Чему равен sin 45 cos 45
чему равен sin и cos 45 градусовчему равен sin и cos 45 градусовчему равен sin и cos 45 градусовчему равен sin и cos 45 градусовчему равен sin и cos 45 градусовчему равен sin и cos 45 градусовчему равен sin и cos 45 градусов
Корень из двух на два, или один делить на корень из двух
А что, в школе теперь кроме секса вообще ничему не учат?
Учи лучше математику, синус 45 градусов равен корень из 2 деленое на2, а косинус из 45 градусов равен корень из 2 деленое на два. Дорогой надо знать это как молитву, ночью разбудешь, ты должен ответить.
равно корню из 2 деленое на 2
Значится я со школы точно помню, что это 0,70710678118
вот, или как многие тут веско отметили это 1/корень из двух либо половина этого корня.
Синус пи, косинус пи, тангенс пи и других углов в радианах
Приведенная ниже таблица косинусов, синусов и тангенсов также подходит для нахождения значения тригонометрических функций, аргумент которых задан в радианах. Для этого воспользуйтесь второй колонкой значений угла. Благодаря этому можно перевести значение популярных углов из градусов в радианы. Например, найдем угол 60 градусов в первой строке и под ним прочитаем его значение в радианах. 60 градусов равно π/3 радиан.
Число пи однозначно выражает зависимость длины окружности от градусной меры угла. Таким образом, пи радиан равны 180 градусам.
Любое число, выраженное через пи (радиан) можно легко перевести в градусную меру, заменив число пи (π) на 180.
Примеры:
1. Синус пи.
sin π = sin 180 = 0
таким образом, синус пи - это тоже самое, что синус 180 градусов и он равен нулю.
2. Косинус пи.
cos π = cos 180 = -1
таким образом, косинус пи - это тоже самое, что косинус 180 градусов и он равен минус единице.
3. Тангенс пи
tg π = tg 180 = 0
таким образом, тангенс пи - это тоже самое, что тангенс 180 градусов и он равен нулю.
Синус, косинус, тангенс угла 45 градусов (sin 45, cos 45, tg 45)
Табличные значения синуса 45, косинуса 45 и тангенса 45 градусов указаны ниже. Далее по тексту следует пояснение метода и правильности вычисления этих значений для произвольного прямоугольного треугольника.
45 градусов - это π/4 радиан. Формулы для значений косинуса, синуса и тангенса пи/4 радиан указаны ниже (хотя они и тождественны).
То есть, например, tg π/4 = tg 45 градусов
Таблица значений тригонометрических функций
Для определения значения тригонометрической функции, найдите его на пересечении строки с указанием тригонометрической функции. Например, синус 30 градусов - ищем колонку с заголовком sin (синус) и находим пересечение этой колонки таблицы со строкой "30 градусов", на их пересечении считываем результат - одна вторая. Аналогично находим косинус 60 градусов, синус 60 градусов (еще раз, в пересечении колонки sin (синус) и строки 60 градусов находим значение sin 60 = √3/2 ) и т.д. Точно так же находятся значения синусов, косинусов и тангенсов других "популярных" углов.
Табличные значения: синус 45, косинус 45 и тангенс 45 градусов
- тангенс 45 градусов равен единице
- синус 45 градусов равен косинусу 45 градусов и равен корню из двух пополам (то же самое, что и единица, деленная на корень из двух)
Синус, косинус и тангенс угла π/4 радиан
В задачах, предлагаемых для решения в старших классах и на ЗНО/ЕГЭ вместо градусной меры угла часто встречается указание на его величину, измеренную в радианах. Мера угла, выраженная в радианах, базируется на числе пи, которое выражает зависимость длины окружности от ее диаметра. Для простоты понимания, рекомендую запомнить простой принцип перевода градусов в радианы. Диаметр окружности охватывает дугу, равную 180 градусам. Таким образом, пи радиан будет равно 180 градусам. Откуда легко пересчитать любую градусную меру угла в радианы и обратно. Учтем, что угол 45 градусов, выраженный в радианах, равен (180 / 45 = 4) π/4 ( пи на четыре). Поэтому найденные нами значения верны для той же самой градусной меры угла, выраженной в радианах:- тангенс π/4 ( пи на четыре) равен единице
- синус π/4 ( пи на четыре) градусов равен косинусу π/4 градусов и равен корню из двух пополам
Примечание. В поисковых запросах часто встречается нечто типа "тангенс р/4 или p/4". Это неграмотно. Используйте запрос, например "тангенс пи/4".
ЗНАЧЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ ПРИ α=45°
Как самостоятельно вычислить значения sin cos tg 45 градусов?
Построим и рассмотрим прямоугольный треугольник АВС у которого угол ∠В = 45°. На основании соотношения его сторон, вычислим значения тригонометрических функций в прямоугольном треугольнике для угла 45 градусов. Поскольку треугольник прямоугольный, то значения функций синуса, косинуса и тангенса будут равны соотношению его соответствующих сторон.
Поскольку значение функций синуса, косинуса и тангенса зависят исключительно от градусной меры угла (или значения, выраженного в радианах), то найденные нами соотношения и будут значениями функции синуса 45, косинуса 45 и тангенса 45 градусов.
Согласно свойствам прямоугольного треугольника, угол С - прямой и равен 90 градусам. Угол B мы изначально построили с градусной мерой 45 градусов. Найдем значение угла А. Так как сумма углов треугольника равна 180 градусам, то
∠А + ∠В + ∠С = 180°
Угол C прямой и равен 90 градусам, угол B мы изначально определили как 45 градусов, таким образом:
∠А = 180° -∠С - ∠В = 180° - 90° - 45° = 45°
Поскольку у данного треугольника два угла равны между собой, то треугольник АВС – прямоугольный, и, одновременно, равнобедренный, в котором оба катета равны между собой: AC = BC.
Допустим, что длина сторон равна некому числу АС = ВС = а. Зная длины катетов, вычислим длину гипотенузы.
По теореме Пифагора: АВ 2 =АС 2 +ВС 2
Заменим длины AC и BC на переменную а, тогда получим:
АВ 2 = а 2 + а 2 = 2а 2 ,
тогда АВ=а√2.
В результате мы выразили длины всех сторон прямоугольного треугольника с углом 45 градусов через переменную а.
Согласно свойств тригонометрических функций в прямоугольном треугольнике соотношение соответствующих сторон треугольника будет равным значению соответствующих функций. Таким образом для угла α = 45 градусов:
sin α = BC / AB (согласно определению синуса для прямоугольного треугольника - это отношение противолежащего катета к гипотенузе, BC - катет, AB - гипотенуза)
cos α = AC / AB (согласно определению косинуса - это отношение прилежащего катета к гипотенузе, AC - катет, AB - гипотенуза)
tg α = BC / AC (аналогично, тангенс для угла α будет равен отношению противолежащего катета к прилежащему)
Вместо обозначений сторон подставим значения их длин через переменную а.
Исходя из этого (см. таблицу значений sin 45, cos 45, tg 45) получаем:
Табличные значения sin 45, cos 45, tg 45 (то есть значение синуса 45, косинуса 45 и тангенса 45 градусов можно вычислить как соотношение соответствующих сторон данного треугольника), подставим вычисленные выше значения длин сторон в формулы и получим результат на картинке ниже.
чему равен sin(-45), cos(-45), tg(-45) и ctg(-45)
Посмотри на их графики. Вообще эти графики надо помнить наизусть, они простые. И ты увидишь, что sin -45° = - sin 45° (и вообще sin -a = -sin a), и cos -45° = cos 45° (и вообще cos -a = cos a), и tg -45° = -tg 45°, и ctg -45° = -ctg 45°. Имея в голове эти графики или глядя на них, легко разберешься и с более сложными случаями вроде sin 135°.
А "синусы и косинусы это лишь отношения сторон угла (катетов, гипотенузы) " - это лишь простой частный случай. Затем окажется, что это мнимая и действительная части экспонент мнимых чисел, а затем - что это функции, обратные к эллиптическим интегралам.
синусы и косинусы это лишь отношения сторон угла (катетов, гипотенузы)
думаю что угол должен браться по модулю.
в противном случае это будет угол 360-45=315 градусов
Если смущает "-", то -45 = 315 градусов
Т. е sin(-45)=sin(315)= - корень из 2/2
cos(-45)=корень из 2/2
tg(-45)=ctg(-45)=-1
Читайте также: