Частотомер на к176 своими руками
Частотомеры, построенные по "медленной" схеме популярны среди радиолюбителей потому, что их схема проще и не требует применения регистров или триггеров для запоминая данных предыдущего измерения. Но, недостаток таких частотомеров вих медленности. Многоразрядный частотомер без переключателя пределов на процесс измерения тратит не менее секунды, плюс еще несколько секунд на время индикации.
Такое продолжительное время измерения не только неудобно по тому что можно заснуть, но и тем, что если вы устанавливаете частоту генератора подстройкой контуров или резисторов и одновременно измеряете частоту, то на показания прибора оказывает влияние так же и сам процесс регулировки частоты, поскольку, если во время измерения частота изменяется, то показания частотомера вообще непредсказуемы. То есть, нужно подстроить частоту и ждать как минимум два цикла измерения чтобы посмотреть результат. А можно просто забыть о этом и получить неправильный результат.
Будет удобнее, если процессом измерения управлять вручную, - при помощи кнопки "Пуск", после нажатия которой начинается измерение. Таким образом, каждый раз, желая измерить частоту нужно нажимать эту кнопку.
Принципиальная схема частотомера по такой схеме показана на рисунке. Это низкочастотный шестиразрядный частотомер, измеряющий частоту до 999999 Гц. Конечно, используя входной делитель можно измерять и более высокие частоты.
Рис. 1. Принципиальная схема частотомера на микросхемах.
Измерительный счетчик выполнен на шести счетчиках - дешифраторах D4-D9 и шести семисегментных индикаторах Н1-Н6.
В исходном состоянии на выходе D3.2 будет логическая единица. В этом положении входной триггер Шмитта закрыт и схема находится в режиме индикации результата предыдущего измерения.
Нажав на кнопку S1 мы устанавливаем D3.2 в обратное положение. Цепь С10-R8 формирует коротенький импульс, который быстро обнуляет счетчики. Импульс коротенький, но все же, на частоте измерения около 1 МГц он может дать некоторую погрешность (порядка 1-2 младших разрядов), поэтому, открывание триггера Шмитта задержано на более длительный период при помощи цепи R10-R7-С9 (резистор R7 пришлось ввести при экспериментальной проработке схемы, так как, возникали сбои в работе узла D2-D3.1).
Далее, происходит запуск D2 и на его выводе 4 формируется один импульс периодом 1 Гц. В течении этого времени идет измерение так как триггер Шмитта открыт. После завершения импульса триггер D3.1 переходит в единичное состояние, которое длится недолго, так как, единица с прямого выхода D3.1 поступает на вход S D3.2 и переключает его в единичное состояние. Единица, возникшая на выводе 13 D3.2 блокирует триггер Шмитта, возвращает D3.1 в нулевое положение и обнуляет и фиксирует счетчик D2. Диод VD5 ускоряет этот процесс.
В результате, подсчет импульсов прекращается и на индикаторах Н1-Н6 отображается результат измерения.
Питается прибор от сетевого адаптера для "Денди". L1 - 50 витков ПЭВ 0,23 на ферритовом кольце диаметром 10 мм. Собрана схема на макетной плате. Налаживания, практически, не требуется. Если будут сбои в обнулении D4-D9 нужно немного увеличить емкость С10. Установка точности - конденсаторами С6 и С7.
Большинство конструкций цифровых частотомеров, описанных в литературе, содержит немало дефицитных компонентов, а в качестве источника стабильной частоты в таких приборах применяется дорогостоящий кварцевый резонатор. В итоге частотомер получается сложным и дорогим.
Предлагаем читателям описание простого частотомера с цифровым отсчетом, источником стабильной (эталонной) частоты в котором служит сеть переменного тока 50 Гц. Прибор найдет применение при различных измерениях в радиолюбительской практике, например в качестве калиброванных шкал в генераторах звуковой частоты, повышающих их достоверность, или вместо громоздких конденсаторных частотомеров. Со светодиодными или магнитными датчиками данный прибор можно применять для контроля числа оборотов электродвигателей и т. д.
ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ
ЦИФРОВОГО ЧАСТОТОМЕРА:
диапазон измеряемых частот, Гц…….. 10—999.9Х10 3
действующее значение входного напряжения, В…….0,02—5
время измерения, с …. 0,01; 0,1; 1
потребляемая мощность, Вт …. 3
погрешность измерения, счета……..±4Х10 -3 ±1.
Суммарная относительная погрешность измерения частоты определяется соотношением:
где бэт — частотная погрешность эталонной частоты;
1/N — погрешность дискретности (не зависит от измеряемой частоты и равна ±1 счета младшего разряда).
Из приведенной формулы видно, что погрешность измерений находится в прямой зависимости от стабильности частоты сети 50 Гц. Согласно ГОСТу нестабильность частоты сети 50 Гц составляет ±0,2 Гц за 10 минут. Следовательно, относительную погрешность частотомера можно считать равной ±4Х10 -3 ±1 счета. При практических измерениях относительная погрешность частотомера составила ±2Х Х10 -3 ±1 счета.
Действие частотомера основано на подсчете количества периодов измеряемого сигнала за эталонные (0,01; 0,1; 1 с) промежутки времени. Результаты измерений отображаются на цифровом табло и автоматически повторяются через определенные промежутки времени.
Частотомер (рис. 1) включает в себя: усилитель-формирователь входного сигнала, временной селектор, декадный счетчик, цифровой индикатор, формирователь сети, формирователь эталонных временных интервалов, устройство управления и сброса, блок питания.
В усилителе-формирователе происходит усиление и преобразование сигнала измеряемой частоты fx в прямоугольные импульсы той же частоты, которые поступают на один из входов временного селектора. На другой его вход подают с устройства управления и сброса прямоугольные импульсы эталонных временных интервалов. В формирователе сети вырабатываются прямоугольные импульсы частотой 100 Гц.
Время измерения, в течение которого открыт селектор, выбирают переключателем SA. В момент прихода эталонного импульса временной селектор открывается и на его выходе появляется пачка прямоугольных импульсов измеряемой частоты fx. Длительность пачки соответствует длительности эталонного импульса, «выбранного переключателем SA. Далее происходит подсчет импульсов в пачке и индикация их на цифровом табло.
По истечении времени индикации импульс сброса (с устройства управления и сброса) воздействует на временной селектор и декадный счетчик— табло очищается, а селектор подготавливается к новому циклу измерений.
Подсчет входных импульсов осуществляется четырехразрядным счетчиком на микросхемах DD6—DD9, а индикаторы HG1—HG4 показывают частоту входного сигнала в цифровой форме.
На диодах VD10—VD13 выполнен выпрямитель сетевого напряжения. Пульсирующее (с частотой 100 Гц) напряжение преобразуется триггером Шмитта (DD1.1, DD1.2) в прямоугольные импульсы частотой 100 Гц, которые затем поступают на двухступенчатый декадный делитель DD2, DD3. Таким образом, на выходах микросхем DD1.2 (вывод 11), DD2 (вывод 5), DD3 (вывод 5) получают импульсы эталонных временных интервалов 0,01, 0,1 и 1 с. Время измерения устанавливают переключателем SA2.
Рис. 1. Блок-схема частотомера:
1 — усилитель-формирователь входного сигнала, 2 — временной селектор, 3 — декадный счетчик, 4 — цифровой индикатор, 5 — формирователь сети, 6 — формирователь эталонных временных интервалов, 7 — устройство управления и сброса, 8 — блок питания.
На выводе 9 DD5.2 появляется сигнал логической 1, и через резистор R11 начинается процесс заряда конденсатора С5. Как только напряжение на базе транзистора VT2 достигнет напряжения примерно 1,2 В, транзистор откроется и на его коллекторе появится короткий отрицательный импульс, который через МС DD1.3, DD1.4 переключит триггер DD5.2 в исходное состояние. Конденсатор С5 через диод VD2 и микросхему DD5.2 быстро разрядится почти до нуля.
Рис. 2. Принципиальная схема прибора:
DD1, DD4 К155ЛАЗ; DD3 К155ИЕ1; DD5 К.155ТМ2; DD6—DD9 К176ИЕ4; VD6—VD9 Д226А, VD10—VD13 Д9Б, HG1—HG4 ИВ ЗА.
Рис. 3. Внешний вид частотомера.
Рис. 5. Схема расположения элементов в корпусе частотомера:
1 — сетевой индикатор, 2 — тумблер включения сети, 3 — силовой трансформатор, 4 — держатель предохранителя, 5 — печатная плата, 6 — светофильтр, 7 — переключатель временных интервалов.
Отрицательный импульс сброса на коллекторе VT2 инвертируется транзистором VT3, воздействуя на входы R микросхем DD6—DD9 и сбрасывая показания — индикация результатов измерения прекращается. По приходу фронта следующего эталонного импульса процесс повторяется.
В частотомере применены резисторы МЛТ-0,25, конденсаторы К50-6 и КЛС. Указанные в схеме транзисторы КТ315 и КТ361 (с любым буквенным индексом) заменяются любыми кремниевыми высокочастотными транзисторами соответствующей структуры. Вместо диодов КД522Б можно использовать любые из серии КД521, КД520. Диод ГД511Б можно заменить на Д9.
Микросхемы серии К155 могут быть заменены на аналогичные серии К133. Индикаторы ИВ-ЗА заменяются на ИВ-3. Трансформатор блока питания имеет мощность 5—7 Вт. Напряжение на обмотках: II — 0,85 В (ток 200 мА), III — 10 В (ток 200 мА), IV — 10 В (ток 15 мА). Диодные мосты VD6— VD9 и VD10—VD13 можно запитать от одной 10 В обмотки (ток не менее 220 мА). Транзистор VT4 имеет радиатор 20X30X1 мм, выполненный из двух алюминиевых пластин, которые при помощи винта МЗ и гайки прикреплены к транзистору с двух сторон.
Рис. 4. Печатная плата со схемой расположения элементов.
Частотомер изготовляется с целью замены калиброванной шкалы в генераторе низкой частоты (ГНЧ). Из генератора удален оцифрованный барабан. В окне табло, закрытом прозрачным оргстеклом с зеленым светофильтром, размещены цифровые индикаторы (рис. 3).
Частотомер может быть использован и по своему прямому назначению. Для этого введен переключатель SA1, расположенный на передней панели генератора.
Печатная плата частотомера изготовлена из фольгированного гетинакса толщиной 1,5—2 мм (рис. 4). Соединение индикаторов HG1—HG4 с интегральными микросхемами DD6—DD9 производится со стороны печатных проводников.
Все соединения желательно выполнить одножильным изолированным проводом (например, 0 0,3 мм из телефонного кабеля). Цепи переменного тока — многожильным проводом 0 0,7—1,5 мм.
Рис. 6. Конструкция корпуса: нижняя (1) и верхняя (2) П-образные панели. Отверстия под органы управления сверлятся по месту.
Необходимо обратить внимание на правильную установку цифровых индикаторов HG1 — HG4. Они должны быть размещены в одной плоскости и на одном уровне и отстоять от передней кромки печатной платы на расстоянии 2—3 мм. Резистор R18 и све-тодиод VD6 расположены на передней панели прибора. Вариант расположения узлов в частотомере (без ГНЧ) показан на рисунке 5.
Рис. 7. Схема подсоединения переключателя для измерения периода сигналов.
Корпус прибора с указанием необходимых размеров — на рисунке 6. Он изготовлен из дюралюминия Д16АМ толщиной 1,5 мм. Верхняя и нижняя П-образные половины корпуса соединяются с помощью дюралюминиевых уголков 12Х 12 мм, наклепанных на нижнюю половину корпуса, в которых просверлены отверстия и нарезана резьба МЗ.
Печатная плата крепится к днищу частотомера при помощи винтов МЗ и пластмассовых втулок высотой 10 мм.
У микросхем DD2 и DD3 перед установкой на печатную плату третью и двенадцатую ножки необходимо укоротить до утолщения.
Налаживание прибора начинают с проверки монтажа, далее измеряют напряжения блока питания, которые должны соответствовать указанным на принципиальной схеме.
На цифровом табло высветятся нули. Это говорит о работоспособности частотомера. Переключают SA2 в крайнее правое (по схеме) положение, а на вход частотомера (при помощи перемычки) подают с вывода 11 DD1.2 прямоугольные импульсы частотой 100 Гц. На табло высвечивается число 0.100. В случае другой комбинации цифр, подбирая R2, добиваются правильной работы формирователя сети.
Завершающую настройку изготовленного частотомера производят при помощи генератора, осциллографа и промышленного частотомера, например Г4-18А, С1-65 (Н-313), 43-30.
На вход частотомера (R3) подают сигнал частотой 1 МГц и напряжением 0,02 В. Подбирая резистор R5, добиваются максимального усиления транзистора VT1. Изменяя частоту и амплитуду входного сигнала, контролируют работу частотомера в соответствии с техническими характеристиками, сличая показания с приборами заводского изготовления.
Если необходимо измерять низкие частоты с большой точностью, следует увеличить вр.емя счета. Для этого формирователь эталонных временных интервалов необходимо дополнить еще одним декадным делителем (включив его так же, как DD2 и DD3), увеличив время счета до 10 с.
Можно также измерять не частоту входного, сигнала, а его период. Для. этого следует ввести в частотомер дополнительный переключатель, схема которого показана на рисунке 7.
Одним из приборов-помощников радиолюбителя должен быть частотомер. С его помощью легко обнаружить неисправность генератора, измерить и подстроить частоту.
Генераторы очень часто встречаются в схемах. Это приемники и передатчики, часы и частотомеры, металлоискатели и различные автоматы световых эффектов…
Особенно удобно пользоваться частотомером для подстройки частоты, например при перестройки радиостанций, приёмников или настройки металлоискателя.
Один из таких несложных наборов я недорого приобрёл на сайте одного китайского магазина.
Набор содержит:
- 1 x PCB board (печатная плата);
- 1 x микроконтроллер PIC16F628A;
- 9 x 1 кОм резистор;
- 2 x 10 кОм резистор;
- 1 x 100 кОм резистор;
- 4 x диоды;
- 3 x транзисторы S9014, 7550, S9018;
- 4 x конденсаторы;
- 1 x переменный конденсатор;
- 1 x кнопка;
- 1 x DC разъём;
- 1 x 20МГц кварц;
- 5 x цифровые индикаторы.
Описание частотомера
- Диапазон измеряемых частот: от 1 Гц до 50 МГц;
- Позволяет измерять частоты кварцевых резонаторов;
- Точность разрешение 5 (например 0,0050 кГц; 4,5765 МГц; 11,059 МГц);
- Автоматическое переключение диапазонов измерения частоты;
- Режим энергосбережения (если нет изменения показаний частоты — автоматически выключается дисплей и на короткое время включается;
- Для питания Вы можете использовать интерфейс USB или внешний источник питания от 5 до 9 В;
- Потребляемый ток в режиме ожидания — 11 мА
Схема содержит небольшое количество элементов. Установка проста — все компоненты впаиваются согласно надписям на печатной плате.
Мелкие радиодетали, разъемы и т.п. упакованы в небольшие пакетики с защелкой. Индикаторы, микросхема и её панелька для исключения повреждений ножек вставлены в пенопласт.
Принципиальная схема частотомера
Напряжение на выводах микроконтроллера
Генератор для проверки кварцев
Приступаем к сборке
Высыпаем на стол содержимое пакета. Внутри находятся печатная плата, сопротивления, конденсаторы, диоды, транзисторы, разъемы, микросхема с панелькой и индикаторы.
Ну и вид на весь набор в полностью разложенном виде.
Теперь можно перейти к собственно сборке данного конструктора, а заодно попробовать разобраться, на сколько это сложно.
Я начинал сборку с установки пассивных элементов: резисторов, конденсаторов и разъёмов. При монтаже резисторов следует немного узнать об их цветовой маркировке из предыдущей статьи. Дело в том, что резисторы очень мелкие, а при таких размерах цветовая маркировка очень плохо читается (чем меньше площадь закрашенного участка, тем сложнее определить цвет) и поэтому также посоветую просто измерить сопротивление резисторов при помощи мультиметра. И результат будем знать и за одно его исправность.
Конденсаторы маркируются также как и резисторы.
Первые две цифры — число, третья цифра — количество нулей после числа.
Получившийся результат равен емкости в пикофарадах.
Но на этой плате есть конденсаторы, не попадающие под эту маркировку, это номиналы 1, 3 и 22 пФ.
Они маркируются просто указанием емкости так как емкость меньше 100 пФ, т.е. меньше трехзначного числа.
Резисторы и керамические конденсаторы можно впаивать любой стороной — здесь полярности нет.
Выводы резисторов и конденсаторов я загибал, чтобы компонент не выпал, лишнее откусывал, а затем опаивал паяльником.
Немного рассмотрим такой компонент, как — подстроечный конденсатор. Это конденсатор, ёмкость которого можно изменять в небольших пределах (обычно 10-50пФ). Это элемент тоже неполярный, но иногда имеет значение как его впаивать. Конденсатор содержит шлиц под отвертку (типа головки маленького винтика), который имеет электрическое соединение с одним из выводов. Чтобы было меньше влияния отвертки на параметры цепи, надо впаивать его так, чтобы вывод соединенный со шлицом, соединялся с общей шиной платы.
Разъемы — сложная часть в плане пайки. Сложная не точностью или малогабаритностью компонента, а наоборот, иногда место пайки тяжело прогреть, плохо облуживается. Потому нужно ножки разъёмов дополнительно почистить и облудить.
Теперь впаиваем кварцевый резонатор, он изготовлен под частоту 20МГц, полярности также не имеет, но под него лучше подложить диэлектрическую шайбочку или приклеить кусочек скотча, так как корпус у него металлический и он лежит на дорожках. Плата покрыла защитной маской, но я как то привык делать какую нибудь подложку в таких случаях, для безопасности.
Далее впаиваем транзисторы, диоды и индикаторы. В отличии от резисторов и конденсаторов здесь нужно впаивать правильно, согласно рисунку и надписям на плате.
Длительность пайки каждой ножки не должна превышать 2 сек! Между пайками ножек должно пройти не менее 3 сек на остывание.
Ну вот собственно и всё!
Теперь осталось смыть остатки канифоли щёткой со спиртом.
Питание должно быть В пределах от 5 до 9 В — постоянное стабилизированное без пульсаций. (В схеме нет ни одного эл.конденсатора по питанию.)
Не забудьте у микросхемы есть с торца ключ — он располагается у вывода №1! Не следует полагаться на надпись названия микросхемы — она может быть написана и к верх ногами.
При подключении питания и отсутствия сигнала на входе высвечивается 0.
Первым делом нашёл кучу кварцев и начал проверять. Следует отметить, что частота кварца, например 32,768 кГц не может быть измерена, т.к. измерение ограничивается в диапазоне от 1 МГц.
Можно измерить, например 48 МГц, но следует иметь ввиду, что будет измерены гармонические колебания кварцевого генератора. Так 48 МГц будет измерена основная частота 16 МГц.
Подстроечным конденсатором можно подстроить показания частотомера по эталонному генератору или сравнить с заводским частотомером.
Режим программирования частотомера позволяет вычесть четыре основные запрограммированные ПЧ частоты 455 кГц; 3,9990 МГц; 4,1943 МГц; 4,4336 МГц; 10,700 Гц, а также любую собственную частоту.
Таблица алгоритма програмирования
Чтобы войти в режим программирования (Prog) нужно нажать и удерживать кнопку в течении 1-2 сек.
Затем нажимаем кнопку и поочередно пролистываем меню:
Интересный обучающий конструктор. Собрать частотомер под силу даже начинающему радиолюбителю.
Качественно изготовленная печатная плата, прочное защитное покрытие, небольшое количество деталей благодаря программируемому микроконтроллеру.
Конструктор приятно порадовал, я считаю его хорошей базой как в получении опыта сборки и наладки электронного устройства, так и в опыте работы с немало важным для радиолюбителя прибором — частотомером.
Доработка частотомера
Внимание! В заключение хочется отметить, что входной измеряемый сигнал подаётся непосредственно на вход микросхемы, поэтому для лучшей чувствительности и главное, защиты микросхемы нужно добавить по входу усилитель-ограничитель сигнала.
Можно спаять один из предложенных ниже.
Сопротивление R6 на верхней и R9 на нижней схеме подбирается в зависимости от напряжения питания и устанавливается на его левом выводе 5 В. При питании 5 В сопротивление можно не ставить.
… или простой, на одном транзисторе:
Номиналы сопротивлений указаны при питании 5В. Если у Вас питание усилителя другим напряжением, то подберите номинал R2,3 чтобы на коллекторе транзистора было половина питания.
Схема похожего частотомера с входным каскадом усилителя.
Вторая доработка. Для увеличения измеряемого потолка частоты можно собрать к частотомеру делитель частоты. Например, схемы ниже:
Надеюсь, что обзор данного конструктора-частотомера был интересен и полезен. Удачи!
А.В.Зотов, Волгоградская обл.
Кто заинтересовался набором можете пройти на сайт магазина МастерОк
Если уж браться за создание цифрового частотомера, то делать сразу универсальный измерительный прибор, способный мерять частоты не до пары десятков мегагерц (что свойственно большинству таких схем), а до 1000 МГц. При всём этом, схема не сложнее стандартной, с использованием pic16f84. Отличие лишь в установке входного делителя, на специализированной микросхеме SAB6456. Этот электронный счетчик будет полезен для измерения частоты различного беспроводных оборудования, особенно передатчиков, приемников и генераторов сигналов в диапазонах УКВ.
Технические характеристики частотомера
Особенности и преимущества схемы. Быстрая работа — короткий период измерения. Высокая чувствительность входного сигнала в диапазонах СВЧ. Переключаемое промежуточное смещение частоты для использования его совместно с приемником — в качестве цифровой шкалы.
Принципиальная схема самодельного частотомера на PIC
Список деталей частотомера
R1 — 39 k
R2 — 1 k
R3-R6 — 2,2 k
R7-R14 — 220
C1-C5, C6 — 100-n mini
C2, C3, C4 — 1 n
C7 — 100 ед.
C8, C9 — 22 p
IC1 — 7805
IC2 — SAB6456 (U813BS)
IC3 — PIC16F84A
T1 — BC546B
T2-T5 — BC556B
D1, D2 — BAT41 (BAR19)
D3 — HD-M514RD (красный)
X1 — 4.000 МГц кварц
Вся необходимая информация по прошивке микроконтроллера, а также полное описание микросхемы SAB6456, находятся в архиве. Данная схема многократно испытана и рекомендована к самостоятельному повторению.
Читайте также: