Аппаратура телевизионная прикладная дефектоскоп с 1 камерой что это
ЛОКАЛЬНАЯ РЕСУРСНАЯ ВЕДОМОСТЬ ГЭСНм 10-09-001-01
Наименование | Единица измерения |
Аппаратура телевизионная прикладная "Дефектоскоп" с 1 камерой | 1 компл. |
Состав работ | |
Не предусмотрен | |
Примечание | |
Масса 0,0616 т |
ЗНАЧЕНИЯ РАСЦЕНКИ
В расценке указаны прямые затраты работы на период марта 2014 года для города Москвы, которые рассчитаны на основе нормативов 2014 года с дополнениями 1 путём применения индексов к ценам используемых ресурсов. Индексы применялись к федеральным ценам 2000 года.
Использованы следующие индексы и часовые ставки от "союза инженеров-сметчиков":
Индекс к стоимости материалов: 7,485
Индекс к стоимости машин: 11,643
Используемые часовые ставки:
В скобках указана оплата труда в месяц при данной часовой ставке.
Часовая ставка 1 разряда: 130,23 руб. в час (22 920) руб. в месяц.
Часовая ставка 2 разряда: 141,21 руб. в час (24 853) руб. в месяц.
Часовая ставка 3 разряда: 154,46 руб. в час (27 185) руб. в месяц.
Часовая ставка 4 разряда: 174,34 руб. в час (30 684) руб. в месяц.
Часовая ставка 5 разряда: 200,84 руб. в час (35 348) руб. в месяц.
Часовая ставка 6 разряда: 233,96 руб. в час (41 177) руб. в месяц.
Перейдя по этой ссылке, Вы можете посмотреть данный норматив рассчитаный в ценах 2000 года.
Основанием применения состава и расхода материалов, машин и трудозатрат являются ГЭСН-2001
ТРУДОЗАТРАТЫ
№ | Наименование | Ед. Изм. | Трудозатраты |
1 | Затраты труда рабочих-монтажников Разряд 4,5 | чел.-ч | 26 |
Итого по трудозатратам рабочих | чел.-ч | 26 | |
Оплата труда рабочих = 26 x 187,59 | Руб. | 4 877,34 |
СМЕТНАЯ ПРОГРАММА ON-LINE ФСНБ-2020
РАСХОД МАТЕРИАЛОВ
№ | Шифр | Наименование | Ед. Изм. | Расход | Ст-сть ед. Руб. | Всего Руб. |
1 | 101-1963 | Канифоль сосновая кг | кг | 0,111 | 207,63 | 23,05 |
2 | 101-2073 | Нитки суровые | кг | 0,24 | 1160,18 | 278,44 |
3 | 101-2354 | Спирт этиловый ректификованный технический, сорт I | кг | 0,31 | 291,09 | 90,24 |
4 | 101-2501 | Лента полиэтиленовая с липким слоем марка А | кг | 0,222 | 292,06 | 64,84 |
5 | 411-0041 | Электроэнергия | кВт-ч | 10 | 2,99 | 29,90 |
6 | 506-1361 | Припои оловянно-свинцовые бессурьмянистые марки ПОС40 | кг | 0,111 | 492,14 | 54,63 |
7 | 507-0702 | Трубка полихлорвиниловая ПХВ-305 диаметром 6-10 мм | кг | 0,12 | 286,97 | 34,44 |
8 | 999-9950 | Вспомогательные ненормируемые материальные ресурсы (2% от оплаты труда рабочих) | руб. | 5,38 | 0 | 0,00 |
Итого | Руб. | 575,53 |
ВСЕГО ПО РАСЦЕНКЕ: 5 452,87 Руб.
Вы можете посмотреть данный норматив рассчитаный в ценах 2000 года. перейдя по этой ссылке
Расценка составлена по нормативам ГЭСН-2001 редакции 2014 года с дополнениями 1 в ценах марта 2014 года.
Для определения промежуточных и итоговых значений расценки использовалась программа DefSmeta
Дефектоскоп – это электронное устройство, предназначенное для обнаружения скрытых дефектов в твердых изделиях. Прибор позволяет диагностировать отклонения от нормы без создания нагрузки или разрушения изучаемого объекта. С его помощью можно оценить однородность структуры изделия, наличие на его поверхности послаблений в результате коррозии, отклонения химического состава или наличие микротрещин.
Где используется дефектоскоп
Дефектоскопы используются в машиностроении и строительстве. С их помощью проверяются различные узлы и агрегаты, а также заготовки. Эти приборы являются незаменимыми в нефтегазовой промышленности и энергетике. С их помощью проверяются трубы и цистерны на наличие слабых стенок. Данное оборудование позволяет выявлять брак, что исключает его применение на строительстве ответственных объектов. С помощью дефектоскопов можно контролировать надежность сварных швов, слоя клея или плотность пайки.
Это оборудование производится в переносном и стационарном варианте. Отдельные модели позволяют ввести сканирование даже тех объектов, которые двигаются на высокой скорости. Такие приборы применяются для проверки труб, которые протягиваются через область сканирования. Также существуют большие дефектоскопы, передвигаемые на вагонетке по рельсам. Эти приборы используются в строительстве и промышленном производстве, в частности самолетов и кораблей. Существует масса видов дефектоскопов адаптированных под определенные условия эксплуатации. В металоперерабатывающей промышленности применяются устройства, которые могут выявлять дефекты в разогретых металлических заготовках.
Конструкции дефектоскопов
Для обеспечения работы дефектоскопа используются различные физические явления, природа которых существенно отличаются друг от друга. В связи с этим существует масса конструктивных особенностей этих приборов.
Среди самых распространенных дефектоскопов, которые массово производятся, можно выделить:
- Акустические.
- Магнитопорошковые.
- Вихретоковые.
- Феррозондовые.
- Электроискровые.
- Термоэлектрические.
- Радиационные.
- Инфракрасные.
- Радиоволновые.
- Электронно-оптические.
- Капиллярные.
Каждый из этих типов оборудования обладает своими сильными сторонами и слабостями. В связи с этим они могут подходить идеально для одних целей, но быть непригодными для других. Чтобы сделать правильный выбор дефектоскопа, важно предварительно разобраться с принципом действия каждой разновидности.
Акустический дефектоскоп
Также называется импульсным или ультразвуковым. Он работает по принципу эха. На изделие, которое тестируется, направляется короткий ультразвуковой импульс, после чего его колебания регистрируются. В результате на экран выводится карта дефектов. Этот прибор является одним из самых востребованных. Он дает вполне четкую картину тех дефектов, которые скрыты на поверхности. К достоинствам подобного оборудования можно отнести то, что оно работает с разными материалами. Существует масса подвидов акустических дефектоскопов, которые также работают от ультразвуковой волны.
Магнитопорошковый дефектоскоп
Применяется для контроля деталей различных форм. С его помощью можно сканировать сварные швы и углубления, получаемые при сверлении. Важный недостаток метода заключается в том, что он позволяет проверять только поверхностные отклонения. Он не сможет определить внутренние проблемы, если они не имеют внешнего выхода. Для обеспечения сканирования деталей применяется специальный порошок, который рассредоточивается по поверхности объекта и заполняет имеющиеся в нем неровности и трещины. После этого проводится сканирование магнитного поля, что позволяет находить место наибольшего скопления порошка. Это позволяет создавать карту дефектов, поскольку порошок не задерживается на нормальных гладких поверхностях, а забивается в неровности
Недостаток данного метода заключается в том, что для него необходимо покупать магнитный порошок. Он является расходным материалом, поэтому быстро заканчивается и высыпает в роли грязи, которую нужно периодически собирать.
Вихретоковые дефектоскопы
Действуют по физическому принципу вихревых токов. Данный аппарат возбуждает вихревые токи в зоне тестирования, после чего анализирует состояние объекта по их поведению. Данный метод является одним из самых неточных. Глубина контроля трещины составляет до 2 мм. В связи с этим получить объективную картину действительного состояние измеряемой поверхности сложно.
Феррозондовый дефектоскоп
Вырабатывает импульсы тока, которые посылаются на изучаемую поверхность. По их поведению происходит анализ имеющихся дефектов. Данное оборудование является довольно чувствительным и может выявлять неровности с глубиной от 0,1 мм. Данным оборудованием осуществляется контроль качества литых деталей, металлопроката и сварочных соединений.
Электроискровые дефектоскопы
Создают электрический разряд между своим чувствительным щупом и изучаемой поверхностью. Щуп представляет собой пучок электродов, что увеличивает площадь изучения. Разряды пробиваются через воздушный промежуток между поверхностями. В результате осуществляется создание карты изучаемого объекта с отмеченными повреждениями. Для обследования таким методом необходимо чтобы объект изучения был изготовлен из токопроводящего материала.
Термоэлектрический дефектоскоп
Работает по физическому принципу электродвижущей силы, которая возникает при нагреве участка контакта между двумя различными материалами. Данное оборудование является одним из самых дорогостоящих, поскольку требует использование высококачественных материалов, которые позволяют фиксировать минимальные изменения температуры между эталоном и изучаемой поверхностью.
Радиационные
Осуществляют облучение объектов рентгеновскими лучами и нейтронами. Они работают по такому же принципу что и применяемый в медицине рентген аппарат. В результате получается радиографический снимок или светлое изображение на экране прибора. Данное оборудование является небезопасным для оператора, поскольку рентгеновские лучи неблагоприятно влияют на здоровье. Прибор позволяет проводить действительно глубокое изучение объектов, но может применяться далеко не на всех материалах.
Инфракрасные
Отправляют тепловые лучи, которые отбиваются от поверхности объекта и позволяют анализировать отклонение от нормы. На экране прибора просматривается тепловая карта, где участки с дефектами имеют измененные цвета. Данное оборудование позволяет выявлять дефекты, но не дает точной картины об их характеристиках. Тяжело определиться с глубиной трещин, поскольку рассматриваются только очертания нарушенных участков.
Радиоволновые
Генерируют радиоволны, которые направляются на предмет изучения. Потому как они отбиваются от предмета, можно определить не только трещины или утолщение, но и диаметр и даже толщину изоляционного покрытия. Подобное оборудование применяется для работы с металлами и другими материалами.
Электронно-оптические
Применяются для контроля объектов, которые находятся под высоким напряжением. Ими пользуются электромонтажники. Подобное оборудование позволяет не только выявить места перелома проводов, но и качество работы изоляции.
Капиллярное дефектоскопирование
Подразумевают покрытие изучаемой поверхности специальным индикаторным веществом, которое заполняет имеющиеся микротрещины. В тех местах, где толщина вещества больше, его цвет более насыщенный в сравнении с ровными участками. По этим цветам визуально определяются углубления. Этот метод подразумевает использование не электронного прибора, а только индикаторное вещество и лупу или микроскоп.
Критерии выбора
Выбирая дефектоскоп, следует обратить внимание на некоторые характеристики, которые являются ключевыми. В первую очередь нужно ориентироваться по диапазону измерения. Разные модели отличается чувствительностью. Самое точное устройство способно выявлять дефект, глубина которого составляет всего 1 мкм. Для определенных целей такая чувствительность действительно нужна, но для прочих является излишней. К примеру, если необходимо найти микротрещины на коленвале или других вращающихся деталях, то лучше использовать точное оборудование. Если же нужно проанализировать состояние металлического каркаса в строительстве, то подобные микротрещины не столь важны. Учитывая толщину тела арматуры или балок, маленький дефект глубиной 1 мкм никак не сможет стать причиной того, что металл лопнет, особенно если он используется в тех целях, для которых предназначен.
Также выбирая дефектоскоп, следует ориентироваться по тому, для каких материалов оно предназначено. Одни модели могут работать только с металлами, в то время как другие являются универсальными. Также по отношению к дефектоскопам важным понятием является производительность. Она показывает скорость сканирования. Чем она выше, тем быстрее можно оценить состояние объекта. Если ориентироваться по данному показателю, то безусловными лидерами являются вихретоковое и феррозондовое оборудование. Если использовать магнитопорошковый прибор, то продолжительность диагностики займет много времени, к тому же возникнет необходимость растирать порошок.
Рассматривая дефектоскопы, стоит в первую очередь отдать предпочтения ультразвуковым приборам. Они не несут вреда для оператора как радиационные, при этом дают вполне достаточное представление об имеющихся дефектах и целесообразности отправки детали в выбраковку.
Измеритель — 1 штука
Шкаф питания ПТС на полу
Затраты труда рабочих-монтажников
Средний разряд работы
Затраты труда машинистов
Машины и механизмы
Номер расценки по сборнику РМО
Окончание табл. 10-399
Измеритель — 1 штука
Шкаф подключения ПТС на полу
Затраты труда рабочих-монтажников
Средний разряд работы
Затраты труда машинистов
Машины и механизмы
Номер расценки по сборнику РМО
Отдел 9. ПРОМЫШЛЕННЫЕ ТЕЛЕВИЗИОННЫЕ УСТАНОВКИ
Вводные указания
1. В нормах не учтены затраты на установку металлических конструкций под телевизионную аппаратуру.
Группа 730. Аппаратура телевизионная
Измеритель — 1 комплект
Аппаратура телевизионная прикладная "Дефектоскоп" с 1 камерой
ФЕДЕРАЛЬНАЯ ЕДИНИЧНАЯ РАСЦЕНКА ФЕРм 10-09-001-01
Наименование | Единица измерения |
Аппаратура телевизионная прикладная "Дефектоскоп" с 1 камерой | 1 компл. |
Состав работ | |
Не предусмотрен | |
Примечание | |
Масса 0,0616 т |
Расценка учитывает ПЗ работы на 2000 год (Московские цены), рассчитаны по ГЭСН образца 2009 года. К стоимости нужно применять индексацию перевода в текущие цены.
Вы можете перейти на страницу расценки, которая рассчитана на основе нормативов редакции 2014 года с дополнениями 1
Всего (руб.) | Оплата труда рабочих | Эксплуатация машин | Оплата труда машинистов | Стоимость материалов | Трудозатраты (чел.-ч) |
351,38 | 269,1 | 82,28 | 26 |
ВСЕГО ПО РАСЦЕНКЕ: 351,38 Руб.
Посмотрите стоимость этого норматива в текущих ценах открыть страницу
Посмотрите ресурсную часть расценки в нормативе ГЭСНм 10-09-001-01
При использовании в смете, расценка требует индексации для перевода в текущие цены.
Расценка составлена по нормативам ГЭСН-2001 редакции 2009 года в ценах 2000 года.
Владельцы патента RU 2352921:
Изобретение относится к контрольно-измерительной технике. Технический результат — выявление дефектов в виде мелких неровностей, в том числе мелких неровностей продольного направления, на внутренних поверхностях труб и определение размеров и мест расположения этих неровностей. Дефектоскоп включает корпус, в котором установлены телевизионная камера и кольцевая система направленного излучения света, состоящая из светодиодов. К корпусу прикреплен на кронштейнах отражатель света с зеркальной поверхностью, которая имеет вогнутую внутрь конусовидную форму. Лучи света, поступающие от светодиодов, отражаются от зеркальной поверхности и концентрируются на внутренней поверхности трубы в виде узкого кольцевого пояса S. Сигналы, поступающие в компьютер, позволяют определить продольные размеры дефектов и координаты положения дефектов по длине трубы. Технический результат — выявление дефектов в виде мелких неровностей, в том числе продольного направления, и определение размеров и мест расположения этих неровностей. 2 н. и 8 з.п. ф-лы, 5 ил., 1 табл.
Изобретение относится к контрольно-измерительной технике и может быть использовано для обнаружения дефектов в виде неровностей на внутренней поверхности труб.
Из описания к патенту ЕР 1457770, кл. G01N 21/954, опубл. 05.09.04 [1] известен дефектоскоп для контроля полых тел, включающий телевизионную камеру, монитор, связанный кабелем с телевизионной камерой, и кольцевую систему излучения света, расположенную концентрично объективу телевизионной камеры.
Дефектоскоп [1] не снабжен средствами передвижения вдоль полости обследуемой детали и поэтому не может быть эффективно использован для обследования деталей большой длины, таких как трубы.
Из описания к патенту JP 2839934 В2 4036644 А, кл. G01N 21/88, опубл. 24.12.98 [2] известен дефектоскоп для контроля поверхности внутренней стенки цилиндра, включающий корпус, установленную в корпусе телевизионную камеру, привод передвижения корпуса вдоль отверстия обследуемой детали, систему излучения света, монитор, связанный с телевизионной камерой, и отражатель света с конусной зеркальной поверхностью, который прикреплен к корпусу на некотором расстоянии от телевизионной камеры.
В процессе работы дефектоскопа [2] от зеркальной поверхности отражателя света на обследуемую цилиндрическую поверхность поступает рассеянный световой поток. Мелкие неровности поверхности (особенно мелкие неровности, вытянутые в продольном направлении) не образуют заметных теней и остаются незафиксированными на экране монитора. Вследствие этого, используя дефектоскоп [2], невозможно выявлять такие дефекты, как указанные выше мелкие продольные неровности.
Из описания к патенту JP 3591080 В2, 9089788 А, кл. G01N 21/88, опубл. 17.11.04 [3] известен дефектоскоп для контроля внутренней поверхности труб, который включает помещаемый внутрь обследуемой трубы корпус с телевизионной камерой, кольцевой системой направленного излучения света и конусным отражателем света. Последний прикреплен к корпусу на некотором расстоянии от телевизионной камеры. Корпус дефектоскопа снабжен приводом продольного перемещения в отверстии трубы.
В процессе работы дефектоскопа [3] лучи направленного излучения света, образуя усеченный конус, падают на поверхность трубы наклонно к ее оси. В результате на этой поверхности формируется широкое световое кольцо. Такой характер освещения позволяет выявить только крупные (преимущественно поперечные) неровности поверхности. Мелкие неровности, особенно неровности, направленные (вытянутые) вдоль оси трубы, остаются незафиксированными, т.к. они не образуют заметных теней.
Технический результат изобретения — выявление дефектов в виде мелких неровностей, в том числе мелких неровностей продольного направления, на внутренних поверхностях труб и определение размеров и мест расположения этих неровностей.
Указанный технический результат достигается в дефектоскопе для контроля внутренней поверхности труб, включающем корпус, привод продольного перемещения корпуса внутри обследуемой трубы, установленные в корпусе телевизионную камеру и кольцевую систему направленного излучения света, концентрически охватывающую объектив телевизионной камеры, монитор, связанный с телевизионной камерой, отражатель света, прикрепленный к корпусу на некотором расстоянии от телевизионной камеры, и средство записи телевизионных сигналов и их сравнения с эталонными сигналами, при этом зеркальная поверхность отражателя света образована вращением кривой относительно оптической оси объектива телевизионной камеры и имеет вогнутую внутрь конусовидную форму, обеспечивающую концентрацию отраженных лучей света в виде узкого кольцевого пояса на внутренней поверхности обследуемой трубы.
В частном случае выполнения изобретения зеркальная поверхность отражателя света может быть образована вращением относительно оптической оси объектива телевизионной камеры кривой линии, которая является графиком функции y=ах 2 +bx+с, где коэффициенты а и b и свободный член с зависят от радиуса R основания зеркальной поверхности отражателя и величины расстояния L от главной плоскости объектива телевизионной камеры до упомянутого основания.
В другом частном случае выполнения изобретения зеркальная поверхность отражателя света может быть образована вращением относительно оптической оси объектива телевизионной камеры ломаной линии, состоящей из отрезков прямых линий, каждый из которых представляет касательную к кривой линии, являющейся графиком функции y=ах 2 +bx+с, где коэффициенты а и b и свободный член с зависят от радиуса R основания зеркальной поверхности отражателя и величины расстояния L от главной плоскости объектива телевизионной камеры до упомянутого основания.
В обоих указанных частных случаях кольцевая система направленного излучения света может состоять из расположенных по окружности светодиодов.
В обоих указанных частных случаях привод продольного перемещения корпуса дефектоскопа может быть выполнен в виде полой штанги и механически связанного с ней электродвигателя, а монитор и средство записи телевизионных сигналов и их сравнения с эталонными сигналами могут быть связаны с телевизионной камерой посредством кабеля, проложенного в полости упомянутой штанги.
В обоих указанных частных случаях привод продольного перемещения корпуса может быть связан со средством записи телевизионных сигналов и их сравнения с эталонными сигналами с возможностью определения размеров дефектов и мест их расположения по длине трубы. Сущность изобретения поясняется следующими чертежами:
Фиг.1 — схема дефектоскопа, общий вид;
Фиг.2 — вид образующей зеркальной поверхности отражателя в случае, когда она представляет кривую второго порядка;
Фиг.3 — то же, в случае, когда образующая представляет ломаную линию;
Фиг.4 — вид отражателя в продольном разрезе;
Фиг.5 — схематичное изображение на экране монитора вида участка внутренней поверхности трубы: а) эталонная труба и б) труба, имеющая углубление на внутренней поверхности.
Основной частью дефектоскопа (фиг.1) является корпус 1. Привод продольного перемещения корпуса 1 внутри обследуемой трубы 2 может быть выполнен в виде полой штанги 3 и механически связанного с ней электродвигателя 4. В корпусе 1 дефектоскопа строго по его оси установлена телевизионная камера 5. Концентрично по отношению к объективу 6 телевизионной камеры 5 в корпусе 1 расположена кольцевая система направленного излучения света, которая может состоять из расположенных по окружности вокруг объектива 6 и равноудаленных друг от друга светодиодов 7. Применение в качестве источников света светодиодов позволяет удешевить конструкцию системы излучения света и облегчает управление световым потоком. Снаружи обследуемой трубы 2 находятся монитор 8 и средство записи телевизионных сигналов и сравнения этих сигналов с эталонными сигналами, которое может быть выполнено в виде компьютера 9.
Телевизионная камера 5 связана с монитором 8 и компьютером 9 кабелем 10. Эти узлы составляют телевизионную систему дефектоскопа. Кабель 10 может быть проложен в полости полой штанги 3. Выполнение штанги полой не только снижает металлоемкость устройства, но и повышает надежность его работы, т.к. размещение кабеля 10 в полости защищает его от повреждений.
К корпусу 1 дефектоскопа на расстоянии L от главной плоскости объектива 6 телевизионной камеры 5 на кронштейнах 11 прикреплен отражатель света 12, зеркальная поверхность 13 которого образована вращением кривой относительно оптической оси объектива 6 телевизионной камеры 5 и имеет вогнутую внутрь конусообразную форму (иными словами, зеркальная поверхность 13 имеет вид конуса, обращенного вершиной к камере, с вогнутыми внутрь боковыми сторонами). Геометрическая ось отражателя света 12 совпадает с оптической осью объектива 6 телевизионной камеры 5.
Зеркальная поверхность 13 отражателя света 12 может быть, в частном случае выполнения изобретения, образована вращением кривой второго порядка относительно оптической оси объектива 6 телевизионной камеры 5 (см. фиг.2). Упомянутая кривая второго порядка является графиком функции y=ax 2 +bx+c, где коэффициенты а и b и свободный член с зависят от радиуса R основания зеркальной поверхности 13 отражателя света 12 и величины расстояния L от главной плоскости объектива 6 телевизионной камеры 5 до основания зеркальной поверхности.
В другом частном случае выполнения изобретения образующая зеркальной поверхности 13 отражателя света 12 может быть представлена в виде ломаной линии (т.е. кусочно-линейной кривой), состоящей из отрезков прямых линий (см. фиг.3). Каждый из этих отрезков представляет касательную к кривой y=ax 2 +bx+c в одной из ее точек. В этом случае зеркальная поверхность 13, полученная в результате вращения ломаной линии, состоит из ряда примыкающих друг к другу усеченных конусов. Отражатели с такой формой отражающей поверхности дешевле и проще в изготовлении, чем отражатели с отражательной поверхностью, полученной вращением плавной кривой.
На фиг.4 представлен в продольном разрезе отражатель света 12, зеркальная поверхность 13 которого построена с использованием образующей, определенной по формуле y=ax 2 +bx+c. В прилагаемой таблице представлены результаты расчетов по этой формуле применительно к обследованию труб, имеющих внутренний диаметр 62 мм.
В состав средства записи телевизионных сигналов и их сравнения с эталонными сигналами входят блок памяти и блок принятия решения о выбраковке труб. В блоке памяти хранятся полученные по кабелю 10 от телевизионной камеры 5 и преобразованные в цифровую форму сигналы изображений эталонных труб различных типоразмеров. В качестве эталонных выбираются трубы с бездефектной внутренней поверхностью, имеющие точные номинальные размеры внутренних диаметров. Связанный с блоком памяти блок принятия решения о выбраковке труб может сравнивать сигналы, поступившие от телевизионной камеры 5 в процессе обследования трубы, с имеющимися в нем значениями эталонных сигналов и принимать решение о выбраковке трубы. Блок принятия решения о выбраковке трубы может быть связан с пультом управления звуковым и/или световым сигналом. Этот блок может быть также связан с приводами устройств, осуществляющих отвод отбракованной трубы из общего технологического потока.
В указанных выше частных случаях привод продольного перемещения корпуса 1 может быть связан со средством записи телевизионных сигналов и их сравнения с эталонными сигналами для возможности определения размеров дефектов и мест их расположения по длине трубы.
Сигналы, характеризующие продольное перемещение полой штанги 3 с корпусом 1 в трубе 2, могут поступать в компьютер 9 от тахометра (на схеме не показан), который связан с электродвигателем 4, или непосредственно от фрикционного ролика 14, прижимаемого к наружной поверхности полой штанги 3. Наложение этих сигналов на сигналы, поступающие от телевизионной камеры 5, дает возможность определить и точно зафиксировать продольные размеры дефектов и их расположение по длине трубы.
Предлагаемое изобретение используется следующим образом. Дефектоскоп может быть установлен в технологической линии изготовления или ремонта труб. Конец обследуемой трубы 2 помещают напротив телевизионной камеры 5, причем геометрическая ось трубы 2 должна быть совмещена с оптической осью объектива 6 телевизионной камеры 5. При помощи полой штанги 3 корпус 1 с телевизионной камерой 5, системой направленного излучения света и отражателем света 12 вводят внутрь трубы 2. Включают телевизионную систему, кольцевую систему направленного излучения света и с помощью привода продольного перемещения продвигают корпус 1 к противоположному концу трубы 2. В процессе перемещения корпуса 1 в трубе 2 лучи кольцевой системы направленного излучения света, отражаясь зеркальной поверхностью 13 отражателя света 12, последовательно попадают на различные участки внутренней поверхности трубы 2. При этом форма зеркальной поверхности 13 отражателя света 12 и его положение относительно источника света обеспечивает концентрацию лучей на узком кольцевом поясе S внутренней поверхности трубы 2 (см. фиг.1). Вследствие такой концентрации генерированные телевизионной камерой 5 сигналы, поступая в монитор 8 по кабелю 10, точно воспроизводят на экране монитора 8 контур внутренней стенки трубы 2 в виде узкого светлого кольца W (см. фиг.5а и 5б). Поступая в компьютер 9, телевизионные сигналы преобразуются в цифровую форму и сравниваются с эталонными сигналами. На основании результатов сравнения вновь поступающих и эталонных сигналов компьютером 9 принимается решение о соответствии трубы 2 установленным нормам качества. В случае нарушения норм качества блок принятия решения формирует выбраковочный сигнал, направляемый на экран монитора 8 и на пульт управления технологического потока.
В соответствии с данным описанием был изготовлен опытный образец дефектоскопа, с помощью которого в производственных условиях обследовали в общей сложности 950 насосно-компрессорных труб длиной 10 м и наружным диаметром 73 мм, имеющих толщину стенки 5,5 мм. Опыт работы показал возможность выявления неровностей на внутренней поверхности труб величиной от 0,7 мм и выявления отклонений внутренних диаметров труб от номинальных значений от 2 мм.
Наименования узлов и деталей
1. Корпус дефектоскопа.
2. Обследуемая труба.
5. Телевизионная камера.
6. Объектив телевизионной камеры.
7. Светодиоды системы направленного излучения света.
Контроль качества производства и строительства должен осуществляться на каждом этапе. Иногда проверить работу объекта нужно уже в процессе эксплуатации. Прибор, который помогает проводить подобного рода экспертизу неразрушающим методом, называется дефектоскоп. Видов дефектоскопов существует огромное множество. Отличаются они по принципу работы и назначению. Изучите самые популярные методы дефектоскопии и полезные рекомендации по выбору устройства, чтобы не ошибиться при выборе и быстро освоить работу.
Что такое дефектоскоп и для чего он нужен?
В зависимости от цели дефектоскопии и области его применения, кардинально меняется методика выявления повреждений и брака, на которой основывается работа того или иного дефектоскопа.
УД2-140 | УДЗ-204 | Пеленг-415 | DIO 1000 LF |
Зачем нужна дефектоскопия?
Дефектоскопия – мероприятия, которые направлены на выявление всевозможных отклонений от проекта и нормативов во время производства или эксплуатации объекта. Дефектоскопия помогает обнаружить неисправность задолго до того, как она даст о себе знать. Таким образом, можно предотвратить поломки механизмов, разрушение конструкций и аварии на производстве. Дефектоскоп – прибор, предназначенный для проверки и выявления дефектов на поверхности или в теле всевозможных изделий. Дефекты могут быть самыми разнообразными. Одни приборы нужны для обнаружения следов коррозии, другие – для поиска полостей, утончения, несоответствия размеров и прочих физико-механических изъянов, а третьи могут определить дефекты на уровне молекулярного строения – найти изменения структуры тела, его химического состава.
В каких отраслях применяется дефектоскопия?
Дефектоскоп относят к классу приборов под общим названием «средства неразрушающего контроля». В процессе производства изделия часто поддаются всевозможным проверкам. Некоторые детали подвергают испытаниям в лабораториях, где определяют их запас прочности, способность противостоять всевозможным нагрузкам и воздействиям. Недостаток такой методики в том, что она проводится выборочно и не гарантирует 100% качество всей продукции.
Неразрушающий контроль, к которому относят и проверку дефектоскопом, позволяет оценить состояние конкретного изделия или элемента конструкции на месте и без проведения испытаний. Инструмент незаменим в таких отраслях: строительство; машиностроение; производство металлопроката; энергетика; научно-исследовательские работы; химия; горная промышленность.
Дефектоскопом проверяют качество соединения (особенно важно это для сварки трубопроводов высокого давления), состояние конструкции в строительстве (металлической, железобетонной), степень износа механизма, наличие повреждения детали. Практически во всех отраслях промышленности, где важно контролировать состояние и соответствие нормам твердых элементов, применяют разные дефектоскопы. Классификация дефектоскопов по методу проверки.
В зависимости от метода проверки, выделяют такие типы дефектоскопов: акустические; вихретоковые; электролитические; искровые; магнитно-порошковые; рентгеновские аппараты; капиллярный; импедансный и другие. Панель управления УЗ дефектоскопа Сравнивать их сложно, они настолько разные по строению, работе и даже внешнему виду, что объединяет их только назначение. Выделить какой-то из приборов и уверенно сказать, что он лучший, универсальный и заменит все остальные невозможно. Поэтому при выборе важно не принимать опрометчивых решений и не покупать первую попавшуюся модель.
Принцип действия каждого типа дефектоскопов
Самые популярные дефектоскопы, которыми можно проводить экспертизу неразрушающим методом: ультразвуковой (акустический), магнитный и вихретоковый. Они компактны, мобильны и просты в эксплуатации и понимании принципа. Другие используются не так широко, но каждый прочно занимает свою нишу среди других средств дефектоскопии.
Акустический – работа ультразвука
Акустический дефектоскоп – понятие, объединяющее в себе схожие по общему принципу приборы неразрушающего контроля. Основывается акустическая дефектоскопия на свойствах звуковой волны. Из школьного курса физики известно, что основные параметры волны не изменяются при движении в однородной среде. Однако, если на пути волны возникает новая среда, частота и длина ее изменяются.
Чем выше частота звука, тем точнее результат, поэтому из всего диапазона применяют ультразвуковые волны. Ультразвуковой дефектоскоп излучает звуковые волны, которые проходят сквозь проверяемый объект. Если присутствуют полости, вкрапления других материалов или прочие дефекты, ультразвуковая волна обязательно укажет на них изменением параметров.
Ультразвуковые дефектоскопы, работающие по принципу эхо-метода, являются наиболее распространенными и доступными. УЗ-волна проникает в объект, если дефектов не обнаружено, отражения не происходит, соответственно, прибор ничего не улавливает и не регистрирует. Если же возникло отражение УЗ, это указывает на наличие изъяна. Генератор ультразвука является так же и приемником, что очень удобно и облегчает проведение дефектоскопии.
УСД-60Н | УД2В-П46 | УСД-46 | УСД-60 |
Зеркальный метод похож на эхо, но используется два устройства – приемник и передатчик. Преимущество такого метода в том, что оба устройства находятся по одну сторону от объекта, что облегчает процесс установки, настройки и произведения замеров.
Отдельно выделяют методы анализа ультразвука, который прошел через объект насквозь. Используют понятие «звуковая тень». Если внутри объекта присутствует дефект, он способствует резкому затуханию колебаний, то есть, создает тень. На этом принципе основывается теневой метод ультразвуковой дефектоскопии, когда генератор и приемник колебаний располагаются на одной акустической оси с разных сторон.
Недостатки такого прибора в том, что предъявляются строгие требования к размерам, конфигурации и даже степени шероховатости поверхности проверяемого элемента, что делает устройство не совсем универсальным.
Вихретоковый – магнитные поля и вихревые токи
Французский физик Жан Фуко посвятил не один год изучению вихревых токов (токов Фуко), которые возникают в проводниках при создании в непосредственной близости к ним переменного магнитного поля. Основываясь на том, что при наличии в теле дефекта, эти самые вихревые токи создают свое – вторичное магнитное поле, осуществляют дефектоскопию вихретоковые устройства.
Вихретоковый дефектоскоп создает исходное переменное магнитное поле, а вот вторичное поле, которое и дает возможность выявить и проанализировать недостаток в объекте, возникает в результате электромагнитной индукции. Дефектоскоп улавливает вторичное поле, регистрирует его параметры и делает вывод о виде и качестве дефекта.
Производительность этого прибора высокая, проверка осуществляется довольно быстро. Однако вихревые токи могут возникать исключительно в тех материалах, которые являются проводниками, поэтому область применения такого девайса значительно уже его аналогов.
Магнитнопорошковый – наглядная картина
Еще один распространенный метод дефектоскопии – магнитно-порошковый. Он применяется для оценки сварных соединений, качества защитного слоя, надежности трубопроводов и так далее. Особо ценят это метод для проверки сложных по форме элементов и труднодоступных для других приборов участков.
Принцип работы магнитного дефектоскопа основан на физических свойствах ферромагнитных материалов. Они имеют способность намагничиваться. При помощи постоянных магнитов или специальных устройств, которые могут создавать продольное или циркулярное магнитное поле.
После воздействия на участок объекта магнитом, на него сухим или мокрым способом наносят так называемый реагент – магнитный порошок. Под действием магнитного поля, которое возникло в результате намагничивания, порошок соединяется в цепочки, структурируется и образует на поверхности четкий рисунок в виде изогнутых линий.
Зная его особенности и основные параметры, при помощи магнитного дефектоскопа можно определить, в каком месте располагается дефект. Как правило, непосредственно над изъяном (трещиной или полостью) наблюдается ярко выраженное скопление порошка. Для определения характеристик дефекта, полученную картинку сверяют с эталоном.
Остальные виды и их принцип действия
Методы дефектоскопии совершенствуются с каждым годом. Появляются новые методики, другие постепенно изживают себя. Многие дефектоскопы имеют довольно узкоспециализированное назначение и применяются только в определенных отраслях промышленности.
Принцип работы феррозондового дефектоскопа основывается на оценке импульсов, возникающих при движении устройства вдоль объекта. Применяется в металлургии, при производстве металлопроката и диагностики сварных соединений.
Радиационный дефектоскоп облучает объект рентгеновскими лучами, альфа-, бета-, гамма-излучением или нейтронами. В результате получают подробный снимок элемента со всеми присутствующими дефектами и неоднородностями. Метод дорогой, но очень информативный.
Капиллярный дефектоскоп выявляет поверхностные трещины и несплошности в результате воздействия на объект специальным проявляющим веществом. Оценка результата производится визуальным методом. Применяется капиллярная дефектоскопия по большей части в машиностроении, авиации, судостроении.
В энергетике для анализа работы и выявления несовершенства элементов, находящихся под высоким напряжением, применяют электронно-оптический дефектоскоп. Он способен уловить малейшие изменения коронных и поверхностно-частичных разрядов, что дает возможность оценить работу оборудования без его остановки – дистанционно.
Дефектоскоп – это оборудование неразрушающего контроля, которое позволяет определять различного рода дефекты металлических и неметаллических изделий. Название происходит от латинского слова «defectus», что означает «недостаток».
Возможности использования дефектоскопов, разработками новых моделей, методов контроля, обработкой данных проверок, занимается область науки и техники – дефектоскопия.
Структуроскопы, течеискатели, твердомеры, стилоскопы и другое оборудование неразрушающего контроля по принципу работы, назначению несколько схожи с дефектоскопами, т.к. выполняют подобные функции.
Применение дефектоскопа
Дефектоскоп – устройство очень востребовано. Благодаря данному прибору неразрушающего контроля можно обнаружить визуально не видимые очаги коррозии (например, под защитным покрытием), неоднородность структуры, скрытые раковины, полости и другие нарушения сплошности, изменения в химическом составе сплавов и другие дефекты, возникшие в процессе эксплуатации или при изготовлении изделия. Своевременно проводить дефектоскопический контроль – очень важно, т.к. любые несовершенства и недостатки способствуют изменению физических свойств материалов, могут послужить причиной разрушения изделия или конструкции. Особенно это важно на объектах, где работают люди, т.к. разрушение конструкции или изделия может послужить причиной множества человеческих жертв.
Широко используются дефектоскопы в таких отраслях, как машиностроение, строительство, энергетика, транспортная сфера, нефтегазовая и химическая промышленности. Научно-исследовательские центры применяют дефектоскопы для контроля и изучения свойств, особенностей твердых тел. При помощи данного оборудования контролируют клеевые и паяные соединения, сварные швы, различные заготовки, детали, готовые изделия, как на стадии изготовления, так и в процессе эксплуатации. Некоторые установки позволяют исследовать объект, нагретый до высокой температуры. Другие же можно использовать в движении. Например, вагон-дефектоскоп, тележки, рельсовые приборы при эксплуатации движутся по рельсам, непосредственно в эксплуатационных условиях. Есть дефектоскопы, которые способны анализировать объект в процессе движения. Так проверяют трубный прокат.
Ультразвуковой дефектоскоп
Наиболее современным и популярным в наше время являются ультразвуковые (акустические) дефектоскопы. Зависимо от принципа работы (метода) ультразвукового дефектоскопа различают следующие его виды: резонансные, импедансные, импульсные, акустико-эмиссионные, акустико-топографический, реверберационный, велосиметрический.
Резонансные дефектоскопы используются для определения очагов коррозии, измерения толщин стенок приборов и конструкций (в основном – металлических, но может быть применим для некоторых неметаллических). Погрешность прибора при одностороннем измерении – не более 1%. Суть метода заключается в измерении возбужденных в исследуемом приборе собственных упругих колебаний. Резонансные частоты при этом около 1-10 МГц.
Импедансные дефектоскопы широко используются в авиастроении, автомобильной промышленности, космической и некоторых других отраслях. Они способны обнаружить непроклеенные участки, различные дефекты, расслоения, нарушения целостности и пустоты в различном оборудовании, приборах, конструкциях. Принцип работы импедансных дефектоскопов заключается в сканировании исследуемого изделия двумя пьезоэлементами. Один элемент посылает колебания в толщу материала, а другой – эти колебания принимает. Затем прибор обрабатывает данные: импеданс (комплексное механическое сопротивление) участка с дефектом отличается от характеристик нормального, доброкачественного образца.
Импульсные дефектоскопы сочетают в себе несколько методов неразрушающего контроля: зеркально-теневой, теневой, эхо-метод.
Зеркально-теневой метод в последние годы применяется все реже, ввиду своей невысокой точности. Чувствительность, в сравнении с эхо-методом, – в 10 – 100 раз ниже. Используется совместно (в дополнение) с эхо-методом либо самостоятельно, например, для определения наличия в рельсах вертикальных трещин.
Эхо-метод позволяет определять наличие и место расположения как поверхностных, так и глубинных дефектов. При сканировании поверхности датчик дефектоскопа посылает в изделие эхосигналы (ультразвуковые импульсные колебания), которые, отражаясь от дефекта, возвращаются к датчику (приемнику) прибора. Исходя из интенсивности импульса и времени его возвращения, прибор определяет вид и месторасположение дефекта.
Теневые ультразвуковые дефектоскопы используются для исследований рельсов, сварных швов и других объектов. Они посылают в толщу металла колебания, которые отражаются от дефекта и принимаются приемником прибора. В некоторых случаях фаза колебания меняется, тогда можно судить о огибании дефекта импульсом.
Вихретоковый дефектоскоп
Применяется для обнаружения неглубоких, поверхностных дефектов – микротрещины, поры и другие несовершенства, расположенные на глубине до 2 миллиметров. Суть метода заключается в возбуждении токов Фуко (вихревых) на исследуемой площади, регистрации изменений в их электромагнитном поле.
Магнитный (магнитопорошковый) дефектоскоп
Магнитопорошковые дефектоскопы используются для неразрушающего контроля трубопроводов, сварных соединений, оборудования и деталей железнодорожного транспорта, различных металлоконструкций. Прибор позволяет проводить диагностику даже в труднодоступных местах, например, исследовать полости и внутреннюю поверхность отверстий, детали, конструкции различной формы. Магнитопорошковые дефектоскопы позволяют определить трещины, флокены, сколы, шероховатости, несплавления, а также нарушения сплошности (повреждения) защитных покрытий, в том числе, сформированных из лакокрасочных материалов.
Принцип работы магнитопорошковых дефектоскопов основан на явлении намагничивания. Изделие полностью, либо определенную его часть, намагничивают, т.е. на исследуемом участке создается продольное или циркулярное поле рассеяния при помощи постоянных магнитов либо специального набора, состоящего из намагничивающих устройств. Дефектные участки выявляются благодаря магнитному порошку. Непосредственно над самим дефектом наблюдается самая большая концентрация магнитных силовых линий. По мере удаления от трещины или несплошности – их плотность уменьшается. Для определения местонахождения этих линий, и, естественно, дефектов, на исследуемую поверхность наносят специальный магнитный порошок, мокрым или сухим способом. Именно скопления порошка покажет, где находится бракованный участок, т.к. намагниченные его частицы будут скапливаться над трещиной, приобретая упорядоченную определенную структуру. Полученная картинка внимательно изучается и сравнивается с эталонным образцом. Таким образом, определяют наличие дефекта, его местонахождение, форму и размеры.
Электроискровой (искровой) дефектоскоп
Электроискровые приборы неразрушающего контроля используются для диагностики состояния защитных и изоляционных покрытий магистральных трубопроводов (газо-, нефте- и др.), элементов системы водоподготовки, водоснабжения, паровых котлов, емкостного оборудования и некоторых других конструкций. Щуп прибора подключается к одному полюсу источника напряжения, а исследуемый объект – к другому полюсу этого же высоковольтного источника (при помощи заземлителя или через грунт). Щуп в процессе эксплуатации должен касаться поверхности изоляции (в том числе, сформированной из битума). В местах повреждения изоляции между щупом и изделием происходит электрический пробой воздуха (промежутка). Так при помощи электроискровых дефектоскопов определяют сплошность изоляционных, защитных покрытий.
Рентгеновский (радиационный) дефектоскоп
Впервые радиационные приборы начали использовать на судостроительном заводе (Балтийском) в 1933 году. Внедрил его изобретатель Мысовский Л.В. для определения в металлических толстых плитах дефектов литья.
Исследование проводится методом рентгенографии. Контролируемый объект облучается нейтронами, а также альфа, бета, гамма и рентгеновскими лучами. Источниками излучения могут служить бетатроны, микротроны, линейные ускорители, радиоактивные изотопы либо рентгеновские аппараты. Результатом данного типа неразрушающего контроля может служить снимок дефекта (радиография), световая картинка на экране прибора (радиоскопия, радиометрия) или сигнал (радиометрия).
Термоэлектрический
Зачастую термоэлектрические приборы используются для определения материала (например, марки стали), из которого изготовлена конструкция. Суть термоэлектрического метода контроля заключается в измерении в месте контакта двух разнородных металлов электродвижущей силы. Область контакта при этом специально нагревается. Один из контактирующих материалов принимают за эталон. Химический состав второго – определяет знак и величина электродвижущей силы, при заданном температурном интервале холодного и горячего контактов. Таким образом, можно исследовать как отдельный элемент, как и всю конструкцию.
Инфракрасный дефектоскоп
Суть работы инфракрасного прибора неразрушающего контроля заключается в пропускании сквозь исследуемый объект инфракрасных лучей. Теплочувствительный приемник регистрирует, как тепловые лучи распределяются в испытуемом участке, таким образом, определяя наличие включений, непрозрачных для видимого света. Это объясняется тем, что дефектные участки изменяют траекторию движения потока.
Каппилярный
Данный тип приборов позволяет определять несплошности, трещины на поверхности различных конструкций и деталей, которые появились как при изготовлении, так и в процессе эксплуатации. Суть метода заключается в искусственном повышении цвето- и светоконтрастности дефекта, благодаря чему поврежденный участок становится виден невооруженным глазом. На поверхность исследуемого объекта наносят специальный жидкий индикатор (вещества, под названием пенетранты), который, под влиянием сил капиллярности, проникает в трещины и поры, заполняя их. При повышении цветоконтрастности (цветном методе) в качестве пенетранта используется смесь керосина, скипидара, бензола, красящих компонентов. При искусственном повышении светоконтрастности (люминесцентный способ) в качестве индикаторов применяют составы на основе нориола, керосина и других люминофоров. После обработки поверхности индикатором – избыток его снимают, а на исследуемый участок наносят проявитель – тонкодисперсный порошок белого цвета, в качестве которого могут быть использованы тальк, окись магния и др. Проявитель адсорбирует перетрант из трещины или поры, тем самым выделяя контуры дефекта. При воздействии ультрафиолетового излучения контуры трещины ярко подсвечиваются.
Дефектоскопы-градиентометры (феррозондовые)
Данные приборы неразрушающего контроля используются для исследований на наличие дефектов сварных соединений, литых деталей, металлопроката. Чувствительный элемент (феррозонд) передвигают вдоль исследуемой поверхности. Происходит выработка импульсов тока. При наличии в изделии дефектов форма импульсов изменяется, что и фиксирует прибор.
Достоинством такого оборудования является возможность проводить диагностику металла сквозь толщу защитного покрытия (например, краски, лака, эмали и других), не обладающего магнитными свойствами, и толщина которого не превышает 6 миллиметров. Шероховатость металла не должна превышать Rz 320 мкм. Высокая чувствительность феррозонда позволяет определять дефекты, имеющие глубину от 0,1 мм и ширину от нескольких микрометров.
Читайте также: