Часы на люминесцентных индикаторах своими руками
• 19.12.18 Версия 1.0: первоначальная, вроде бы стабильная версия
• 19.12.18 Версия 1.1: поправлены баги
• 05.03.19 Версия 1.2: добавлена настройка для поддержки платы ИН-12
• 13.05.19 Версия 1.3: добавлена настройка для полного отключения вывода температуры и влажности
Я сделал новую версию часов, которая работает чуть иначе и содержит минимальное количество компонентов. Плата имеет размеры меньше 10х10 см, поэтому заказать её можно за $2! Анонс проекта находится вот здесь.
Внимание! На плате и в списке компонентов исправлена критическая ошибка! Вместо резистора 220 Ом должен стоять 0.22 Ом, причём на 1-2 Ватта. × Отклонить предупреждение
Внимание! Индикаторы ИН-12 паяются НА шелкографию, анодной (белой) ногой в дырку №11. Не нужно сравнивать распиновку с даташитом и курить советские схемы, в плате данного проекта сделано так, как сделано. × Отклонить предупреждение
ОПИСАНИЕ
Часы на газоразрядных индикаторах (ГРИ, NIXIE) под управлением Arduino NANO. Комплект плат включает в себя платы для индикаторов ИН-14, ИН-14/ИН-16 и ИН-12. Время задаётся RTC DS3231, время настраивается кнопками. Есть также будильник и отображение температуры и влажности (точный датчик DHT22). Раз в полчаса делается антиотравление.
На сегодняшний день крайне популярны часы на газоразрядных лампах ИН-14, ИН-18 и тому подобных. Однако, как мне кажется, не заслуженно забыты еще одни великолепные лампы - вакуумно-люминисцентные (ИВ). Очень мало схем на этих лампах по причине высокой сложности их питания. Требуется аж три различных напряжения
- Напряжение нити накала
- Напряжение анодов и сеток
- Напряжение питания логики
Рассмотрим каждое в отдельности:
Нить накала. Накал в вакуумной лампе одновременно является катодом. Его равномерный прогрев необходим для работы лампы. Напряжение как правило от 0,5 до 10 В. Ток спирали накала довольно большой ~100 мА. Как правило, для равномерного его прогрева питание лучше осуществлять переменным током.
Напряжение анодов и сеток в подавляющем большинстве ламп одинаковое: 27-40 Вольт. Чтобы сегмент начал светиться, необходимо разогреть накал, который соединен с минусом питания, подать на сетку и нужный сегмент напряжение.
Самым простым и правильным на мой взгляд является питание повышенным отрицательным напряжением с помощью импульсного трансформатора. И пусть вас не пугает необходимость его намотки, делается это минут за 15, что на много проще, чем городить преобразователи из кучи деталей.
Спустя множество экспериментов родилась вот такая схема:
И вот что получилось в итоге:
Про использование технологии беспроводного питания различных устройств.
Что такое OLED, MiniLED и MicroLED телевизоры - краткий обзор и сравнение технологий.
Приводятся основные сведения о планарных предохранителях, включая их технические характеристики и применение.
Микрофоны MEMS - новое качество в записи звука. Подробное описание технологии.
Да, работает связка отлично. И даже память на откл. питания есть неплохая. Только кварц как следует подстроить для точности.
Я, как автор этой схемы, надеюсь, что люди ее захотят повторить Не стоит бояться контроллеров, все это предельно легко, а мс DS3231 позволяет не думать о кварце, точность хода идеальная. Ну за 2 месяца они не убежали ни на секунду еще ) Если кому надо, готов прошить контроллер бесплатно.
Не подскажите, где в Уфе достать ИВ-12? Нужны 4 шт. для починки Электроника Г9.04 %). Есть на пр. Октября, но цена в 225 деревянных пугает.
Если Вы желаете поделится в этом блоге своим проектом или реализацией чужого, присылайте мне на почту.
суббота, 18 ноября 2017 г.
Миниатюрные часы на вакуумно-люминисцентном индикаторе
Особенности: датчик температуры,будильник, миниатюрный индикатор, эффекты разделителей, эффекты смены цифр, датчик освещенности, есть платы для нескольких индикаторов.
Схема:
Толчком к созданию описанных ниже часов стала покупка на радиорынке по смешной цене одного из самых маленьких отечественных многоразрядных вакуумно-люминсцентных индикаторов (ВЛИ) - индикатора ИВ-21, имеющего 8 цифровых и один служебный разряд в колбе длиной всего лишь 70мм и диаметром 15мм.
Вообще говоря, мне не очень-то нравятся ВЛИ по сравнению с газоразрядными индикаторами (ГРИ, или иностранное NIXIE), однако, мимо этого индикатора я пройти не смог - уж больно красиво он выглядел. Смотрите сами: почти всю колбу занимает подложка из розовой керамики, на которой люминофором нанесены семисегментные разряды, причём сегменты эти имеют не совсем обычную форму, как, например, в светодиодных индикаторах. Поверх сегментов расположены ячеистые сетки, которые при взгляде под определённым углом выглядят золотистыми (к сожалению, фото ниже не может этого передать).
Однако, миниатюрность индикатора влечёт за собой множество проблем. Цель создания часов на ВЛИ и ГРИ - не просто сделать прибор для отображения времени. Для этого можно использовать и обычные светодиодные индикаторы, которые лучше по многим параметрам, да и не требуют, например, высоких напряжений и сложных схем управления. Тут важна эстетика, внешний вид готовой конструкции. На корпус часов в таком случае обычно тратится огромное количество времени, часто даже больше, чем на изготовление электроники.
Если поместить такой индикатор, как ИВ-21, в огромный корпус, ни о какой эстетике не может идти и речи. К тому же, индикатор должен быть на виду, а не стоять за зелёным стеклом, как в калькуляторе - какой тогда во всём этом смысл? За стеклом выглядят почти одинаково и ВЛИ, и светодиодные индикаторы. Не стоит забывать также и о надёжном креплении - нельзя просто так взять и припаять лампы за выводы с одной стороны, не закрепив никак вторую сторону. Поэтому в корпусе должны быть какие-нибудь подставки с обеих сторон, крепящие индикатор. Это сразу делает корпус весьма громоздким.
Наконец, было найдено компромиссное решение: сделать часы без корпуса в привычном понимании этого слова. Было решено в основании часов расположить две горизонтальные печатные платы, на которых разместить основную часть схемы часов, а индикатор закрепить с помощью двух вертикальных плат, подключающихся к верхней горизонтальной штыревыми разъёмами.
От источника питания требуется сформировать 3 напряжения: +5В для питания логической части часов, -22В для катода ИВ-21 и ~2,4В для питания накала лампы (подогревателя). С первым и третьим напряжениями всё ясно. Объясню, зачем нужно именно отрицательное напряжение для катода. Существует два варианта управления ВЛИ, у которых напряжение на анодах-сегментах и сетках относительно катода превышает напряжение питания логической части - так называемые схемы с "нижним" и "верхним" питанием логической части.
"Нижнее" питание подразумевает, что общий провод логической части имеет одинаковый потенциал с катодом индикатора. При этом на аноды следует подавать высокое (по отношению к напряжению питания логики) напряжение порядка +(20-30)В. Для этого необходимы преобразователи уровня на каждый анод и каждую сетку индикатора, которые преобразуют +5В с выхода логической части в +(20-30)В на анодах и сетках. Есть три варианта схемы таких преобразователей. Первый - самый простой - использовать специализированную микросхему для управления ВЛИ. Однако, такие микросхемы обычно дороги и труднодоставаемы. Второй - подключить все аноды и сетки к +(20-30)В через резисторы номиналом 10-30кОм и с помощью транзисторных ключей на одном NPN-транзисторе каждый замыкать эти аноды и сетки на общий провод. Этот вариант плох тем, что на резисторе неактивного анода или сетки падает всё анодное напряжение, что вызывает его (резистора) нагрев и даёт лишнюю нагрузку на источник анодного напряжения. Наконец, третий вариант - использовать двухтранзисторные ключи на паре транзисторов NPN+PNP. В этом варианте нет ничего плохого, кроме того, что на каждый ключ нужно 2 транзистора и минимум 3 резистора. Таких ключей нужно для ИВ-21 17 штук, 8 на сегменты и 9 на сетки. Это всё займёт очень много места на печатной плате, что никуда ни годится, если нужно сделать часы как можно меньше (индикатор-то маленький!).
"Верхним" называется вариант питания, когда +5В питания логической части - это анодное напряжение, т.е. на активном аноде (сетке) присутствует напряжение +5В (относительно общего провода логической части). Для зажигания индикатора требуется напряжение порядка 20-30В на анодах относительно катода, а для этого на катод нужно подать отрицательный потенциал. Теперь для управления анодами и сетками достаточно всего лишь каскада с ОЭ на PNP-транзисторе.
Казалось бы, на этом всё. Однако, есть ещё одна проблема при создании схемы подключения ВЛИ. Такой индикатор - слаботочный прибор, для свечения люминофора на сегментах достаточно очень маленьких токов. Все электроды в лампе обладают паразитной ёмкостью. Поэтому может возникнуть нежелательное свечение неактивных анодов-сегментов за счёт наведённого потенциала с соседних активных. Также причиной такого свечения могут стать утечки в закрытых транзисторах, взаимные ёмкости проводников на ПП. Для того, чтобы избавиться от этого эффекта подсветки неактивных сегментов, на неактивные аноды и сетки подают так называемое запирающее напряжение. Для надёжного подавления паразитной засветки это напряжение должно быть на 4-7В ниже катодного. Самый простой способ сформировать такое напряжение - "подпереть" с помощью стабилитрона накальную обмотку трансформатора относительно отрицательного полюса анодного источника и соединить резисторами все аноды-сегменты и сетки индикатора с анодом этого стабилитрона.
На схеме ниже упрощённо изображён узел получения запирающего напряжения на неактивных анодах и сетках:
На платформе Arduino можно сделать часы на одноразрядных вакуумно-люминисцентных индикаторах ИВ-6. Напряжения питания часов 5 В (200 мА), для подачи напряжения можно использовать USB разъем платы Arduino.
ИВ-6 Индикатор вакуумный люминесцентный одноразрядный для отображения информации в виде цифр, букв и точки. Оформление — стеклянное, сверхминиатюрное. Индикация производится через боковую поверхность баллона. Размер знакоместа 6,9×11,2 мм. Изображение формируется из светящихся анодов-сегментов. Цвет свечения — зеленый.
ИВ-6 Индикатор вакуумный люминесцентный одноразрядный для отображения информации в виде цифр, букв и точки. Оформление — стеклянное, сверхминиатюрное. Индикация производится через боковую поверхность баллона. Размер знакоместа 6,9×11,2 мм. Изображение формируется из светящихся анодов-сегментов. Цвет свечения — зеленый.
Часы собираются из легко доступных и не дорогих элементов, схема состоит из четырех блоков — платы Arduino (Nano, Uno, Mini), блока индикации, часов реального времени DS3231 и повышающего преобразователя. Для упрощения схемы напряжение накала ламп постоянное 5 В, которое подается на последовательно соединенные катоды индикаторных ламп, так как в часах используется 5 ламп, одна из которых для отображения такта секунд, то напряжение накала одной лампы равно 1 В.
После сборки часов необходима небольшая настройка яркости свечения индикаторов, для этого необходимо подобрать сопротивление R28 блока повышающего преобразователя (от 270 до 470 Ом, чем меньше сопротивление тем выше напряжение), для увеличения или уменьшения напряжения. Оптимальное напряжение повышающего преобразователя 27…35 В. Установка времени часов осуществляется по времени компиляции.
Как сделать самостоятельно часы на газоразрядных индикаторах — принцип работы устройства, необходимые компоненты, схема и последовательность монтажа своими руками.
Часы на газоразрядных индикаторах — конструктивные элементы и общий принцип работы
Изделие можно разделить на следующие функциональные блоки:
- Блок высокого напряжения.
- Блок индикации.
- Счетчик времени.
- Блок подсветки.
Блок высокого напряжения для часов на газоразрядных индикаторах
Чтобы внутри лампы засветилась цифра, нужно подать на нее напряжение. Особенность газоразрядных ламп в том, что напряжение нужно довольно высокое, порядка 200 Вольт. Ток же для лампы, наоборот, должен быть очень маленький.
Где же взять подобное напряжение? Первое что приходит на ум — сетевая розетка. Да, можно воспользоваться выпрямленным сетевым напряжением. Схема будет выглядеть следующим образом:
Недостатки данной схемы очевидны. Это отсутствие гальванической развязки, нет какой-либо безопасности и защиты схемы вообще. Таким образом лучше проверять лампы на работоспособность, соблюдая при этом максимальную осторожность.
Для изготовления часов на газоразрядных индикаторах своими руками идём другим путем — повышаем безопасное напряжение до нужного уровня с помощью DC-DC преобразователя. Если говорить совсем кратко, подобный преобразователь работает по принципу качелей. Мы ведь можем придать качелям достаточно большое ускорение, прикладывая легкое усилие руки? Также и DC-DC преобразователь: малое напряжение раскачиваем до высокого.
Блок индикации
Следующий функциональный блок — индикация. Представляет собой лампы, у которых катоды соединены попарно, а аноды выведены на оптопары или транзисторные ключи. Обычно в часах применяется динамическая индикация в целях экономия места на печатной плате, миниатюризации схемы и упрощения разводки платы.
Счетчик времени
Следующий блок — счетчик времени. Проще всего его сделать на специализированной микросхеме DS1307
Она обеспечивает отличную точность времени. Благодаря ей часы сохраняют правильное время и дату, несмотря на длительное отключение питания. Производитель обещает до 10 лет (!) автономной работы от круглой батарейки CR2032.
Вот типичная схема подключения микросхемы DS1307:
Есть также подобные микросхемы, которые выпускают множество фирм по изготовлению радиокомпонентов. Они могут обеспечивать особую точность хода времени, но стоят дороже, а потому их применение в бытовых часах не совсем целесообразно.
Блок подсветки
Это самая простая часть часов, она ставится по желанию. Блок подсветки — это всего лишь светодиоды (одноцветные или RGB) под каждой лампой, которые обеспечивают фоновую подсветку. Если выбрать RGB, то цвет подсветки можно выбрать какой угодно или вообще сделать его плавно меняющимся. В таком случае необходим соответствующий контроллер. Чаще всего эту функцию возлагают на тот же микроконтроллер, который считает время, но для упрощения программирования можно поставить дополнительный.
Ну а теперь несколько фотографий достаточно сложного проекта часов. В нем использованы два микроконтроллера PIC16F628 для управления временем и лампами и один контроллер PIC12F692 для управления RGB подсветкой.
Бирюзовый цвет подсветки:
А теперь зеленый:
Все эти цвета настраиваются одной кнопкой. Выбрать можно какой угодно. RGB диоды способны выдать любой цвет.
Часы на газоразрядных индикаторах — схема
Итак, мы рассмотрим одну их самых простых схем часов. Ради простоты и максимальной доступности будем управлять индикаторами при помощи микроконтроллера в лице платформы Ардуино, которая подключается к компьютеру по USB и в неё по клику мышки загружается прошивка. Между Ардуино и индикаторами нам нужна ещё некоторая электроника, которая будет раздавать сигналы по ногам индикаторов. Значит, во-первых, нам нужен генератор, который будет создавать высокое напряжение для питания индикаторов.
Часы работают от постоянного напряжения около 180 В. Этот генератор устроен очень просто и работает на индуктивных выбросах. Частоту генератора задаёт шим-контроллер при частоте в 16 кГц на выходе получаем напряжение 180 В. Но несмотря на высокое напряжение, генератор очень и очень слабый, так что о других его применениях даже не думайте, он способен только на тлеющий разряд в инертном газе.
Это напряжение, а именно +, через высоковольтные оптопары направляется на индикаторы. Сами оптопары управляются Arduino, то есть она может подать +180В на любой индикатор. Чтобы цифра в индикаторе засветилась, нужно подать на неё землю, этим занимается высоковольтный дешифратор — советская микросхема. Дешифратор тоже управляется Ардуино и может подключить к земле любую цифру.
А теперь внимание: индикаторов у нас 6, а дешифратор — 1. Как же это работает? На самом деле дешифратор подключен сразу ко всем индикаторам, то есть ко всем их цифрам. Работа дешифратора и оптопар синхронизирована таким образом, что в один момент времени напряжение подаётся только на одну цифру одного индикатора, то есть оптопара очень быстро переключают индикаторы, а дешифратор зажигает на них цифры, и нам кажется, что все цифры горят одновременно. На деле же каждая цифра горит чуть больше 2 мс, а затем сразу включается другая. Суммарная частота обновления 6-ти индикаторов составляет около 60 Гц, то есть кадров в секунду, а учитывая инертность процесса, глаз никаких мерцаний не замечает. Такая система называется динамическая индикация и позволяет очень сильно упростить схему.
В общем и целом, схема часов получается весьма и весьма сложной, поэтому разумно сделать для неё печатную плату.
Плата универсальная для индикаторов ИН12 и ИН14. На ней, помимо всей необходимой для индикаторов обвязки, предусмотрены места для:
- кнопки включения/выключения будильника;
- выхода на пищалку будильника;
- термометр + гигрометр DHT22;
- термометра DS18b20;
- модуля реального времени на чипе DS3231;
- 3 кнопок управления часами.
- Смотрите также, как сделать индикатор года на цифровом газоразрядном индикаторе
Ламповые часы на газоразрядных индикаторах своими руками — инструкция по монтажу
Дорожек в этом проекте много, особенно тонких на плате с индикаторами.
Плату нужно распилить на части, так как она двухэтажная. Но лучше не пилить, стеклянная пыль очень вредна для лёгких. Закалённым саморезом царапаем плату и аккуратно ломаем в тисках.
Далее запаиваем все компоненты на плату согласно подписям и рисункам на шелкографии. Также нужно будет купить рейку с пинами, чтобы соединить части платы.
В проекте используется полноразмерная Arduino Nano. Сделано это для упрощения загрузки прошивки даже для самых новичков.
Итак, собрали нижнюю плату. Сначала нужно протестировать работу генератора. Если он собран неправильно, то может бахнуть конденсатор. Так что накрываем его чем-нибудь и включаем питание.
Ничего не бахнуло, уже хорошо. Аккуратно измеряем напряжение на ногах конденсатора, должно быть 180В.
Отлично. Внимательно смотрим как паять индикаторы. На всех индикаторах одна нога помечена белым — это анод.
Лампу нужно вставлять так, чтобы анодная нога попала вот в это отверстие, это анодные дороги.
После пайки обязательно отмойте флюс, иначе вместо одной цифры могут гореть несколько. Далее распаиваем оставшиеся датчики и пищалки, если они нужны, и паяем провода для подключения кнопок.
Датчик температуры пришлось выносить на проводах, чтобы разместить его подальше от источников нагрева.
Все кнопки и выключатель будильника выносим на проводах. Модуль часов тоже сделаем на проводах. Далее загружаем прошивку. Она есть в архиве в конце статьи. Проверяем.
Всё работает! Поздравляю, мы сделали ламповые часы.
Теперь, что касается корпуса. Вот такая заготовка для самодельной шкатулки идеально подходит по размеру к плате.
Также делаем отверстия под пищалки, провода, кнопки и переключатели.
Плату нужно приподнять, используем обычные стойки для печатных плат.
Корпус было решено покрасить под орех. Не очень удачно, лучше используйте морилку.
Готово! Перед прошивкой можно настроить некоторые моменты: времена режима часов и режима отображения температуры и влажности. Есть 2 режима яркости индикаторов, дневной и ночной. Соответственно для этого настройки.
Удержав кнопку ещё раз, попадаем в режим настройки времени. Настроили, удерживаем ещё раз и попадаем обратно на просто режим часов. Также из настройки времени будильника можно выйти сразу же, дважды кликнув по кнопке выбор. То есть выйти, минуя настройку времени.
Звонок будильника конечно отвратительный, но такой лучше всего пробуждает.
Видео о сборке и тестировании часов на газоразрядных индикаторах:
Читайте также: