Что лучше amd phenom ii x4 или amd athlon ii x4
Ещё в самом первом материале, посвящённом исследованию производительности 4-ядерных процессоров AMD прошлых лет, упоминалось, что именно эта компания выпустила в конце 2007 года по сути первый "настоящий" 4-ядерный x86-процессор, то есть x86-процессор с 4 ядрами на одном кристалле и общим для всех ядер кэшем. Первые 4-ядерные x86-процессоры Intel, выпущенные годом ранее, представляли собой по сути "сдвоенные двухъядерные" — два 2-ядерных кристалла в одном корпусе с общим кэшем лишь в пределах каждого кристалла. В этом отношении первые 4-ядерные чипы Intel Core 2 Quad/Extreme напоминали первые же 2-ядерные чипы этой компании, Pentium D эпохи NetBurst, использовавшие аналогичную двухкристальную компоновку. С одной стороны такое внутреннее устройство многоядерных процессоров Intel имело очевидный недостаток — из-за отсутствия общего для всех ядер кэша обмен данными между ядрами из разных кристаллов мог выполняться лишь посредством системной шины и оперативной памяти, что очевидно менее эффективно. Однако, с другой стороны, уже проверенная временем двухкристальная компоновка позволила на год раньше конкурента выпустить на рынок 4-ядерные процессоры на новой микроархитектуре Core. Кроме того, как мы уже неоднократно отмечали, несмотря на в целом передовую архитектуру, первый 4-ядерный “блин” у AMD получился “комом” — даже несмотря на то, что процессоры этой компании вышли на рынок на год позже, их производительность на фоне конкурента в лице Core 2 Quad оказалась совсем невпечатляющей. И тут было уже не до маркетинговых лозунгов о "настоящих" 4-ядерных процессорах — AMD пришлось серьёзно скорректировать ценовую политику, чтобы окончательно не потерять рынок многоядерных процессоров для настольных систем.
реклама
Впрочем, и этот момент также уже упоминался не единожды в наших исследованиях, потенциал микроархитектуры K10 не был раскрыт в процессорах Phenom первого поколения преимущественно из-за проблем с достижением сравнительно высоких тактовых частот — проблемы, решённой компанией AMD уже к началу 2009 года с выпуском второго поколения процессоров Phenom, лишённых указанного выше недостатка. В последней статье цикла мы как раз и протестировали Phenom II X4 в связке с DDR3 памятью и убедились, что 4-ядерные процессоры второго поколения многоядерных решений микроархитектуры K10 в умеренном разгоне всё ещё могут обеспечить стабильные 30 FPS во многих современных играх даже на ультра-настройках. Конечно же, было бы интересно посмотреть, как в той же дисциплине выступят 4-ядерные процессоры Intel тех лет, пускай и не совсем "настоящие" (в упомянутом выше смысле). С этой целью в качестве конкурента Phenom II X4 925, принимавшему участие в нашем тестировании ранее, мы противопоставим сегодня серверный Xeon E5440, являющийся аналогом настольного Core 2 Quad Q9550. Да, на момент выхода Phenom II X4 на рынок у Intel имелись в арсенале уже и "настоящие" 4-ядерные процессоры Core i7 900-ой серии на новой микроархитектуре Nehalem, однако, эти процессоры были частью платформы LGA 1366, сборки на которой стоили значительно дороже и относились к классу высокопроизводительных настольных систем (HEDT). На рынке массовых настольных компьютеров господствующей платформой Intel всё ещё оставалась платформа LGA 775, и, соответственно, массовыми 4-ядерными предложениями Intel были как раз таки процессоры Core 2 Quad.
Как и ранее, в качестве современного ориентира используется "гиперпень". Основы тестовых стендов AM3, LGA 775 и LGA 1151 составляют материнские платы ASUS M4A79T Deluxe, ASUS P5Q3 и MSI B250M PRO-VD, соответственно. Остальные комплектующие, кроме оперативной памяти, идентичны: видеокарта GeForce RTX 2060 Super от KFA2, бюджетный SSD WD Green на 240 ГБ под Windows и приложения, жёсткий диск Seagate 7200 BarraCuda на 3 ТБ под игры, блок питания Xilence Performance A+ 630 Вт. Первые два тестовых стенда оснащены 2 планками DDR3-1600 CL9 памяти с Aliexpress объёмом по 4 ГБ каждая, о которой неоднократно писалось ранее, последний— 2 планками DDR4-2400 CL17 памяти так же объёмом по 4 ГБ каждая.
реклама
var firedYa28 = false; window.addEventListener('load', () => < if(navigator.userAgent.indexOf("Chrome-Lighthouse") < window.yaContextCb.push(()=>< Ya.Context.AdvManager.render(< renderTo: 'yandex_rtb_R-A-630193-28', blockId: 'R-A-630193-28' >) >) >, 3000); > > >);Небольшой спойлер: на фото тестовый стенд LGA 775 трудится над сбором данных уже для следующей статьи (нетрудно заметить, что планок памяти установлено уже 4, а не 2), но об этом в другой раз. Ах да, ничего свободного под LGA 775, кроме Cryorig R1 Ultimate под рукой не нашлось, так что не обессудьте — для небольшого разгона 2-секционный суперкулер явно перебор, но дешёвая "водянка" ID-Cooling FROSTFLOW X 240, которая использовалась ранее в тестах платформы AM3, не имеет креплений под LGA 775. Пользуясь случаем, передаю привет магазину НИКС, на сайте которого указано обратное — что, дескать, поддерживает. Впрочем, не суть, так что не будем отвлекаться. Ниже приведена таблица основных технических характеристик сравниваемых процессоров.
Разгон процессоров AMD подробно обсуждался ранее, вкратце Athlon II X4 630 покорил планку в 240 МГц "по шине", а Phenom II X4 925 — в 260 МГц, и, таким образом, результирующие частоты этих процессоров в разгоне составили 3.36 и 3.64 ГГц, соответственно. Делитель памяти был установлен в значение 3:10, так что итоговая частота памяти в разгоне оказалась равной DDR3-1733 (9-9-9) и DDR3-1600 (9-9-9), соответственно. В стоке память также работала в режиме DDR3-1600 (9-9-9).
реклама
Xeon E5440 также разгонялся "по шине". Цель ставить рекорды вновь не стояла, так что ограничившись напряжением в 1.375 В на ядра процессора удалось разогнать FSB с 333 МГц до 425. Частота процессора при этом возросла с 2.83 до 3.6 ГГц, а память заработала в режиме DDR3-1700 (9-9-9). Таким образом, в разгоне частотные характеристики процессора и памяти оказались практически идентичными таковым для Phenom II X4 925, что позволит провести сравнение в практически идентичных условиях. В стоке с Xeon E5440 память работала на частоте DDR3-1333 (7-7-7), то есть на официально заявленной Intel для P45 максимальной частоте памяти DDR3.
Отметим, что как и в случае с тестируемыми процессорами AMD, многие производители материнских плат с чипсетом P45 повышали максимально поддерживаемую тактовую частоту памяти до 1600 МГц и выше. Например, у нашей платы, ASUS P5Q3, официально заявлена поддержка DDR3-1600 и даже DDR3-1800. Однако, указанные более высокие частоты доступны для Xeon E5440 только в разгоне минимальный делитель на память 1:2, так что в стоке с Xeon E5440 при эффективной частоте системной шине 1333 МГц (4×333 МГц) больше чем DDR3-1333 мы позволить себе не можем. Впрочем, при тестировании 4-ядерных процессоров K10 разница в играх в стоке с DDR3-1333 CL7 и DDR3-1600 CL9 была минимальной, так что этот фактор не определяющий.
AMD Phenom II X4 920 vs Athlon II X4 640
Сведения о типе (для десктопов или ноутбуков) и архитектуре Phenom II X4 920 и Athlon II X4 640, а также о времени начала продаж и стоимости на тот момент.
Место в рейтинге производительности | 1668 | 1604 |
Соотношение цена-качество (0-100) | 4.50 | 3.34 |
Тип | Десктопный | Десктопный |
Кодовое название архитектуры | Deneb | Propus |
Дата выхода | Январь 2009 (12 лет назад) | 11 мая 2010 (11 лет назад) |
Цена на момент выхода | $90 | $80 |
Цена сейчас | 29$ (0.3x) | 43$ (0.5x) |
Для получения индекса мы сравниваем характеристики видеокарт и их стоимость, учитывая стоимость других карт.
Характеристики
Количественные параметры Phenom II X4 920 и Athlon II X4 640: число ядер и потоков, тактовые частоты, техпроцесс, объем кэша и состояние блокировки множителя. Они косвенным образом говорят о производительности Phenom II X4 920 и Athlon II X4 640, но для точной оценки необходимо рассмотреть результаты тестов.
Ядер | 4 | 4 |
Потоков | 4 | 4 |
Базовая частота | нет данных | 3 ГГц |
Максимальная частота | 2.8 ГГц | 3 ГГц |
Кэш 1-го уровня | 128 Кб (на ядро) | 128 Кб (на ядро) |
Кэш 2-го уровня | 512 Кб (на ядро) | 512 Кб (на ядро) |
Кэш 3-го уровня | 6 Мб (всего) | нет данных |
Технологический процесс | 45 нм | 45 нм |
Размер кристалла | 258 мм 2 | 169 мм 2 |
Количество транзисторов | 758 млн | 300 млн |
Поддержка 64 бит | + | + |
Совместимость
Параметры, отвечающие за совместимость Phenom II X4 920 и Athlon II X4 640 с остальными компонентами компьютера. Пригодятся например при выборе конфигурации будущего компьютера или для апгрейда существующего. Обратите внимание, что энергопотребление некоторых процессоров может значительно превышать их номинальный TDP даже без разгона. Некоторые могут даже удваивать свои заявленные показатели, если материнская плата позволяет настраивать параметры питания процессора.
Макс. число процессоров в конфигурации | 1 | 1 |
Сокет | AM3 | AM3 |
Энергопотребление (TDP) | 125 Вт | 95 Вт |
Поддержка оперативной памяти
Типы, максимальный объем и количество каналов оперативной памяти, поддерживаемой Phenom II X4 920 и Athlon II X4 640. В зависимости от материнских плат могут поддерживаться более высокие частоты памяти.
Типы оперативной памяти | DDR3 | DDR3 Dual-channel |
Тесты в бенчмарках
Это результаты тестов Phenom II X4 920 и Athlon II X4 640 на производительность в неигровых бенчмарках. Общий балл выставляется от 0 до 100, где 100 соответствует самому быстрому на данный момент процессору.
AMD Phenom II X4 925 vs Athlon II X4 640
Сведения о типе (для десктопов или ноутбуков) и архитектуре Phenom II X4 925 и Athlon II X4 640, а также о времени начала продаж и стоимости на тот момент.
Место в рейтинге производительности | 1595 | 1604 |
Соотношение цена-качество (0-100) | 4.83 | 3.34 |
Тип | Десктопный | Десктопный |
Кодовое название архитектуры | Deneb | Propus |
Дата выхода | Май 2009 (12 лет назад) | 11 мая 2010 (11 лет назад) |
Цена на момент выхода | $160 | $80 |
Цена сейчас | 30$ (0.2x) | 43$ (0.5x) |
Для получения индекса мы сравниваем характеристики видеокарт и их стоимость, учитывая стоимость других карт.
Характеристики
Количественные параметры Phenom II X4 925 и Athlon II X4 640: число ядер и потоков, тактовые частоты, техпроцесс, объем кэша и состояние блокировки множителя. Они косвенным образом говорят о производительности Phenom II X4 925 и Athlon II X4 640, но для точной оценки необходимо рассмотреть результаты тестов.
Ядер | 4 | 4 |
Потоков | 4 | 4 |
Базовая частота | нет данных | 3 ГГц |
Максимальная частота | 2.8 ГГц | 3 ГГц |
Кэш 1-го уровня | 128 Кб (на ядро) | 128 Кб (на ядро) |
Кэш 2-го уровня | 512 Кб (на ядро) | 512 Кб (на ядро) |
Кэш 3-го уровня | 6 Мб (всего) | нет данных |
Технологический процесс | 45 нм | 45 нм |
Размер кристалла | 258 мм 2 | 169 мм 2 |
Количество транзисторов | 758 млн | 300 млн |
Поддержка 64 бит | + | + |
Совместимость
Параметры, отвечающие за совместимость Phenom II X4 925 и Athlon II X4 640 с остальными компонентами компьютера. Пригодятся например при выборе конфигурации будущего компьютера или для апгрейда существующего. Обратите внимание, что энергопотребление некоторых процессоров может значительно превышать их номинальный TDP даже без разгона. Некоторые могут даже удваивать свои заявленные показатели, если материнская плата позволяет настраивать параметры питания процессора.
Макс. число процессоров в конфигурации | 1 | 1 |
Сокет | AM3 | AM3 |
Энергопотребление (TDP) | 95 Вт | 95 Вт |
Поддержка оперативной памяти
Типы, максимальный объем и количество каналов оперативной памяти, поддерживаемой Phenom II X4 925 и Athlon II X4 640. В зависимости от материнских плат могут поддерживаться более высокие частоты памяти.
Типы оперативной памяти | DDR3 | DDR3 Dual-channel |
Тесты в бенчмарках
Это результаты тестов Phenom II X4 925 и Athlon II X4 640 на производительность в неигровых бенчмарках. Общий балл выставляется от 0 до 100, где 100 соответствует самому быстрому на данный момент процессору.
Вступление
С выходом в продажу процессоров AMD Athlon II x4 по цене порядка 100$ поклонники продукции этой фирмы получили замечательную возможность собирать четырехъядерные системы за минимум средств. Новая линейка Athlon II x4 ставит рекорд по минимальной цене за 4 ядра. Ближайший аналог от INTEL, Core 2 Quad Q8200 стоит на 30% больше, нежели младшая модель линейки Athlon II x4 620. И если с ценой у новых процессоров от AMD все прекрасно, то как обстоят дела с производительностью? Сегодня мы постараемся ответить на этот вопрос.
реклама
В этом обзоре мы оценим производительность старшего процессора в линейке Athlon II x4 630 в сравнении с младшим представителем четырехъядерного семейства Phenom II: процессором Phenom II х4 810, а также оценим разгонный потенциал обоих процессоров.
Среднегеометрические результаты и выводы
Картина в абсолютном большинстве протестированных проектов получилась идентичная, так что подробно обсудим лишь среднюю по всем тестам производительность. Итак, что же мы видим по итогу? На практически равных частотах с практически одинаковой памятью как в стоке, так и в небольшом разгоне Xeon E5440 оказался чуть быстрее Athlon II X4 630 и несколько медленнее Phenom II X4 925. Если теперь принять во внимание результаты синтетических тестов AIDA64, показавших примерно одинаковую скорость счёта тестируемых процессоров, то причина, по которой участники тестирования заняли соответствующие места, лежит на поверхности — основной архитектурной характеристикой, оказавшей влияние на результаты, по всей видимости, является наличие или отсутствие общего кэша для ядер. Athlon II X4, напрочь лишённый указанной роскоши, финишировал последним, Xeon, лишь каждая пара ядер которого снабжена общим L2-кэшем, пришёл вторым, а Phenom II X4 с общим L3-кэшем на все 4 ядра закономерно одержал победу.
А вот в недалёком прошлом, в конце 2000-х и начале 2010-х, расклад сил был несколько иным — на равных частотах Core 2 Quad в большинстве игр были всё же быстрее, пускай и незначительно, чем Phenom II X4. Что же изменилось в игровой индустрии с тех пор, что позволило Phenom II X4 спустя годы обойти конкурента? Причина изменений в расстановке сил, по всей видимости, кроется в умении современных игр значительно эффективнее использовать 4 и даже более ядер центрального процессора, в то время как на момент выхода первых 4-ядерных x86-процессоров для настольных систем на рынок, производительность большей части игр редко хоть как-то масштабировалась на более чем 2 ядра. В те годы Core 2 Quad и Athlon/Phenom II X4 за редким исключением показывали в играх производительность равную таковой у своих 2-ядерных "младших братьев" Core 2 Duo и Athlon/Phenom II X2. Но прогресс не стоит на месте и к концу 2010-х большая часть игровых проектов уже была способна сравнительно эффективно использовать как минимум 4 процессорных ядра, и узкое место 2-кристальной компоновки Core 2 Quad — отсутствие общего для всех 4 ядер кэша — дало о себе знать.
Обыгрывая известный в компьютерном сообществе мем, можно сказать, что потенциал "настоящей" многоядерной архитектуры K10 с общим кэшем на все ядра, наконец-то полностью раскрылся. Относиться к этому факту можно по-разному — поклонники AMD с гордо поднятой головой чётким и громким голосом продекламируют "А мы ведь говорили!", сторонники Intel отмахнутся, резонно указав на то, что полностью потенциал K10 раскрылся лишь тогда, когда процессоры этого поколения уже по большей части потеряли свою актуальность. Справедливости ради надо отметить, что в большинстве проектов 2015-2018 годов рассмотренные 4-ядерные процессоры как AMD, так и Intel в небольшом разгоне всё ещё способны обеспечить стабильные 30 (а местами и больше) FPS даже на ультра-настройках. Дальше, конечно, хуже — в некоторых играх 2019 ради стабильных 30 FPS придётся опуститься уже до средних настроек, а часть проектов, кроме того, вообще не запустится из-за отсутствия поддержки наборов инструкций SSE4.2. Суммарно, конечно, на данный момент эти процессоры выглядят, мягко скажем, не впечатляюще, но "консольный опыт" в большинстве игр получить вполне ещё можно. :D Естественно, из современных процессоров даже 2-ядерный 4-поточный "гиперпень" в стоке способен продемонстрировать игровую производительность того же порядка при более низких значениях энергопотребления и тепловыделения. Но если вспомнить, сколько протестированным сегодня процессорам лет, то какие вообще к ним могут быть претензии?
AIDA64
Начинаем по традиции с результатов синтетических тестов из пакета AIDA64.
реклама
И здесь дела для процессора Intel обстоят не лучшим образом: если показатели представителей микроархитектуры K10 на фоне современного "гиперпня" со стоковой DDR4-2400 памятью не впечатляли, то с Xeon картина ещё хуже — даже в комплексном разгоне (увеличение не только частоты процессора, но и контроллера памяти) Xeon E5440 значительно отстал не только от G4600, но и от 4-ядерных решений конкурента. При этом в тестах записи отставание Xeon не столь существенно, а вот при чтении (и, как следствие, копировании) Xeon уже далеко позади. В чём причина такого поведения платформы с Xeon сказать непросто, скорее всего такие показатели — особенности используемых контроллеров памяти, ведь если бы причиной низких результатов Xeon на чтение было отсутствие общего для всех ядер кэша, то Athlon II X4 в этом тесте должен был существенно проиграть Phenom II X4, чего не наблюдается.
Переходим к синтетическим тестам центрального процессора. На диаграммах, приведённых ниже, результаты оценки производительности в тестах CPU и FPU вновь, как и ранее, для наглядности приведены относительно таковых для Pentium G4600, показатели которого взяты за 1.
В целом видим, что считает Xeon E5440 так же быстро, как и 4-ядерные представители AMD K10, а при использовании арифметики с плавающей точкой даже немного быстрее. Из общей картины вновь выбивается лишь PhotoWorxx, впрочем, такое поведение данного теста сюрпризом для нас уже не стало — результаты в PhotoWorxx сильно зависят от скоростных показателей подсистемы памяти, которые у Xeon заметно хуже. С одной стороны, можно сказать, что PhotoWorxx не место в синтетических тестах производительности CPU, так как данный тест не измеряет производительность вычислительных блоков процессора в условиях максимально возможной изоляции от других узлов компьютера, с другой — PhotoWorxx за счёт этой своей особенности значительной реалистичнее остальных тестов AIDA64.
Спецификации процессоров
Оба подопытных процессора изготовлены по 45-нм техпроцессу, обладают одинаковым тепловым пакетом TDP в 95 Вт, различаются лишь наличием кэша третьего уровня (у Phenom II) и чуть большей тактовой частотой (у Athlon II).
Несмотря на то, что процессоры Athlon II x4 существенно дешевле своих старших собратьев Phenom II x4, архитектура их отличается незначительно. На фото кристаллов ядер Deneb (слева) и Propus (справа) мы видим, что они очень похожи и ядро Propus представляет собой кристалл Deneb с отсутствующей памятью L3.
Мегаслив топовой 3070 Gigabyte Aorus дешевле любого Палит
| |
В связи с этим становится совершенно очевидно, что процессоры Athlon II на ядре Propus не имеют никакой скрытой возможности включения кэша L3, что можно было бы ожидать от «урезанной» версии топового продукта. Возможно, самые первые партии процессоров Athlon II строились на ядре Deneb с отключенным кэшем, что и породило массу слухов (опирающихся на немногих счастливчиков) о возможности задействовать его, включив функцию Advanced Clock Calibration (ACC) в БИОСе материнской платы.
Уменьшение площади кристалла на треть значительно снизило себестоимость процессора, что в итоге привело к выгодным для покупателей ценам на четырехъядерные процессоры AMD Athlon II x4.
Подробные спецификации процессоров приведены ниже:
реклама
Оба процессора работают на 2000 МГц шины Hyper Transport и поддерживают как DDR2, так и DDR3 модули памяти.
Конфигурация стенда, тестовые приложения
- Операционная система Windows 7 Ultimate EN x64
- Драйвера видеокарты ATI Catalyst™ 9.10
- 3D Mark 06 - результат CPU Score, настройки по умолчанию
- Science Mark – тестовый пакет для научных вычислений.
- LightWork - обсчет сцены в разрешении 300х200
- POV-Ray Render - обсчет сцены в разрешении 1280х1024
- PC Mark 05 - результат CPU Score, настройки по умолчанию
- Crysis Warhead - режим DX10, максимальные настройки качества, 8xAF 4xAA
- WinRar 3.80 - встроенный тест производительности
- Unreal Tournament 3 - максимальные настройки качества, 8xAF 4xAA
- FarCry 2 - режим DX10, максимальные настройки качества, 8xAF 4xAA
- DVD 2 AVI - однопроходное кодирование mpeg2 ролика кодеком xVid
- CineBench R10 - многопоточный рендеринг, настройки по умолчанию
- Call of Duty: World at War - максимальные настройки качества, 4xAF, 4xAA
Результаты игровых тестов
Grand Theft Auto V (2015, RAGE, DX11)
Sid Meier's Civilization VI (2016, Собственный, DX11)
Total War: Warhammer II (2017, TW Engine 3, DX11)
Middle-earth: Shadow of War (2017, Firebird Engine, DX11)
F1 2018 (2018, EGO Engine, DX11)
Shadow of the Tomb Raider (2018, Foundation Engine, DX12)
Hitman 2 (2018, Glacier 2, DX12)
Far Cry New Dawn (2019, Dunia 2, DX11)
Metro Exodus (2019, 4A Engine, DX12)
Borderlands 3 (2019, Unreal Engine 4, DX12)
Разгон
реклама
Как показывает опыт, процессоры линейки Phenom II обычно удается разогнать до частоты 3,7-4 ГГц. Так как процессоры Athlon II построены на похожем ядре, мы надеемся на то, что и разгонный потенциал их сравним с Phenom II. Поскольку подопытные процессоры не относятся к серии Black Edition, мы не сможем повысить их множитель свыше номинального, разгон приходится осуществлять только посредством увеличения частоты системной шины. К счастью, материнская плата MSI 790FX-GD70 обладает средствами для удобного изменения частоты FSB «на лету». С помощью аппаратной функции OS Clock Dial, мы сможем поднимать частоту системной шины непосредственно в Windows, попутно контролируя стабильность системы. В ряде экспериментов, когда разгон осуществлялся непосредственно из БИОСа никакой разницы с разгоном через OS Clock Dial нами замечено не было.
Для контроля температуры процессора и, отчасти - тестирования стабильности работы системы, мы использовали программу AMD Overdrive Utility и ее встроенный тест. Разгон мы начали с поднятия напряжения питания процессоров до 1.51 В (1.50 В под нагрузкой) и, уже при этом напряжении, стали повышать частоту FSB. Наш экземпляр Phenom II показал очень неплохой частотный потенциал. При напряжении питания 1,5 В максимальная частота составила 3848 МГц (296 МГц FSB, 2072 МГц Hyper Transport). Для достижения этого результата нам пришлось снизить множитель шины Hyper Transport до x7. С множителем HT х10 максимально стабильной частотой оказалась 3250 МГц (250 МГц FSB, 2500 МГц Hyper Transport). При повышении напряжения до 1.53 В нам удалось достичь частоты в 3900 МГц (300 МГц FSB, 1800 МГц Hyper Transport). Но при прохождении тестов в данном режиме температура процессора поднималась до 70 градусов Цельсия, вследствие чего система зависала от перегрева. Поэтому мы вернулись к стабильной частоте в 3848 МГц и все тесты проводили на ней. В этом режиме температура процессора не превышала 68 градусов Цельсия.
реклама
У Athlon II 630 максимальной стабильной оказалась частота в 3570 МГц. Для ее достижения нам пришлось поднять частоту FSB до 255 МГц и снизить множитель шины Hyper Transport до 8х. Температура процессора, в этом случае, под нагрузкой не превышала 52 градусов Цельсия. Дальнейшее повышение напряжения питания процессора (свыше 1.5 В) позволило разогнать процессор до 3640 МГц, но и на этой частоте система оказалась нестабильной.
К сожалению, стабильный предел разгона Athlon II x4 630 не оправдал наших ожиданий. Мы смогли, практически не напрягаясь, поднять частоту Phenom II x4 почти на 50%, и в то же время потерпели неудачу при попытках разогнать Athlon II x4 более чем на 27%. Пока нам неясны столь скромные результаты разгона – это особенность конкретного экземпляра Athlon II 630 или же свойство нового ядра Propus? На этот вопрос можно будет ответить, только набрав статистику по разгону достаточного числа процессоров на новом ядре.
Читайте также: