Занижены напряжения бп телевизора во вторичной цепи причины
Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.
На входе блока расположен предохранитель.
Затем стоит фильтр CLC, причем катушка используется для подавления синфазных помех. Вслед за фильтром располагается схема выпрямления на основе диодного моста и электролитического конденсатора. Часто для защиты схемы от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливается варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.
Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если сгорит диодный мост. Диод не даст пройти отрицательному напряжению в основную схему, потому, что откроется и сгорит предохранитель.
За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения и первоначальной зарядки конденсатора C1.
Активные элементы первичной цепи: коммутационный транзистор Q1 с ШИМ (широтно импульсным модулятором) контроллером управления. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное, которое преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.
И еще — для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.
Работа вторичной цепи импульсного блока питания
В выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр, состоящий из электролитических конденсаторов и дросселя.
Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Когда выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод, который включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается, пока напряжение не снизится до порогового.
Основные неисправности и методы проверки импульсных блоков питания
Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник. Перед началом проверки убедитесь в работоспособности сетевого кабеля
или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы. Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.
Возможные причины
выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:
- При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
- Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
- Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.
Ремонт импульсных блоков питания
Неисправности импульсных блоков питания, ремонт
Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:
- Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
- Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
- Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду, но не всегда.
- Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
- Если сгорел ШИМ регулятор, то меняем его.
- Замыкание или обрыв обмоток трансформатора. Шансы на ремонт минимальны.
- Неисправность оптопары — крайне редкий случай.
- Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
- Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.
Примеры ремонта импульсных блоков питания
Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.
Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.
Например, в одном блоке питания были неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.
На втором не работал ШИМ контроллер.
На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление оказалось большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке было в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. После замены этого конденсатора ШИМ заработал и работоспособность блока питания восстановилась.
Читать также: Как называется большой рубанок
Импульсные источники питания, Элементная база, архитектура и ремонт, Коростелин А.В., 2021
Импульсные источники питания, Элементная база, архитектура и ремонт, Коростелин А.В., 2021. В этой книге рассматривается элементная база, архитектура и методика ремонта импульсных источников питания, применяющихся в современной технике. В книге предоставлен актуальный материал (как теоретический, так и практический), достаточный для того, чтоб читатель научился понимать принципы работы устройства, познакомился с элементной базой, и, как следствие, смог самостоятельно нарабатывать опыт диагностики и ремонта различных источников питания. В приложении приводится информация о том, как определить и избежать покупки контрафактных компонентов. Также дана нормативно-правовая база деятельности мастерской по ремонту бытовой техники. Книга ориентирована на инженеров, разработчиков электронной аппаратуры, преподавателей и студентов вузов и колледжей, специалистов по ремонту электронной техники (мастеров, сервисных инженеров), желающих систематизировать и углубить свои знания об импульсных источниках питания различных видов. Резисторы и шунты. Резисторы — пожалуй, самые многочисленные компоненты любой электронной схемы. Они применяются для ограничения тока в цепи, поглощения энергии, в качестве измерительных шунтов, в составе делителей и RC-цепей, для подтягивания потенциала и терминирования сигнальных линий. Промышленностью выпускается широчайший ассортимент различных типов резисторов в разнообразных корпусах. Основными характеристиками резисторов являются номинальное сопротивление (англ, resistance) и предельная рассеиваемая мощность (англ, power rating). В высоковольтных цепях также учитывается максимальное рабочее напряжение (англ, maximum working voltage), зависящее от габаритов и конструкции резистора. Допустимое отклонение реального сопротивления от номинала характеризуется таким параметром, как точность (англ, resistance tolerance). Точность распространённых типов резисторов общего назначения обычно имеет значения ±5%, ±10% или ±15%. Выпускаются и прецизионные (англ, precision) серии резисторов с гораздо меньшим разбросом сопротивлений, вплоть до десятых долей процента. Содержание. Предисловие. Глава 1. Общие сведения. Глава 2. Элементная база источников питания. 2.1. Пассивные компоненты. 2.1.1. Резисторы и шунты. 2.1.2. Варисторы и термисторы. 2.1.3. Конденсаторы — основные параметры. 2.1.4. Плёночные конденсаторы. 2.1.5. Электролитические конденсаторы. 2.1.6. Керамические конденсаторы. 2.1.7. Суперконденсаторы или ионисторы. 2.2. Базовые узлы из пассивных компонентов. 2.3. Диоды. 2.3.1. Основные паспортные характеристики диодов. 2.3.2. Диоды Шоттки. 2.3.3. Защитные лавинные диоды. 2.4. Основные типы выпрямителей. 2.5. Тиристоры. 2.5.1. Особенности работы на реактивную нагрузку. 2.5.2. Особенности коммутации. 2.6. Транзисторы в качестве электронных ключей. 2.6.1. Электронный ключ на биполярном транзисторе 2.6.2. Транзисторы с изолированным затвором. 2.6.3. Ключи на транзисторах с изолированным затвором. 2.7. Операционные усилители и ТL431. 2.8. Линейные стабилизаторы напряжения. 2.9. Оптопары. 2.10. Измерение тока в цепи. 2.11. Практические примеры. 2.11.1. Блок питания на гасящем конденсаторе. 2.11.2. Тиристор в качестве реле. 2.11.3. Импульсно-фазовый тиристорный регулятор 2.11.4. Задержка включения реле. Глава 3. Топологии импульсных источников питания. 3.1. ИИП без гальванической развязки. 3.1.1. Понижающий преобразователь и синхронный выпрямитель. 3.1.2. Повышающий преобразователь. 3.1.3. Инвертирующий преобразователь. 3.1.4. Комбинированные преобразователи. 3.1.5. Практический пример преобразователя. 3.1.6. Преобразователи на переключаемых конденсаторах. 3.1.7. Простейшие конденсаторные преобразователи. 3.2. ИИП с трансформаторной развязкой. 3.2.1. Обратноходовой преобразователь. 3.2.2. Прямоходовой преобразователь. 3.2.3. Push-pull преобразователь. 3.2.4. Полумостовой преобразователь. 3.2.4. Мостовой преобразователь. 3.3. Отдельные реализации преобразователей. 3.3.1. Коэффициент мощности и его коррекция. 3.3.2. Резонансный LLC-преобразователь. 3.3.3. Н-мост и управление двигателями. 3.3.4 Источники бесперебойного питания. 3.3.5. Блоки питания АТХ. 3.3.6. Сварочные источники. 3.3.7. Автоколебательные преобразователи. Глава 4. Элементы и цепи защиты и фильтрации. 4.1. Снабберные цепи. 4.2 Фильтрация помех в линии питания. 4.3. Защита от перенапряжений в цепи питания. 4.4. Практический пример сетевого фильтра. 4.5. Защита сигнальных линий. Глава 5. Интегральные микросхемы источников питания. 5.1. Интегральные драйверы затворов. 5.2. Интегральные конверторы напряжения. 5.3. Контроллеры обратноходовых ИИП с интегрированным ключом. 5.4. ШИМ контроллеры однотактных ИИП. 5.5. ШИМ контроллеры двухтактных ИИП. 5.6. Контроллеры PFC. 5.7. Супервайзеры. Глава 6. Практика ремонта. 6.1. Оборудование мастерской. 6.2. Идентификация и проверка компонентов. 6.3. Общие рекомендации. 6.4. Ремонт обратноходовых ИИП. 6.5. Типовые дефекты ИИП других топологий и типов. Приложение 1. О контрафактных компонентах. Приложение 2. Нормативно-правовая база деятельности мастерской. Список литературы и интернет-источников.
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Простыми словами о ремонте телевизоров и домашней бытовой техники своими руками
Блок питания современного телевизора (ТВ), независимо от марки его дисплея, представляет собой импульсный преобразователь напряжения с фиксированными выходными характеристиками. Их нормируемые значения определяют штатный режим работы всего устройства в целом. В случае появления каких-либо неисправностей по их изменению можно судить о характере поломки.
Устройство и принцип работы
Плата импульсного блока питания (ИБП) нередко выполняется в виде отдельного электронного модуля, что является характерной чертой ТВ с небольшой диагональю экрана. В более габаритных моделях она интегрируется в шасси приемника и находится внутри его конструкции (смотрите фото ниже).
В плату БП входят следующие обязательные составляющие:
- Импульсный трансформатор.
- Фильтр сетевого питания, собранный на основе дросселей и конденсаторов.
- Узлы дежурного и рабочего режима.
- Модуль защиты от перегрузок.
- Элементы охлаждения (радиаторы).
Принцип работы БП заключается в приведении сетевого напряжения к виду, удовлетворяющему требованиям энергоснабжения основных электронных узлов телевизора (включая его матрицу).
Дополнительная информация: Величина и форма питающих потенциалов должны соответствовать рабочим напряжениям и их эпюрам, приводимым в специальных таблицах.
Иногда они указываются непосредственно на электрической схеме конкретного устройства.
Характерные неисправности и их выявление
Первое, с чего начинается обследование при обнаружении большинства из этих неисправностей – это тщательный визуальный осмотр платы БП при полностью отключенном от сети устройстве. Если ничего подозрительно не обнаружено – следует перейти к более подробному анализу причин их появления. Для этого потребуется демонтировать питающий модуль из корпуса телевизора, отсоединив прежде все разъемы.
Затем необходимо разрядить высоковольтный фильтрующий конденсатор цепей питания, остаточное напряжение на котором опасно для человека. В силовых блоках большинства моделей ТВ, включая эту, причинами неисправности чаще всего являются:
- Выход из строя электролитов вторичных питающих цепей.
- Некачественная пайка отдельных составляющих платы (дросселей и полупроводниковых элементов, в частности).
- Выгорание силовых (ключевых) транзисторов.
- Обрыв или пропадание контакта в подводящих разъемах.
Обратите внимание: Убедиться в том, что электролиты состарились и вышли из строя удается по их вздутой крышке (фото сверху).
Последствия плохой фильтрации напряжения вследствие их неисправности бывают самыми различными. Они проявляются либо в полной потере работоспособности БП, либо в связанных с этим повреждениях элементов инвертора. Нередко они приводят к сбою программного обеспечения в чипах памяти материнской платы и необходимости его обновления.
Прядок диагностирования и устранения неисправностей
Общий порядок диагностирования и устранения обнаруженных неисправностей сводится к следующей последовательности ремонтных операций:
- Все конденсаторы, внешний вид которых вызывает хоть какие-то подозрения, необходимо сразу же заменить.
- При нарушении работы блока дежурного режима следует проверить напряжения 5 Вольт на управляемом стабилитроне.
- Если на выходе этого узла напряжение на фильтрующих конденсаторах отсутствует или его значение сильно занижено – это значит, что нарушен режим работы.
- Для его восстановления потребуется убедиться в исправности всех линейных элементов схемы.
Дополнительная информация: Их работоспособность проверяется с помощью того же тестера без полного выпаивания из платы блока.
О восстановлении работоспособности схемы дежурного режима свидетельствует появление напряжения 5 Вольт, а также загорание красного светодиода на лицевой панели телевизора (фото сверху).
В заключение обзора отметим, что выявление и устранение неисправностей импульсных блоков питания, входящих в состав современных телевизионных приемников – это совсем непростая процедура. Она требует наличия специальной измерительной аппаратуры и некоторых навыков в ремонте электронной техники. Если вы затрудняетесь самостоятельно диагностировать причину отказа телевизора – лучше всего пригласить телемастера-профессионала. При нынешней, сравнительно невысокой стоимости на ремонт телевизионной техники, это позволит сэкономить время и не расходовать попусту свои силы.
Первичная цепь схемы блока питания расположена до импульсного ферритового трансформатора.
На входе блока расположен предохранитель.
Затем стоит фильтр CLC, причем катушка используется для подавления синфазных помех. Вслед за фильтром располагается схема выпрямления на основе диодного моста и электролитического конденсатора. Часто для защиты схемы от коротких высоковольтных импульсов после предохранителя параллельно входному конденсатору устанавливается варистор. Сопротивление варистора резко падает при повышенном напряжении. Поэтому весь избыточный ток идет через него в предохранитель, который сгорает, выключая входную цепь.
Защитный диод D0 нужен для того, чтобы предохранить схему блока питания, если сгорит диодный мост. Диод не даст пройти отрицательному напряжению в основную схему, потому, что откроется и сгорит предохранитель.
За диодом стоит варистор на 4-5 ом для сглаживания резких скачков потребления тока в момент включения и первоначальной зарядки конденсатора C1.
Активные элементы первичной цепи: коммутационный транзистор Q1 с ШИМ (широтно импульсным модулятором) контроллером управления. Транзистор преобразует постоянное выпрямленное напряжение 310В в переменное, которое преобразуется трансформатором Т1 на вторичной обмотке в пониженное выходное.
И еще — для питания ШИМ-регулятора используется выпрямленное напряжение, снятое с дополнительной обмотки трансформатора.
Работа вторичной цепи импульсного блока питания
В выходной цепи после трансформатора стоит либо диодный мост, либо 1 диод и CLC фильтр, состоящий из электролитических конденсаторов и дросселя.
Для стабилизации выходного напряжения используется оптическая обратная связь. Она позволяет развязать выходное и входное напряжение гальванически. В качестве исполнительных элементов обратной связи используется оптопара OC1 и интегральный стабилизатор TL431. Когда выходное напряжение после выпрямления превышает напряжение стабилизатора TL431 включается фотодиод, который включает фототранзистор, управляющий драйвером ШИМ. Регулятор TL431 снижает скважность импульсов или вообще останавливается, пока напряжение не снизится до порогового.
Основные неисправности и методы проверки импульсных блоков питания
Как включить и выставить определённый режим мультиметра каждый может разобраться сам, даже школьник. Перед началом проверки убедитесь в работоспособности сетевого кабеля
или выключателя, которые можно определить визуально или с помощью мультиметра. Не забудьте при любой проверке разрядить электролитические конденсаторы. Они накапливают и удерживают довольно приличный заряд на протяжении определённого времени, даже после выключения всей системы.
Возможные причины
выхода из строя импульсного блока питания и необходимая замена нерабочих радиоэлементов:
- При сгорании предохранителя весь блок обесточивается. Заменить перегоревший контакт очень просто. Используйте обычный проволочный волосок, который наматывается поверх предохранителя или припаивается непосредственно к его контактам. Необходимо учитывать толщину волоска, которая рассчитана на определённую силу тока. Иначе вы рискуете в последующем вывести из строя весь импульсный блок, если предохранитель не сработает.
- Если полностью отсутствует выходное напряжение, возможно, неисправен соответствующий конденсатор или дроссель, который нужно заменить или поменять обмотку. Для этого нужно размотать повреждённый провод и намотать новый с соответственным количеством витков и подходящим сечением. После чего самодельный дроссель впаивается на своё рабочее место.
- Проверить все диодные мосты и переходы. Как это сделать описано выше. Не забывайте при установке новых деталей производить самостоятельную, а главное, качественную пайку.
Ремонт импульсных блоков питания
Неисправности импульсных блоков питания, ремонт
Исходя из схемы импульсного блока питания перейдем к ее ремонту. Возможные неисправности:
- Если сгорел варистор и предохранитель на входе или VCR1, то ищем дальше. Потому, что они так просто не горят.
- Сгорел диодный мост. Обычно это микросхема. Если есть защитный диод, то и он обычно горит. Нужна их замена.
- Испорчен конденсатор C1 на 400В. Редко, но бывает. Часто его неисправность можно выявить по внешнему виду, но не всегда.
- Если сгорел переключающий транзистор, то выпаиваем и проверяем его. При неисправности требуется замена.
- Если сгорел ШИМ регулятор, то меняем его.
- Замыкание или обрыв обмоток трансформатора. Шансы на ремонт минимальны.
- Неисправность оптопары — крайне редкий случай.
- Неисправность стабилизатора TL431. Для диагностики замеряем сопротивление.
- Если КЗ в конденсаторах на выходе блока питания, то выпаиваем и диагностируем тестером.
Примеры ремонта импульсных блоков питания
Например, рассмотрим ремонт импульсного блока питания на несколько напряжений.
Неисправность заключалась в в отсутствии на выходе блока выходных напряжений.
Например, в одном блоке питания были неисправны два конденсатора 1 и 2 в первичной цепи. Но они не были вздутыми.
На втором не работал ШИМ контроллер.
На вид все конденсаторы на снимке рабочие, но внутреннее сопротивление оказалось большое. Более того, внутреннее сопротивление ESR конденсатора 2 в кружке было в несколько раз выше номинального. Этот конденсатор стоит в цепи обвязки ШИМ регулятора, поэтому регулятор не работал. После замены этого конденсатора ШИМ заработал и работоспособность блока питания восстановилась.
Читать также: Как называется большой рубанок
Импульсные источники питания, Элементная база, архитектура и ремонт, Коростелин А.В., 2021
Импульсные источники питания, Элементная база, архитектура и ремонт, Коростелин А.В., 2021. В этой книге рассматривается элементная база, архитектура и методика ремонта импульсных источников питания, применяющихся в современной технике. В книге предоставлен актуальный материал (как теоретический, так и практический), достаточный для того, чтоб читатель научился понимать принципы работы устройства, познакомился с элементной базой, и, как следствие, смог самостоятельно нарабатывать опыт диагностики и ремонта различных источников питания. В приложении приводится информация о том, как определить и избежать покупки контрафактных компонентов. Также дана нормативно-правовая база деятельности мастерской по ремонту бытовой техники. Книга ориентирована на инженеров, разработчиков электронной аппаратуры, преподавателей и студентов вузов и колледжей, специалистов по ремонту электронной техники (мастеров, сервисных инженеров), желающих систематизировать и углубить свои знания об импульсных источниках питания различных видов. Резисторы и шунты. Резисторы — пожалуй, самые многочисленные компоненты любой электронной схемы. Они применяются для ограничения тока в цепи, поглощения энергии, в качестве измерительных шунтов, в составе делителей и RC-цепей, для подтягивания потенциала и терминирования сигнальных линий. Промышленностью выпускается широчайший ассортимент различных типов резисторов в разнообразных корпусах. Основными характеристиками резисторов являются номинальное сопротивление (англ, resistance) и предельная рассеиваемая мощность (англ, power rating). В высоковольтных цепях также учитывается максимальное рабочее напряжение (англ, maximum working voltage), зависящее от габаритов и конструкции резистора. Допустимое отклонение реального сопротивления от номинала характеризуется таким параметром, как точность (англ, resistance tolerance). Точность распространённых типов резисторов общего назначения обычно имеет значения ±5%, ±10% или ±15%. Выпускаются и прецизионные (англ, precision) серии резисторов с гораздо меньшим разбросом сопротивлений, вплоть до десятых долей процента. Содержание. Предисловие. Глава 1. Общие сведения. Глава 2. Элементная база источников питания. 2.1. Пассивные компоненты. 2.1.1. Резисторы и шунты. 2.1.2. Варисторы и термисторы. 2.1.3. Конденсаторы — основные параметры. 2.1.4. Плёночные конденсаторы. 2.1.5. Электролитические конденсаторы. 2.1.6. Керамические конденсаторы. 2.1.7. Суперконденсаторы или ионисторы. 2.2. Базовые узлы из пассивных компонентов. 2.3. Диоды. 2.3.1. Основные паспортные характеристики диодов. 2.3.2. Диоды Шоттки. 2.3.3. Защитные лавинные диоды. 2.4. Основные типы выпрямителей. 2.5. Тиристоры. 2.5.1. Особенности работы на реактивную нагрузку. 2.5.2. Особенности коммутации. 2.6. Транзисторы в качестве электронных ключей. 2.6.1. Электронный ключ на биполярном транзисторе 2.6.2. Транзисторы с изолированным затвором. 2.6.3. Ключи на транзисторах с изолированным затвором. 2.7. Операционные усилители и ТL431. 2.8. Линейные стабилизаторы напряжения. 2.9. Оптопары. 2.10. Измерение тока в цепи. 2.11. Практические примеры. 2.11.1. Блок питания на гасящем конденсаторе. 2.11.2. Тиристор в качестве реле. 2.11.3. Импульсно-фазовый тиристорный регулятор 2.11.4. Задержка включения реле. Глава 3. Топологии импульсных источников питания. 3.1. ИИП без гальванической развязки. 3.1.1. Понижающий преобразователь и синхронный выпрямитель. 3.1.2. Повышающий преобразователь. 3.1.3. Инвертирующий преобразователь. 3.1.4. Комбинированные преобразователи. 3.1.5. Практический пример преобразователя. 3.1.6. Преобразователи на переключаемых конденсаторах. 3.1.7. Простейшие конденсаторные преобразователи. 3.2. ИИП с трансформаторной развязкой. 3.2.1. Обратноходовой преобразователь. 3.2.2. Прямоходовой преобразователь. 3.2.3. Push-pull преобразователь. 3.2.4. Полумостовой преобразователь. 3.2.4. Мостовой преобразователь. 3.3. Отдельные реализации преобразователей. 3.3.1. Коэффициент мощности и его коррекция. 3.3.2. Резонансный LLC-преобразователь. 3.3.3. Н-мост и управление двигателями. 3.3.4 Источники бесперебойного питания. 3.3.5. Блоки питания АТХ. 3.3.6. Сварочные источники. 3.3.7. Автоколебательные преобразователи. Глава 4. Элементы и цепи защиты и фильтрации. 4.1. Снабберные цепи. 4.2 Фильтрация помех в линии питания. 4.3. Защита от перенапряжений в цепи питания. 4.4. Практический пример сетевого фильтра. 4.5. Защита сигнальных линий. Глава 5. Интегральные микросхемы источников питания. 5.1. Интегральные драйверы затворов. 5.2. Интегральные конверторы напряжения. 5.3. Контроллеры обратноходовых ИИП с интегрированным ключом. 5.4. ШИМ контроллеры однотактных ИИП. 5.5. ШИМ контроллеры двухтактных ИИП. 5.6. Контроллеры PFC. 5.7. Супервайзеры. Глава 6. Практика ремонта. 6.1. Оборудование мастерской. 6.2. Идентификация и проверка компонентов. 6.3. Общие рекомендации. 6.4. Ремонт обратноходовых ИИП. 6.5. Типовые дефекты ИИП других топологий и типов. Приложение 1. О контрафактных компонентах. Приложение 2. Нормативно-правовая база деятельности мастерской. Список литературы и интернет-источников.
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Советы по ремонту импульсных блоков питания
Практически все импульсные блоки питания, применяющиеся в электронной аппаратуре построены по двум функциональным схемам.
Рис.1. Функциональные схемы импульсных блоков питания
По полумостовой схеме выполняются, как правило, достаточно мощные блоки питания, например компьютерные. По двухтактной схеме изготавливаются также блоки питания мощных эстрадных УМЗЧ и сварочных аппаратов.
Кому доводилось ремонтировать усилители мощностью 400 и более ватт, прекрасно знает, какой у них вес. Речь идет, естественно, об УМЗЧ с традиционным трансформаторным блоком питания. ИБП телевизоров, мониторов, DVD-проигрывателей чаще всего делаются по схеме с однотактным выходным каскадом.
Хотя реально существуют и другие разновидности выходных каскадов, которые показаны на рисунке 2.
Рис.2. Выходные каскады импульсных блоков питания
Здесь показаны только силовые ключи и первичная обмотка силового трансформатора.
Если внимательно посмотреть на рисунок 1, нетрудно заметить, что всю схему можно разделить на две части — первичную и вторичную. Первичная часть содержит сетевой фильтр, выпрямитель напряжения сети, силовые ключи и силовой трансформатор. Эта часть гальванически связана с сетью переменного тока.
Кроме силового трансформатора в импульсных блоках питания применяются еще развязывающие трансформаторы, через которые управляющие импульсы ШИМ – контроллера подаются на затворы (базы) силовых транзисторов. Таким способом обеспечивается гальваническая развязка от сети вторичных цепей. В более современных схемах эта развязка осуществляется при помощи оптронов.
Вторичные цепи гальванически отвязаны от сети при помощи силового трансформатора: напряжение с вторичных обмоток подается на выпрямитель, и далее в нагрузку. От вторичных цепей питаются также схемы стабилизации напряжения и защиты.
Очень простые импульсные блоки питания
Выполняются на базе автогенератора, когда задающий ШИМ контроллер отсутствует. В качестве примера такого ИБП можно привести схему электронного трансформатора Taschibra.
Рис.3. Электронный трансформатор Taschibra
Подобные электронные трансформаторы выпускаются и другими фирмами. Их основное назначение — питание галогенных ламп. Отличительная особенность подобной схемы — простота и малое количество деталей. Недостатком можно считать то, что без нагрузки эта схема просто не запускается, выходное напряжение нестабильно и имеет высокий уровень пульсаций. Но лампочки все-таки светят! При этом вторичная цепь полностью отвязана от питающей сети.
Сначала техника безопасности
Коль скоро имеется такое весьма неприятное соседство первичной и вторичной цепей, которые в процессе ремонта обязательно, пусть, даже случайно, придется пощупать руками, то следует напомнить некоторые правила техники безопасности.
Прикасаться к включенному источнику можно только одной рукой, ни в коем случае не сразу обеими. Это известно каждому, кто работает с электрическими установками. Но лучше не касаться вовсе, или, только после отключения от сети путем выдергивания вилки из розетки. Также не следует на включенном источнике что-то паять или просто крутить отверткой.
Даже выключенный импульсный блок питания можно касаться руками только через некоторое время, не менее 2…3 минут после выключения: на высоковольтных конденсаторах заряд сохраняется достаточно долго, хотя в любом нормальном блоке питания параллельно конденсаторам установлены разрядные резисторы. Помните, как в школе предлагали друг другу заряженный конденсатор! Убить, конечно, не убьет, но удар получается достаточно чувствительный.
Но самое страшное даже не в этом: ну, подумаешь, чуть щипнуло. Если сразу после выключения прозвонить электролитический конденсатор мультиметром, то вполне возможно пойти в магазин за новым.
Когда такое измерение предвидится, конденсатор нужно разрядить, хотя бы пинцетом. Но лучше это сделать с помощью резистора сопротивлением в несколько десятков КОм. В противном случае разряд сопровождается кучей искр и достаточно громким щелчком, да и для конденсатора такое КЗ не очень полезно.
Если же в двух словах, то это трансформатор с двумя обмотками на 220В, мощностью 100…200Вт (зависит от мощности ремонтируемого ИБП), электрическая схема показана на рисунке 4.
Рис.4. Трансформатор безопасности
Левая по схеме обмотка включается в сеть, к правой обмотке через лампочку подключается неисправный импульсный блок питания. Самое главное при таком включении это то, что ОДНОЙ рукой прикасаться к любому концу вторичной обмотки можно безбоязненно, равно как и ко всем элементом первичной цепи блока питания.
О роли лампочки и ее мощности
Чаще всего ремонт импульсного блока питания выполняется без развязывающего трансформатора, но в качестве дополнительной меры безопасности включение блока производится через лампочку мощностью 60…150Вт. По поведению лампочки можно, в общем, судить о состоянии блока питания. Конечно, такое включение не обеспечит гальванической развязки от сети, трогать руками не рекомендуется, но от дыма и взрывов вполне может защитить.
Если при включении в сеть лампочка зажигается в полный накал, то следует искать неисправность в первичной цепи. Как правило, это пробитый силовой транзистор или выпрямительный мост. При нормальной работе блока питания лампочка сначала вспыхивает достаточно ярко (заряд конденсаторов), а потом нить накала продолжает слабо светиться.
Насчет этой лампочки существует несколько мнений. Кто-то говорит, что она не помогает избавиться от непредвиденных ситуаций, а кто-то считает, что намного снижается риск спалить только что запаянный транзистор. Будем придерживаться этой точки зрения, и лампочку для ремонта использовать.
О разборных и неразборных корпусах
Чаще всего импульсные блоки питания выполняются в корпусах. Достаточно вспомнить компьютерные блоки питания, различные адаптеры, включаемые в розетку, зарядные устройства для ноутбуков, мобильных телефонов и т.п.
В случае компьютерных блоков питания все достаточно просто. Из металлического корпуса выкручиваются несколько винтиков, снимается металлическая же крышка и, пожалуйста, вся плата с деталями уже в руках.
Если корпус пластмассовый, то следует поискать на обратной стороне, где находится сетевая вилка, маленькие шурупчики. Тогда все просто и понятно, отвернул и снял крышку. В этом случае можно сказать, что просто повезло.
На самом деле это единственный способ для разборки пластиковых клееных корпусов. Вот только колотить надо аккуратно и не очень фанатично: под действием ударов по корпусу могут оборваться дорожки, ведущие к массивным деталям, например, трансформаторам или дросселям.
Помогает также вставленный в шов нож, и легкое постукивание по нему все тем же молотком. Правда, после сборки остаются следы этого вмешательства. Но пусть уж будут незначительные следы на корпусе, зато не придется покупать новый блок.
Как найти схему
Если в прежние времена практически ко всем устройствам отечественного производства прилагались принципиальные электрические схемы, то современные иностранные производители электроники делиться своими секретами не хотят. Вся электронная техника комплектуется лишь руководством пользователя, где показывается, какие надо нажимать кнопки. Принципиальные схемы к пользовательскому руководству не прилагаются.
Предполагается, что устройство будет работать вечно или ремонт будет производиться в авторизованных сервисных центрах, где имеются руководства по ремонту, именуемые сервис мануалами (service manual). Сервисные центры не имеют права делиться со всеми желающими этой документацией, но, хвала интернету, на многие устройства эти сервис мануалы находить удается. Иногда это может получиться безвозмездно, то есть, даром, а иногда нужные сведения можно получить за незначительную сумму.
Но даже если нужную схему найти не удалось, отчаиваться не стоит, тем более при ремонте блоков питания. Практически все становится понятно при внимательном рассмотрении платы. Вот этот мощный транзистор — не что иное как выходной ключ, а эта микросхема — ШИМ контроллер.
Даташиты содержат весьма полезную информацию. Если это микросхема ШИМ контроллера, то можно определить, где какие выводы, какие на них приходят сигналы. Тут же можно найти внутреннее устройство контроллера и типовую схему включения, что очень помогает разобраться с конкретной схемой.
Несколько сложнее найти даташиты на малогабаритные компоненты SMD. Полная маркировка на маленьком корпусе не помещается, вместо нее на корпусе ставится кодовое обозначение из нескольких (три, четыре) букв и цифр. По этому коду с помощью таблиц или специальных программ, добытых опять-таки в интернете, удается, правда не всегда, найти справочные данные неведомого элемента.
Измерительные приборы и инструмент
Для ремонта импульсных блоков питания потребуется тот инструмент, который должен быть у каждого радиолюбителя. В первую очередь это несколько отверток, кусачки-бокорезы, пинцет, иногда пассатижи и даже упомянутый выше молоток. Это для слесарно-монтажных работ.
Для паяльных работ, конечно же, понадобится паяльник, лучше несколько, различной мощности и габаритов. Вполне подойдет обычный паяльник мощностью 25…40Вт, но лучше, если это будет современный паяльник с терморегулятором и стабилизацией температуры.
Для отпаивания многовыводных деталей хорошо иметь под руками если не супердорогую паяльную станцию, то хотя бы простенький недорогой паяльный фен. Это позволит без особых усилий и разрушения печатных плат выпаивать многовыводные детали.
Неоценимую помощь в ремонте импульсных блоков питания может оказать осциллограф. Тут тоже вполне возможно воспользоваться стареньким, даже не очень широкополосным электронно-лучевым осциллографом. Если конечно есть возможность приобрести современный цифровой осциллограф, то это еще лучше. Но, как показывает практика, при ремонте импульсных блоков питания можно обойтись и без осциллографа.
Поиск неисправностей
Импульсные блоки питания выходят из строя намного чаще, чем другие узлы электронной аппаратуры. В первую очередь сказывается то, что присутствует высокое сетевое напряжение, которое после выпрямления и фильтрации становится еще выше. Поэтому силовые ключи и весь инверторный каскад работают в очень тяжелом режиме, как электрическом, так и тепловом. Чаще всего неисправности кроются именно в первичной цепи.
Неисправности можно разделить на два типа. В первом случае отказ импульсного блока питания сопровождается дымом, взрывами, разрушением и обугливанием деталей, иногда дорожек печатной платы.
Казалось бы, что вариант простейший, достаточно только поменять сгоревшие детали, восстановить дорожки, и все заработает. Но при попытке определить тип микросхемы или транзистора выясняется, что вместе с корпусом улетучилась и маркировка детали. Что тут было, без схемы, которой чаще под рукой нет, узнать невозможно. Иногда ремонт на этой стадии и заканчивается.
Второй тип неисправности тихий, как говорил Лёлик, без шума и пыли. Просто бесследно пропали выходные напряжения. Если этот импульсный блок питания представляет собой простой сетевой адаптер вроде зарядника для сотового или ноутбука, то в первую очередь следует проверить исправность выходного шнура.
Чаще всего происходит обрыв либо около выходного разъема, либо у выхода из корпуса. Если блок включается в сеть при помощи шнура с вилкой, то в первую очередь следует убедиться в его исправности.
После проверки этих простейших цепей уже можно лезть в дебри. В качестве этих дебрей возьмем схему блока питания 19-дюймового монитора LG_flatron_L1919s. Собственно неисправность была достаточно простой: вчера включался, а сегодня не включается.
При кажущейся серьезности устройства — как-никак монитор, схема блока питания достаточно проста и наглядна.
Описание схемы и рекомендации по ремонту
После вскрытия монитора было обнаружено несколько вздутых электролитических конденсаторов (C202, C206, C207) на выходе блока питания. В таком случае лучше поменять сразу все конденсаторы, всего шесть штук. Стоимость этих деталей копеечная, поэтому не стоит ждать, когда они тоже вспучатся. После такой замены монитор заработал. Кстати, такая неисправность у мониторов LG достаточно частая.
Вспученные конденсаторы вызывали срабатывание схемы защиты, о работе которой будет рассказано чуть позже. Если после замены конденсаторов блок питания не заработал, придется искать другие причины. Для этого рассмотрим схему более подробно.
Рис 5. Блок питания монитора LG_flatron_L1919s (для увеличения нажмите на рисунок)
Сетевой фильтр и выпрямитель
Сетевое напряжение через входной разъем SC101, предохранитель F101, фильтр LF101 поступает на выпрямительный мост BD101. Выпрямленное напряжение через термистор TH101 поступает на сглаживающий конденсатор C101. На этом конденсаторе получается постоянное напряжение 310В, которое поступает на инвертор.
Если это напряжение отсутствует или намного меньше указанной величины, то следует проверить сетевой предохранитель F101, фильтр LF101, выпрямительный мост BD101, конденсатор C101, и термистор TH101. Все указанные детали легко проверить с помощью мультиметра. Если возникает подозрение на конденсатор C101, то лучше поменять его на заведомо исправный.
Кстати, сетевой предохранитель просто так не сгорает. В большинстве случаев его замена не приводит к восстановлению нормальной работы импульсного блока питания. Поэтому следует искать другие причины, приводящие к перегоранию предохранителя.
Инвертор
Инвертор выполнен по однотактной схеме. В качестве задающего генератора используется микросхема ШИМ-контроллера U101 к выходу которой подключен силовой транзистор Q101. К стоку этого транзистора через дроссель FB101 подключена первичная обмотка трансформатора T101 (выводы 3-5).
Дополнительная обмотка 1-2 с выпрямителем R111, D102, C103 используется для питания ШИМ контроллера U101 в установившемся режиме работы блока питания. Запуск ШИМ контроллера при включении производится резистором R108.
Выходные напряжения
Блок питания вырабатывает два напряжения: 12В/2А для питания инвертора ламп подсветки и 5В/2А для питания логической части монитора.
От обмотки 10-7 трансформатора T101 через диодную сборку D202 и фильтр C204, L202, C205 получается напряжение 5В/2А.
Защита от перегрузок
В исток транзистора Q101 включен резистор R109. Это датчик тока, который через резистор R104 подключен к выводу 2 микросхемы U101.
При перегрузке на выходе ток через транзистор Q101 увеличивается, что приводит к падению напряжения на резисторе R109, которое через резистор R104 подается на вывод 2CS/FB микросхемы U101 и контроллер перестает вырабатывать управляющие импульсы (вывод 6OUT). Поэтому напряжения на выходе блока питания пропадают.
Именно эта защита и срабатывала при вспученных электролитических конденсаторах, о которых было упомянуто выше.
Уровень срабатывания защиты 0,9В. Этот уровень задается источником образцового напряжения внутри микросхемы. Параллельно резистору R109 подключен стабилитрон ZD101 с напряжением стабилизации 3,3В, что обеспечивает защиту входа 2CS/FB от повышенного напряжения.
К выводу 2CS/FB через делитель R117, R118, R107 подается напряжение 310В с конденсатора С101, что обеспечивает срабатывание защиты от повышенного напряжения сети. Допустимый диапазон сетевого напряжения, при котором монитор нормально работает находится в диапазоне 90…240В.
Стабилизация выходных напряжений
Выполнена на регулируемом стабилитроне U201 типа A431. Выходное напряжение 12В/2А через делитель R204, R206 (оба резистора с допуском 1%) подается на управляющий вход R стабилитрона U201. Как только выходное напряжение становится равным 12В, стабилитрон открывается и засвечивается светодиод оптрона PC201.
В результате открывается транзистор оптрона, (выводы 4, 3) и напряжение питания контроллера через резистор R102 подается на вывод 2CS/FB. Импульсы на выводе 6OUT пропадают, и напряжение на выходе 12В/2А начинает падать.
Напряжение на управляющем входе R стабилитрона U201 падает ниже опорного напряжения (2,5В), стабилитрон запирается и выключает оптрон PC201. На выходе 6OUT появляются импульсы, напряжение 12В/2А начинает возрастать и цикл стабилизации повторяется снова. Подобным образом цепь стабилизации построена во многих импульсных блоков питания, например, в компьютерных.
Таким образом, получается, что на вход 2CS/FB контроллера с помощью проводного ИЛИ подключены сразу три сигнала: защита от перегрузок, защита от превышения напряжения сети и выход схемы стабилизатора выходных напряжений.
Вот тут как раз уместно вспомнить, как можно проверить работу этой петли стабилизации. Для этого достаточно при ВЫКЛЮЧЕННОМ. из сети блоке питания подать на выход 12В/2А напряжение от регулируемого блока питания.
На выход оптрона PC201 зацепиться лучше стрелочным тестером в режиме измерения сопротивлений. Пока напряжение на выходе регулируемого источника ниже 12В, сопротивление на выходе оптрона будет большим.
Теперь будем увеличивать напряжение. Как только напряжение станет больше 12В, стрелка прибора резко упадет в сторону уменьшения сопротивления. Это говорит о том, что стабилитрон U201 и оптопара PC201 исправны. Следовательно, стабилизация выходных напряжений должна работать нормально.
В точности так же можно проверить работу петли стабилизации у компьютерных импульсных блоков питания. Главное разобраться в том, к какому напряжению подключен стабилитрон.
Если все указанные проверки прошли удачно, а блок питания не запускается, то следует проверить транзистор Q101, выпаяв его из платы. При исправном транзисторе виновата, скорей всего, микросхема U101 или ее обвязка. В первую очередь это электролитический конденсатор C105, который лучше всего проверить заменой на заведомо исправный.
Читайте также: