Телевизор люминесцирующий тепловой не является источником света
Ещё в глубокой древности учёные интересовались природой света. Что такое свет? Почему одни предметы цветные, а другие белые или чёрные?
Опытным путём было установлено, что свет нагревает тела, на которые он падает. Следовательно, он передаёт этим телам энергию. Вам уже известно, что одним из видов теплопередачи является излучение. Свет — это излучение, но лишь та его часть, которая воспринимается глазом. В этой связи свет называют видимым излучением.
Поскольку свет — это излучение, то ему присущи все особенности этого вида теплопередачи. Это значит, что перенос энергии может осуществляться в вакууме, а энергия излучения частично поглощается телами, на которые оно падает. Вследствие этого тела нагреваются.
Тела, от которых исходит свет, являются источниками света. Источники света подразделяются на естественные и искусственные.
Естественные источники света — это Солнце, звёзды, атмосферные разряды, а также светящиеся объекты животного и растительного мира. Это могут быть светлячки, гнилушки и пр.
Естественные источники света:
а - светлячок; б - медуза
Искусственные источники света, в зависимости от того, какой процесс лежит в основе получения излучения, разделяют на тепловые и люминесцирующие.
К тепловым относят электрические лампочки, пламя газовой горелки, свечи и др.
Искусственные источники света:
а — свеча; б — люминесцентная лампа
Люминесцирующими источниками являются люминесцентные и газосветовые лампы.
Мы видим не только источники света, но и тела, которые не являются источниками света, — книгу, ручку, дома, деревья и др. Эти предметы мы видим только тогда, когда они освещены. Излучение, идущее от источника света, попав на предмет, меняет своё направление и попадает в глаз.
На практике все источники света имеют размеры. При изучении световых явлений мы будем пользоваться понятием точечный источник света.
Громадные звёзды, во много раз превосходящие Солнце, воспринимаются нами как точечные источники света, так как находятся на колоссальном расстоянии от Земли.
Ещё одно понятие, которым мы будем пользоваться в этом разделе, — световой луч.
Если между глазом и каким-нибудь источником света поместить непрозрачный предмет, то источник света мы не увидим. Объясняется это тем, что в однородной среде свет распространяется прямолинейно.
Прямолинейное распространение света — факт, установленный в глубокой древности. Об этом писал ещё основатель геометрии Евклид (300 лет до нашей эры).
Звездное небо
Древние египтяне использовали закон прямолинейного распространения света для установления колонн по прямой линии. Колонны располагались так, чтобы из-за ближайшей к глазу колонны не были видны все остальные (рис. 122).
Рис. 122. Применение закона прямолинейного распространения света
Прямолинейностью распространения света в однородной среде объясняется образование тени и полутени. Тени людей, деревьев, зданий и других предметов хорошо наблюдаются на Земле в солнечный день.
На рисунке 123 показана тень, полученная на экране при освещении точечным источником света S непрозрачного шара А. Поскольку шар непрозрачен, то он не пропускает свет, падающий на него. В результате на экране образуется тень.
Рис. 123. Получение тени
Такую тень можно получить в тёмной комнате, освещая шар карманным фонарём. Если провести прямую через точки S и А (см. рис. 123), то на ней будет лежать и точка В. Прямая SB является лучом света, который касается шара в точке А. Если бы свет распространялся не прямолинейно, то тень могла бы не образоваться. Такую чёткую тень мы получили потому, что расстояние между источником света и экраном намного больше, чем размеры лампочки.
Теперь возьмём большую лампу, размеры которой будут сравнимы с расстоянием до экрана (рис. 124). Вокруг тени на экране образуется частично освещенное пространство — полутень.
Рис. 124. Получение полутени
Описанный выше опыт также подтверждает прямолинейное распространение света. Поскольку в данном случае источник света состоит из множества точек и каждая из них испускает лучи, то на экране имеются области, в которые свет от одних точек попадает, а от других нет. Там и образуется полутень. Это области А и Б.
Часть поверхности экрана окажется совершенно неосвещённой. Это центральная область экрана. Здесь наблюдается полная тень.
Образованием тени при падении света на непрозрачный предмет объясняются такие явления, как затмения Солнца и Луны.
При движении вокруг Земли Луна может оказаться между Землёй и Солнцем или Земля — между Луной и Солнцем. В этих случаях наблюдаются солнечные или лунные затмения.
Во время лунного затмения Луна попадает в тень, отбрасываемую Землёй (рис. 125).
Рис. 125. Лунное затмение
Во время солнечного затмения (рис. 126) тень от Луны падает на Землю.
Рис. 126. Солнечное затмение
В тех местах Земли, куда упала тень, будет наблюдаться полное затмение Солнца. В местах полутени только часть Солнца будет закрыта Луной, т. е. произойдёт частное затмение Солнца. В остальных местах на Земле затмение наблюдаться не будет.
Поскольку движения Земли и Луны хорошо изучены, то затмения предсказываются на много лет вперёд. Учёные пользуются каждым затмением для разнообразных научных наблюдений и измерений. Полное солнечное затмение даёт возможность наблюдать внешнюю часть атмосферы Солнца (солнечную корону, рис. 127). В обычных условиях солнечная корона не видна из-за ослепительного блеска поверхности Солнца.
При разговоре об источнике света, мы подразумеваем объект, излучающий электромагнитное излучение в видимой части спектра. Элементарной частицей света является фотон. Именно отсюда и идет двойственная природа света – корпускулярно-волновой дуализм. Фотон может вести себя подобно частице, а может и подобно излучению. Это зависит от конкретных физических условий. Видимый диапазон находится в пределах от 360 нм до 830 нм. Световое излучение возникает из-за различных физических процессов, происходящих в атомах. Если длина волны находится в диапазоне – мы видим свет. От длины волны зависит цвет.
Если атом получает энергию, то он переходит на более высокий энергетический уровень. Это возбужденное состояние. Он неустойчиво. Электроны стремятся вернуться на более низкие энергетические уровни. В результате этого и рождается фотон. А это и есть свет.
Если все атомы испускают фотоны одновременно, то это уже лазерное излучение. Оно когерентно. Луч лазера не обязательно должен быть видимым. Причем оно существует и в природе. В 1981 году лазерное излучение было обнаружено в атмосфере Марса и Венера. Длина волны составила 10 мкм. На такой длине волны работают лазеры с углекислым газом в качестве рабочего тела.
Какие бывают источники света
Все источники света делятся на естественные (природные) и искусственные (созданные руками человека). К природным источникам можно отнести Солнце, светящийся планктон. К искусственным – различные виды ламп, осветительные диоды и т.д.
Основные параметры и единицы измерения источников света
Световое излучение характеризуется многими параметрами:
- Яркость (L). Измеряется в кд/м 2 – кандела на квадратный метр. Это основной фактор светоощущения.
- Освещенность (E). Измеряется в лк – люкс. 1лк равнозначен потоку излучения в 1 люмен, равномерно распределенному по площади 1м 2 .
- Световой поток (Ф). Измеряется в лм – люмен. Характеризует мощность излучения, оценивается по световому ощущению глазом человека. В системе единиц СИ обозначается именно буквой Ф и рассчитывается по формуле:
- Сила света (I). Измеряется в кд – кандела. Характеризует интенсивность светового потока. Рассчитывается по формуле:
для изотропного источника:
для не изотропного источника:
- Световая отдача. Измеряется в лм/Вт – люмен на Ватт. Эта величина может характеризовать экономичность искусственного источника света, грубо говоря, сколько электрической мощности преобразуется в свет.
Для искусственных источников света важна цветопередача. Цвета у предметов будут различаться лучше, если он освещается сплошным равномерным спектром. В идеале чем ближе излучение ламп к солнечному свету, тем она лучше и дороже. При индексе цветопередачи свыше 90 предметы будут казаться необычайно насыщенными.
При малом индексе будет затруднительно определить цвет предмета, однако контуры будут видны. От яркости это практически не зависит.
Виды и классификации источников света
Все искусственные электрические световые излучатели можно разделить по физическим принципам работы:
Тепловые источники света. Это различные классические лампы накаливания. Принцип действия основан на разогреве рабочего тела (обычно – проволочная нить, изготовленная из вольфрама) до температур, при которых появляется и ИК-излучение, и видимый свет. Они обладают достаточно хорошей цветопередачей, но крайне низким КПД. Не более трех процентов. Энергия расходуется на разогрев и поддержание рабочей температуры вольфрамовой проволоки. Срок службы редко превышает две тысячи часов. На работоспособность внешняя среда не оказывает существенного влияния. Сейчас уже признаны морально устаревшими, но до сих пор производятся. Цена низка. Сюда ж можно отнести и галогеновые лампы, и угольные дуги, и инфракрасные излучатели. Им не требуется дополнительных устройств для запуска.
Подробнее о лампе накаливания-тут
Люминесцентные. Сюда можно отнести все газоразрядные лампы. Это и лампы с тлеющим разрядом (в результате разряда в парах ртути возникает свечение люминофорного покрытия), ртутные дуговые осветители, лампы с дуговым разрядом (низкого и высокого давления). Этому типу ламп требуется специальная схема для запуска. Например, у лампы дневного света напряжение горения ниже напряжения зажигания. Т.е. недостаточно просто подать напряжение. Этот тип освещения имеет уже более чем полувековую историю. До сих пор имеется востребованность. Примечательно, что многим осветителям данного типа можно придать практически любую форму колбы. Дизайнерам есть поле для творчества. Энергопотребление существенно ниже, чем у лам накаливания. Срок службы продолжителен.
Подробнее о люминесцентных лампы вы можете прочесть- тут
Смешанного излучения. В основу положена дуга высокой интенсивности. Это дорогие специализированные излучатели, сочетающие одновременно и тепловой физический принцип, и мощную электрическую дугу. В основном они применяются в прожекторных установках (например, авиационных и корабельных). В производстве весьма сложны. В свободной продаже отсутствуют. Требуется сложная схема на мощных элементах, в ее задачу входит розжиг и поддержание разряда. Среда эксплуатации накладывает свои сложности на инженерные решения. Энергопотребление высокое.
Светодиодные. Сюда можно отнести все источники света, построенные на светодиодах. Принцип действия заключается в появлении светового потока в точке соприкосновения двух разных материалов. Через них пропускается постоянный ток. Причем оба материала – полупроводники. Они пропускают ток в одну сторону. Обратный ток тоже есть, но он ничтожно мал, что им можно пренебречь. Экспериментальным путем были получены материалы, способные испускать фотоны при смене электроном энергетического уровня. Первые светодиоды имели малую яркость и ограниченный набор цветов. Поэтому использовались только в основном как индикаторы. Сейчас синтезированы материалы, которые позволяют дать большую яркость, охватить почти весь спектр. Но тем не менее в определенных участках спектра может наблюдаться завал, либо преобладание свечения. Современные светодиоды успешно применяются в качестве осветительных приборов, характеризуются наибольшей энергоэффективностью (потребляемая мощность очень низка в сравнении с другими источниками света) и длительным сроком службы. Их относят к холодным источникам света. В большинстве случаев они все низковольтные, не более 12 В нужно для диода.
К сожалению, большинство не совсем честных производителей преднамеренно снижает срок службы таких осветителей, за счет повышения номинального тока. Работа на предельном токе весьма негативно сказывается на сроке службы осветительного диода.
В составе ламп всегда находится схема – блок питания (или драйвер). Его задача строго поддерживать параметры питания – напряжение и силу тока. Применительно к автомобилестроению, светодиоды показывают хорошие результаты, но просто менять галогеновую лампу на светодиод не стоит, без драйвера срок службы будет минимален в виду нестабильности питания в бортовой сети автомобиля.
Более подробная информация о led лампах-тут
Лазеры. Оптический квантовый генератор. Лазер расшифровывается light amplification by stimulated emission of radiation. В переводе с английского – усиление света с помощью вынужденного излучения. Смысл процесса состоит в том, что атом рабочего тела в возбужденном состоянии может излучит фотон под действием другого фотона. Поглощения в этом случае не произойдет. При этом фотоны когерентны. Фотон излученный – это точная копия фотона, который вынудил его появление. Это и есть явление усиления света. Идентичность фотонов обуславливает и монохроматичность излучения. Лазер не используется в качестве осветителя. Он активно используется для считывания компакт-диска до лазерной резки металлов. Применяется он и в медицине, в качестве лучевого скальпеля. А ведь это тоже свет! В качестве рабочего тела может применятся углекислый газ, моно-галогениды, и так далее.
Вполне возможно, что со временем появятся источники света, основанные и на других физических принципах.
Нас всегда и везде окружает свет, так как это неотъемлемая часть жизни. Огонь, солнце, луна или настольная лампа – это все относится к данной категории. Сейчас нашей задачей будет рассмотреть естественные и искусственные источники света.
Раньше у людей не было хитроумных будильников и сотовых телефонов, которые помогают нам встать тогда, когда это необходимо. Эту функцию выполняло Солнце. Оно встало – люди начинают работу, село – ложатся отдыхать. Но, со временем, мы научились добывать искусственные источники света, мы поговорим о них в статье более подробно. Начать необходимо с самого главного понятия.
В общем смысле – это волна (электромагнитная) которая воспринимается органами зрения человека. Но все же есть рамки, которые человек видит (от 380 до 780 нм). До этого идет ультрафиолетовое излучение. Хоть мы его не видим, но наша кожа его воспринимает (загар), после этих рамок идет инфракрасное излучение, некоторые живые организмы его видят, а человеком он воспринимается как тепло.
Теперь разберем такой вопрос: почему свет бывает разного цвета? Все зависит от длины волны, например, фиолетовый цвет образуется пучком волн длины 380 нм, зеленый – 500 нм, а красный – 625. Вообще, основных цветов 7, которые мы можем наблюдать во время такого явления, как радуга. Но многие, особенно искусственные источники света, излучают волны белого цвета. Даже если взять лампочку, которая висит у вас в комнате, с вероятностью 90 процентов, она освещает именно белым светом. Так вот, он получается за счет смешения всех основных цветов:
- Красного.
- Оранжевого.
- Желтого.
- Зеленого.
- Голубого.
- Синий.
- Фиолетовый.
Их очень легко запомнить, многие используют такие строки: каждый охотник желает знать, где сидит фазан. А первые буквы каждого слова и обозначают цвет, кстати, в радуге они располагаются точно в таком порядке. После того как мы разобрались с самим понятием, предлагаем перейти к вопросу "Источники света естественные и искусственные". Мы подробно разберем каждый вид.
Источники света
Не существует и в наше время ни одной отрасли хозяйства, которая в своем производстве не использовала бы искусственные источники света. Когда же человек впервые занялся производством искусственного освещения? Это было в далеком девятнадцатом веке, а причиной развития отрасли служило изобретение ламп дуговых и накаливания.
Источники света естественные и искусственные – это тела, которые способны излучать свет, а точнее, преобразовывать одну энергию в другую. Например, электрический ток в электромагнитную волну. Действующим по этому принципу искусственным источником света является электрическая лампочка, которая так распространена в повседневной жизни.
Мы говорили в прошлом разделе о том, что не весь свет воспринимается нашими органами зрения, но тем не менее источником света является и тот объект, который излучает волны, невидимые нашему глазу.
Классификация
Начнем с того, что все они делятся на два больших класса:
- Искусственные источники света (светильники, горелки, свечи и так далее).
- Естественные (свет Солнца, Луны, сияние звезд и прочее).
При этом каждый класс, в свою очередь, делится на группы и подгруппы. Начнем с первых, искусственные источники различают:
- Тепловые.
- Люминесцентные.
- Светодиодные.
Более подробную классификацию обязательно рассмотрим далее. Во второй класс входят следующие:
- Солнце.
- Межзвездный газ и сами звезды.
- Атмосферные разряды.
- Биолюминесценция.
Естественные источники света
Все объекты, излучающие свет природного происхождения являются натуральными источниками. При этом испускание света может являться как основным, так и вторичным свойством. Если сравнивать природные и искусственные источники света, примеры которых мы уже рассмотрели, то их основное отличие заключается в том, что вторые излучают видимый нашему глазу свет благодаря человеку, а точнее, производству.
В первую очередь, что приходит на ум каждому, природным источником является Солнце, являющееся источником света и тепла для всей нашей планеты. Также естественными источниками являются звезды и кометы, электрические разряды (например, молния во время грозы), свечение живых организмов, этот процесс также называют биолюминесценцией (примером являются светлячки, некоторые водные организмы, обитающие на дне и так далее). Природные источники света играют очень важную роль как для человека, так и для других живых организмов.
Виды искусственных источников света
Зачем же нам они нужны? Представьте, как изменится наша жизнь без всем привычных ламп, ночников и тому подобных приборов. В чем заключается назначение искусственного света? В создании благоприятной обстановки и условий видимости для человека, тем самым поддержание здоровья и хорошего самочувствия, уменьшение утомляемости органов зрения.
Искусственные источники света можно разделить на две, довольно обширные, группы:
К примеру, о первой группе, все производственные участки всегда освещаются однотипными лампами, которые расположены на одинаковом расстоянии друг от друга и мощность ламп одинакова. Если говорить о второй группе, то тогда к вышеперечисленным добавляются еще несколько светильников, которые сильнее выделяют какую-либо рабочую поверхность, например, стол или станок. Эти дополнительные источники называются местным освещением. При этом, если использовать только местное освещение, то это будет сильно влиять на утомляемость, а следствием будет снижение работоспособности, кроме этого, возможны аварии и несчастные случаи на производстве.
Рабочее, дежурное и аварийное освещение
Если рассматривать классификацию искусственных источников с точки зрения функционального назначения, то можно выделить следующие группы:
- Рабочее;
- Дежурное;
- Аварийное.
Теперь немного подробнее о каждом виде. Рабочее освещение есть везде, где это необходимо для поддержания работоспособности людей или для освещения пути для идущего транспорта. Второй класс освещения начинает функционировать после рабочего времени. Последняя группа нужна для поддержания работы производства в случае отключения основного (рабочего) источника света, оно минимально, но способно временно заменить рабочее освещение.
Лампа накаливания
В наше время для освещения производственных участков используют лампы накаливания следующих видов:
И что же все-таки такое лампа накаливания? Первое, на что стоит обратить свое внимание, – то, что она является электрическим источником, а свет мы видим благодаря раскаленному телу, называемому телом накала. Ранее (в девятнадцатом веке) тело накала изготавливалось из такого вещества, как вольфрам, или из сплава на его основе. Сейчас же его изготавливают из более доступного углеродного волокна.
Типы, преимущества и недостатки
Сейчас промышленные предприятия выпускают большое число разнообразных ламп накаливания, среди которых наиболее популярны:
- Вакуумные.
- Лампы с криптоновым наполнением.
- Биспиральные.
- Наполненные смесью газов аргона и азота.
Теперь разберем последний вопрос, который касается ламп накаливания, а именно преимущества и недостатки. Плюсы: они недорогие в производстве, имеют небольшой размер, если их включить, то не нужно ждать пока разгорится, в производстве ламп накаливания не используется токсичные компоненты, они работают как на постоянном, так и на переменном токе, возможно использование регулятора яркости, хорошая бесперебойная работа даже при очень низких температурах. Несмотря на такое большое количество преимуществ, есть все-таки и минусы: они не сильно ярко светят, свет имеет желтоватый отлив, сильно нагреваются во время работы, что ведет иногда к пожарам при соприкосновении с текстильным материалом.
Газоразрядная лампа
Все они делятся на лампы высокого и низкого давления, большинство из них работает на парах ртути. Именно они вытеснили лампы накаливания, к которым мы так сильно привыкли, но газоразрядные лампы имеют просто массы минусов, один из которых уже нами сказан, а именно возможность отравится ртутью, также сюда можем отнести шумы, мерцание, что ведет к более быстрой утомляемости, линейный спектр излучения и так далее.
Такие лампы могут нам служить до двадцати тысяч часов, конечно, если колба цела, а свет, излучаемый ей, имеет либо теплый, либо нейтрально белый цвет.
Использование искусственных источников света довольно распространено, например, газоразрядные лампы очень часто и по сей день используются в магазинах или офисах, в декоративном или художественном освещении, кстати сказать, профессиональное световое оборудование, также не обошлось без газоразрядной лампы.
Сейчас производство газоразрядных ламп очень распространено, что и влечет за собой большое количество видов, один из самых популярных мы рассмотрим прямо сейчас.
Люминесцентная лампа
Как уже говорилось это один из видов газоразрядной лампы. Стоит отметить то, что их часто используют для основного источника света, люминесцентные лампы намного мощнее ламп накаливания и при этом они потребляют одинаково энергии. Раз мы уже начали сравнение с лампами накаливания, то будет уместным и следующий факт – срок службы люминесцентных может превышать в двадцать раз срок ламп накаливания.
Что касается их разновидностей, то чаще используют ртутную лампу, напоминающую трубку, а внутри и находятся пары ртути. Это очень экономичный источник света, который распространен в общественных заведениях (школах, больницах, офисах и так далее).
Источники света естественные и искусственные, примеры которых мы рассмотрели, просто необходимы для человека и других живых существ нашей планеты. Естественные источники не дают нам потеряться во времени, а искусственные заботятся о нашем здоровье и благополучии на предприятиях, уменьшая процент аварий и несчастных случаев.
Телевизор
не является источником света
искусственный
естественный
тепловой
не является источником света
люминесцирующий
Звезда
не является источником света
естественный
искусственный
не является источником света
люминесцирующий
тепловой
Костёр
не является источником света
искусственный
естественный
не является источником света
тепловой
люминесцирующий
Мобильный телефон
искусственный
естественный
не является источником света
люминесцирующий
не является источником света
тепловой
Ответы
Мощность р = i*u = u^2/rобщее теперь надо найти r ощее а) в случае параллельного соединения 1/r = 1/50+1/100 = 3/100 => r = 100/3 б) последовательно r = 50+100 = 150 рпар/рпос = rпос/rпар = 150*3/100= 4,5 мощность параллельного соединения в 4,5 раза больше последовтельгного
к = 3900*800*(37-4) = 102960000
н = 102,96*10^6/4200*30 = 0,817*10^3
ответ 817 кг и 102,96мдж
1 г) правовые нормы - УК, КоАП и еще иные правовые акты
8 а)энергетической сфере (бензоколонка Европы, Китая и Японии)
17 а) нет, авторитарное и тоталитарное государство может характеризоваться республиканской формой правления примеры - Китайская Народная Республика или Северная Корея, которые ну никак не демократические, и наоборот монархическая Швеция, которая занимает первые позиции в индексе демократии
17. Является ли государство с республиканской формой правления обязательно демократическим государством? а) нет, авторитарное и тоталитарное государство может характеризоваться республиканской формой правления
15 а) социальное государство , которое управляется недобитыми леваками, как во Франции или в Швеции
1. Социальные нормы, которые закрепляются в законах, издаваемых государством и четко описывают границы поведения и наказания за нарушение закона - это …
2. 2. Процесс постепенных изменений в обществе, не приводящих к качественно новому социальному строю – это.
15. Экономический доход в пользу малоимущих слоев населения в большей степени склонно перераспределять: а) социальное государство
Читайте также: