняя её от скручивания.
Модернизированный ЛАТР2 помещают в защитный металлический кожух с вентиляционными отверстиями, на котором располагают монтажную плату из 10-мм гетинакса или стеклотекстолита с пакетным выключателем SB1, тиристорным регулятором напряжения (с резистором R6), светоиндикатором HL1 включения аппарата в сеть и выходными клеммами для сварки на переменном (Х2, Х3) или постоянном (Х4, Х5) токе.
На выходе низковольтной обмотки устанавливают блок выпрямителей с силовыми диодами VD3-VD10 для сварки на постоянном токе. Помимо указанных вентилей вполне приемлемы и более мощные аналоги, например, Д122-32-1 (выпрямленный ток - до 32 А).
И еще несколько весьма существенных особенностей. Увеличение тока дуги при неизменной скорости сварки приводит к росту глубины провара. Причем если работа ведется на переменном токе, то последний из названных параметров становится на 15-20 процентов меньше, чем при использовании постоянного тока обратной полярности. Напряжение же сварки мало влияет на глубину провара. Зато от Uсв зависит ширина шва: с ростом напряжения она увеличивается.
Отсюда важный вывод для занимающихся, скажем, сварочными работами при ремонте кузова легкового автомобиля из тонколистовой стали: наилучшие результаты даст сварка постоянным током обратной полярности при минимальном (но достаточном для устойчивого горения дуги) напряжении.
Дугу необходимо поддерживать минимально короткой, электрод тогда расходуется равномерно, а глубина проплавления свариваемого металла - максимальна. Сам же шов получается чистым и прочным, практически лишенным шлаковых включений. А от редких брызг расплава, трудно удаляемых после остывания изделия, можно защититься, натерев мелом околошовную поверхность (капли будут скатываться, не приставая к металлу).
Для сварки ювелирных изделий из золота, серебра, мельхиора лучше использовать тугоплавкий электрод (например, вольфрамовый). Можно сваривать и менее стойкие к окислению металлы, используя защиту углекислым газом.
В любом случае работу можно выполнять как вертикально расположенным электродом, так и наклонённым вперед или назад. Но искушенные профессионалы утверждают: при сварке углом вперед (имеется в виду острый угол между электродом и готовым швом) обеспечиваются более полный провар и меньшая ширина самого шва. Сварка же углом назад рекомендуется лишь для соединения внахлестку, особенно когда приходится иметь дело с профильным прокатом (уголком, двутавром и швеллером).
Необходимо позаботиться также о личной безопасности. При электродуговой сварке постараться уберечься от искр, а тем более - от брызг расплавленного металла. Рекомендуется надевать брезентовую одежду свободного покроя, защитные рукавицы и использовать маску, предохраняющую глаза от жёсткого излучения электрической дуги (солнцезащитные очки здесь непригодны).
ПРОЕКТ №25: транзисторный "ЛАТР"
Моя цель – не повествование о ЛАТРе. Я хочу поведать об ином… ЛАТРе! Тема не новая, тем не менее, попытаюсь внести в неё нечто СВОЁ . Для разнообразия.
1. После распайки платы CRT-монитора на радиаторе остались элементы:
С5129 – мощный биполярный низкочастотный N-P-N транзистор:
макс. напр. к-б при заданном обратном токе к и разомкнутой цепи э. (Uкбо макс) 1500 В;
макс. напр. к-э при заданном токе к и разомкнутой цепи б. (Uкэо макс) 800 В;
максимально допустимый ток к ( Iк макс.) 10 А;
статический коэффициент передачи тока h21э (мин) 30;
граничная частота коэффициента передачи тока fгр. 1,7МГц;
максимальная рассеиваемая мощность 50Вт.
5TUZ47 –демпфирующий HOTдиод:
D1417 – это Silicon NPN Darlington (составной) Transistor:
Ucb: 60V
Ic: 7A
β (Ic/Ib): 6000 ?! - опечатка?
N: 30W
Я не стал долго и досконально докапываться до всех параметров, их можно посмотреть в Datasheet’ах.
Возникла идея дурацкая (а, может быть, и не совсем?) собрать на транзисторе С5129 регулятор переменного напряжения (аналог ЛАТРа) ~0…220В.
Как говорится, найди пару отличий от схемы Янцева! По правде говоря, меня несколько удивил тот факт, что редакция столь авторитетного издания пропустила явный плагиат.
4. Хочу заметить , что все регуляторы, выполненные по данной схеме, собраны на отечественной элементной базе. Есть попытки применить буржуйские диоды, но не более того.
Смотрим параметры транзистора КТ840Б :
максимально допустимое (импульсное) напряжение коллектор-база 350 В;
максимально допустимое (импульсное) напряжение коллектор-эмиттер 350 В;
максимально допустимый постоянный(импульсный) ток коллектора 6 (8) А;
максимально допустимая постоянная рассеиваемая мощность коллектора с теплоотводом 60 Вт;
статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером =>10;
обратный ток коллектора 8 МГц;
коэффициент шума биполярного транзистора 5. Подтверждением (или опровержением) любых предположений (или гипотез) такого рода является ЭКСПЕРИМЕНТ, а не многословная пустопорожняя болтовня на форумах. Итак, приступим.
5.1. Проверка транзистора С5129 мультиметром:
Регулятор на транзисторе КТ812Б собран и включен. При замкнутом SA2 и R1=10 кОм (другого номинала не нашлось) напряжение на нагрузке никак не менялось.
Заменил R1 на два последовательно включенных подстроечных 220 Ом и 330 Ом – снова никакого результата, хотя напряжение на вторичной обмотке Т1 более ~12В,
Напряжение на базе почти не менялось. Всё это делалось, повторяю, с VT1 отечественным КТ812Б. Я заменил его на буржуйский С5129.
Результат тот же – ничего! На базе напряжение меняется от 0,05 до 0,61 В. На выходе – никак. Я плюнул на это дело и…
6. Схема:
Детали:
VD1: мост B250C5000/3300 на 3,3/5А 600В
VD2: мост D2SBA60 на 1,5А 800В
Т1: небольшой силовой трансформатор от какого импортного устройства; на вторичной обмотке около 12В
VT1: транзистор C5129
VD3: диод1N4007 на 1А 700В
R1: переменный проволочный ППБ-25Г13 на 10 кОм
R2: я вообще решил не ставить, т.к. сопротивление R1 и так довольно велико, и ток базы уменьшать нет смысла
С1: электролитический 470 мк х 25 В
Как видно, только R1 – отечественный, всё остальное – буржуинское. Таким образом, я тоже внёс свою лепту в развитие данной конструкции:
Вот так ЛАТР будет смотреться в перспективе:
Ставлю транзистор C5129 на радиатор, заполировав место касания и смазав термопастой:
Думаю, что делать плату для нескольких деталей смысла не имеет. Тем более, что есть идея по установке и креплению вольтметра. Там будет достаточно просторная площадка, где я и размещу все остальные детали. Примерно так:
Соединение:
Подключение и проверка:
В корпусе сделаны нужные отверстия:
Выходные клеммы должны быть рассчитаны на подключение сетевой вилки, однополюсных вилок и просто поводов:
Выключатель, предохранитель, выходные клеммы и регулятор напряжения закреплены:
Вставляю основной блок:
Всё припаяно:
Проверка:
ПРОЕКТ №25: транзисторный "ЛАТР"
Моя цель – не повествование о ЛАТРе. Я хочу поведать об ином… ЛАТРе! Тема не новая, тем не менее, попытаюсь внести в неё нечто СВОЁ . Для разнообразия.
1. После распайки платы CRT-монитора на радиаторе остались элементы:
С5129 – мощный биполярный низкочастотный N-P-N транзистор:
макс. напр. к-б при заданном обратном токе к и разомкнутой цепи э. (Uкбо макс) 1500 В;
макс. напр. к-э при заданном токе к и разомкнутой цепи б. (Uкэо макс) 800 В;
максимально допустимый ток к ( Iк макс.) 10 А;
статический коэффициент передачи тока h21э (мин) 30;
граничная частота коэффициента передачи тока fгр. 1,7МГц;
максимальная рассеиваемая мощность 50Вт.
5TUZ47 –демпфирующий HOTдиод:
D1417 – это Silicon NPN Darlington (составной) Transistor:
Ucb: 60V
Ic: 7A
β (Ic/Ib): 6000 ?! - опечатка?
N: 30W
Я не стал долго и досконально докапываться до всех параметров, их можно посмотреть в Datasheet’ах.
Возникла идея дурацкая (а, может быть, и не совсем?) собрать на транзисторе С5129 регулятор переменного напряжения (аналог ЛАТРа) ~0…220В.
Как говорится, найди пару отличий от схемы Янцева! По правде говоря, меня несколько удивил тот факт, что редакция столь авторитетного издания пропустила явный плагиат.
4. Хочу заметить , что все регуляторы, выполненные по данной схеме, собраны на отечественной элементной базе. Есть попытки применить буржуйские диоды, но не более того.
Смотрим параметры транзистора КТ840Б :
максимально допустимое (импульсное) напряжение коллектор-база 350 В;
максимально допустимое (импульсное) напряжение коллектор-эмиттер 350 В;
максимально допустимый постоянный(импульсный) ток коллектора 6 (8) А;
максимально допустимая постоянная рассеиваемая мощность коллектора с теплоотводом 60 Вт;
статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером =>10;
обратный ток коллектора 8 МГц;
коэффициент шума биполярного транзистора 5. Подтверждением (или опровержением) любых предположений (или гипотез) такого рода является ЭКСПЕРИМЕНТ, а не многословная пустопорожняя болтовня на форумах. Итак, приступим.
5.1. Проверка транзистора С5129 мультиметром:
Регулятор на транзисторе КТ812Б собран и включен. При замкнутом SA2 и R1=10 кОм (другого номинала не нашлось) напряжение на нагрузке никак не менялось.
Заменил R1 на два последовательно включенных подстроечных 220 Ом и 330 Ом – снова никакого результата, хотя напряжение на вторичной обмотке Т1 более ~12В,
Напряжение на базе почти не менялось. Всё это делалось, повторяю, с VT1 отечественным КТ812Б. Я заменил его на буржуйский С5129.
Результат тот же – ничего! На базе напряжение меняется от 0,05 до 0,61 В. На выходе – никак. Я плюнул на это дело и…
6. Схема:
Детали:
VD1: мост B250C5000/3300 на 3,3/5А 600В
VD2: мост D2SBA60 на 1,5А 800В
Т1: небольшой силовой трансформатор от какого импортного устройства; на вторичной обмотке около 12В
VT1: транзистор C5129
VD3: диод1N4007 на 1А 700В
R1: переменный проволочный ППБ-25Г13 на 10 кОм
R2: я вообще решил не ставить, т.к. сопротивление R1 и так довольно велико, и ток базы уменьшать нет смысла
С1: электролитический 470 мк х 25 В
Как видно, только R1 – отечественный, всё остальное – буржуинское. Таким образом, я тоже внёс свою лепту в развитие данной конструкции:
Вот так ЛАТР будет смотреться в перспективе:
Ставлю транзистор C5129 на радиатор, заполировав место касания и смазав термопастой:
Думаю, что делать плату для нескольких деталей смысла не имеет. Тем более, что есть идея по установке и креплению вольтметра. Там будет достаточно просторная площадка, где я и размещу все остальные детали. Примерно так:
Соединение:
Подключение и проверка:
В корпусе сделаны нужные отверстия:
Выходные клеммы должны быть рассчитаны на подключение сетевой вилки, однополюсных вилок и просто поводов:
Выключатель, предохранитель, выходные клеммы и регулятор напряжения закреплены:
Вставляю основной блок:
Всё припаяно:
Проверка:
Читайте также: