Чему равен модуль sin x
Математика - это очень просто, даже проще, чем мы можем себе представить. Сложной математику делают сами математики.
понедельник, 16 января 2012 г.
Модуль синуса
Меня попросили показать способ упростить тригонометрическое выражение, содержащее сумму синуса и модуля синуса угла, зная, что угол альфа оканчивается в 4 четверти. Выглядит это выражение так:
Сразу скажу честно, что я понятия не имею, как такие выражения упрощаются. Но про модуль синуса рассказать могу и что получится в итоге, то же. Все вы хорошо знаете, что синус, как и все тригонометрические функции, может принимать положительные и отрицательные значения. Так вот, синус в китайских палочках, что в математике читается как "модуль синуса угла А", не может иметь отрицательных значений, только положительные. Когда математики брезгуют притрагиваться к отрицательным числам, они применяют эти китайские палочки (или модуль числа), как презерватив при сексе, чтоб не заразиться минусом. Этим они спасают свою жизнь, поскольку все числа в модуле из отрицательных превращаются в положительные.
Ну а теперь немного о знаковой жизни синуса угла А. Синус - это у нас вверх и вниз по оси игрек от единицы до минус единицы. Когда угол А принимает значения от 0 до 180 градусов, все синусы этих углов положительны. В данном случае китайские палочки модуля являются излишней мерой предосторожности и их можно отбросить. В этом диапазоне значений угла А наше выражение примет вид:
Если значение угла А увеличивать дальше, от 180 до 360 градусов, значения синусов этих углов будут отрицательными, то есть со знаком "минус". В этом случае модуль начинает играть свою роковую роль в судьбе нашего математического выражения. Значение синуса с модулем остается положительным, а значение синуса без модуля становится отрицательным, как и положено всем порядочным синусам. Что мы получим, если от числа отнимем точно такое же число? Правильно, ноль. Наше выражение вымирает, как динозавры. Кстати, если все люди всегда будут использовать презервативы во время секса, человечество тут же полностью вымрет. Эффект модуля. Посмотрим, что происходит с нашим выражением в этом случае:
Применение формул приведения тригонометрических функций даст точно такой же результат. При этом модуль заставляет нас отбрасывать в мусор все знаки минус, получаемые в результате преобразований.
При углах 0, 180, 360 и так далее градусов наше выражение будет равняться нулю, поскольку нулю равны значения синуса этих углов.
Как всё это правильно записать в полном соответствии с правилами математической бюрократии, я не знаю. Но смысл происходящего, я надеюсь, вам понятен и вы без труда оформите это выражение в самом лучшем виде.
y= модуль sinx разделить на sinx как решать, какой график обьясните пожалуйста.
Для начала, чему равен модуль sin x? Он равен +sin x, когда синус положительный, т. е. при x от 2*pi*n до pi+2*pi*n, где n - целое число. И -sin x, когда синус отрицательный, т. е. при х от pi+2*pi*n до 2*pi+2*pi*n. Когда sin x = 0, его модуль тоже равен нулю. Отсюда вывод:
y=1 при x от 2*pi*n до pi+2*pi*n
y=-1 при х от pi+2*pi*n до 2*pi+2*pi*n
А в точках, где синус равен нулю, я думаю, что игрек не определен, т. к. на ноль делить нельзя.
Тригонометрическое уравнение с модулем
Так как уравнение содержит модуль, нам нужно этот модуль раскрыть по определению модуля.
Рассмотри два случая:
а) - в этом случае модуль раскрываем с тем же знаком.
б) - в этом случае модуль раскрываем с противоположным знаком.
а)
Раскрываем модуль с тем же знаком и получаем уравнение
Представим сумму косинусов в виде произведения, а правую часть уравнения разложим по формуле синуса двойного угла.
Отсюда =0" />
или -sin=0" />
=0" />
при /2+n,
Введем замену переменной:
Решим квадратное уравнение относительно :
или =1/2" />
Итак, если , корни уравнения
и /2+n,
Рассмотрим второй случай:
б)
В этом случае, так как подмодульное выражение отрицательно, раскрываем модуль с противоположным знаком:
. Получим:
n" />
И.В. Фельдман, репетитор по математике.
Решение простейших тригонометрических уравнений
Решение тригонометрических уравнений любого уровня сложности в конечном итоге сводится к решению простейших тригонометрических уравнений. И в этом наилучшим помощником снова оказывается тригонометрический круг.
Вспомним определения косинуса и синуса.
Косинусом угла называется абсцисса (то есть координата по оси ) точки на единичной окружности, соответствующей повороту на данный угол .
Синусом угла называется ордината (то есть координата по оси ) точки на единичной окружности, соответствующей повороту на данный угол .
Положительным направлением движения по тригонометрическому кругу считается движение против часовой стрелки. Повороту на 0 градусов ( или 0 радиан) соответствует точка с координатами (1;0)
Используем эти определения для решения простейших тригонометрических уравнений.
1. Решим уравнение
Этому уравнению удовлетворяют все такие значения угла поворота , которые соответствуют точкам окружности, ордината которых равна .
Отметим на оси ординат точку с ординатой :
Проведем горизонтальную линию параллельно оси абсцисс до пересечения с окружностью. Мы получим две точки, лежащие на окружности и имеющие ординату . Эти точки соответствуют углам поворота на и радиан:
Если мы, выйдя из точки, соответствующей углу поворота на радиан, обойдем полный круг, то мы придем в точку, соответствующую углу поворота на радиан и имеющую ту же ординату. То есть этот угол поворота также удовлетворяет нашему уравнению. Мы можем делать сколько угодно "холостых" оборотов, возвращаясь в ту же точку, и все эти значения углов будут удовлетворять нашему уравнению. Число "холостых" оборотов обозначим буквой (или ). Так как мы можем совершать эти обороты как в положительном, так и в отрицательном направлении, (или ) могут принимать любые целые значения.
То есть первая серия решений исходного уравнения имеет вид:
, , - множество целых чисел (1)
Аналогично, вторая серия решений имеет вид:
, где , . (2)
Как вы догадались, в основе этой серии решений лежит точка окружности, соответствующая углу поворота на .
Эти две серии решений можно объединить в одну запись:
Если мы в этой записи возьмем ( то есть четное ), то мы получим первую серию решений.
Если мы в этой записи возьмем ( то есть нечетное ), то мы получим вторую серию решений.
2. Теперь давайте решим уравнение
Так как - это абсцисса точки единичной окружности, полученной поворотом на угол , отметим на оси точку с абсциссой :
Проведем вертикальную линию параллельно оси до пересечения с окружностью. Мы получим две точки, лежащие на окружности и имеющие абсциссу . Эти точки соответствуют углам поворота на и радиан. Вспомним, что при движении по часовой стрелки мы получаем отрицательный угол поворота:
Запишем две серии решений:
,
,
(Мы попадаем в нужную точку, пройдя из основной полный круг, то есть .
Объедим эти две серии в одну запись:
3. Решим уравнение
Линия тангенсов проходит через точку с координатами (1,0) единичной окружности параллельно оси OY
Отметим на ней точку, с ординатой равной 1 (мы ищем, тангенс каких углов равен 1):
Соединим эту точку с началом координат прямой линией и отметим точки пересечения прямой с единичной окружностью. Точки пересечения прямой и окружности соответствуют углам поворота на и :
Так как точки, соответствующие углам поворота, которые удовлетворяют нашему уравнению, лежат на расстоянии радиан друг от друга, то мы можем записать решение таким образом:
,
4. Решим уравнение
Линия котангенсов проходит через точку с координатами единичной окружности параллельно оси .
Отметим на линии котангенсов точку с абсциссой -1:
Соединим эту точку с началом координат прямой и продолжим ее до пересечения с окружностью. Эта прямая пересечет окружность в точках, соответствующих углам поворота на и радиан:
Поскольку эти точки отстоят друг от друга на расстояние, равное , то общее решение этого уравнения мы можем записать так:
В приведенных примерах, иллюстрирующих решение простейших тригонометрических уравнений были использованы табличные значения тригонометрических функций.
Однако, если в правой части уравнения стоит не табличное значение, то мы в общее решение уравнения подставляем значение обратной тригонометрической функции:
1
Отметим на окружности точки, ордината которых равна 0:
2.
Отметим на окружности единственную точку, ордината которой равна 1:
3.
Отметим на окружности единственную точку, ордината которой равна -1:
Так как принято указывать значения, наиболее близкие у нулю, решение запишем так:
4.
Отметим на окружности точки, абсцисса которых равна 0:
5.
Отметим на окружности единственную точку, абсцисса которой равна 1:
6.
Отметим на окружности единственную точку, абсцисса которой равна -1:
И чуть более сложные примеры:
1.
Синус равен единице, если аргумент равен
Аргумент у нашего синуса равен , поэтому получим:
. Разделим обе части равенства на 3:
Ответ:
2.
Косинус равен нулю, если аргумент косинуса равен
Аргумент у нашего косинуса равен , поэтому получим:
Выразим , для этого сначала перенесем вправо с противоположным знаком:
Упростим правую часть:
Разделим обе части на -2:
Заметим, что перед слагаемым знак не меняется, поскольку k может принимать любые целые значения.
Ответ:
И в заключение посмотрите видеоурок "Отбор корней в тригонометрическом уравнении с помощью тригонометрической окружности"
На этом разговор о решении простейших тригонометрических уравнений мы закончим. Следующий раз мы с вами поговорим о том, как решать простейшие тригонометрические неравенства.
Читайте также: