Описать телевизор как предмет
Тем не менее, вещи, которые я буду рассказывать в этом цикле статей, могут вполне пригодиться в нашей с вами практической деятельности.
Итак, сейчас мы разберемся, как же происходит передача видеосигнала. Рассматривать мы будем родную до боли систему SECAM, потому что в нашей стране ( а именно - Российской Федерации) официально принята именно эта система телевидения. Впрочем - обо всем по порядку.
Как работает телевизор?
Телевизор работает по 24 часа в сутки 7 дней в неделю. Это понятно.
У него есть экран - 1шт и динамик - от 1 до бесконечности, в зависимости от "навороченности" агрегата. Еще у него есть антенна и пульт управления. Но нас сейчас интересует только экран. А переводя с языка домохозяек на язык мудрых котов - кинескоп (электронно-лучевая трубка - ЭЛТ).
Я прекрасно понимаю, что в наш век плазмы и жидкого кристалла, электронно-лучевой кинескоп кажется кому-то пережитком старины. Однако, понять принцип работы телевизора, проще всего именно разбираясь с ЭЛТ.
Электронно-лучевая трубка
Шо це таке. Причем здесь электроны? Причем здесь лучи?
Дело в том, что картинка на экране рисуется при помощи электронного луча. Электронный луч очень похож на световой. Но световой луч состоит из фотонов, а электронный - из электронов, и мы его увидеть не можем. Куча электронов несется с бешеной скоростью по прямой от пункта А - к пункту Б. Так образуется "луч".
Пункт Б - это анод. Он находится прямо на обратной стороне экрана. Также, экран (с обратной стороны) вымазан специальным веществом - люминофором. При столкновении электрона на бешеной скорости с люминофором, последний испускает видимый свет. Чем быстрее летел электрон до столкновения - тем свет будет ярче. То есть, люминофор - это преобразователь "света" электронного луча в свет, видимый для человеческого глаза.
С пунктом Б разобрались. А что же такое пункт "А"? А - это "электронная пушка". Название страшное. Но страшного в ней ничего нет. Она не предназначена для того, чтобы жестоко расстреливать пришельцев с Марса. Но "стрелять" она все же умеет - электронным лучем в экран.
Как это все устроено?
Вообще, ЭЛТ - это такая большая электронная лампа. Как? Вы не знаете что такое лампа? Ну ладно…
Электронные лампы - это такие же усилительные элементы как и любимые всеми нами транзисторы. Но лампы появились намного раньше их кремниевых "коллег", еще в первой половине прошлого века.
Лампа - это такой стеклянный баллон, из которого откачан воздух.
В самой простой лампе - 4 вывода: катод, анод и два вывода нити накала. Нить накала нужна для того, чтобы разогреть катод. А разогреть катод нужно для того, чтобы с него полетели электроны. А электроны должны полететь затем, чтоб возник электрический ток через лампу. Для этого обычно на нить накала подается напряжение - 6,3 или 12,6 В (в зависимости от типа лампы)
Кроме того, чтобы полетели электроны - нужно высокое напряжение между катодом и анодом. Оно зависит от расстояния между электродами и от мощности лампы. В обычных радиолампах это напряжение составляет несколько сотен вольт, расстояния от катода до анода в таких лампах не превышают нескольких миллиметров.
В кинескопе расстояние от катода, находящегося в электронной пушке до экрана может превышать несколько десятков сантиметров. Соответственно, и напряжение там нужно намного большее - 15…30 кВ.
Такие зверские напряжения создает специальный повышающий трансформатор. Его еще называют строчный трансформатор, поскольку он работает на строчной частоте. Но, об этом - чуть позже.
При ударении электрона об экран, кроме видимого света, "вышибаются" также и другие излучения. В частности - радиоактивное. Вот почему не рекомендуется смотреть телек ближе 1…2 метров от экрана.
Итак, луч получили. И он так красивенько светит аккурат в центр экрана. Но нам-то надо, чтоб он "чертил" по экрану линии. То есть, нужно заставить его отклоняться от центра. И в этом вам помогут… электромагниты. Дело в том, что электронный луч, в отличие от светового, очень чувствителен к магнитному полю. Поэтому то он и используется в ЭЛТ.
Нужно поставить две пары отклоняющих катушек. Одна пара будет отклонять по горизонтали, другая - по вертикали. Умело управляя ими, можно гонять луч по экрану куда угодно.
Вот отсюда мы и начинаем нашу повесть о строчках точках и крючочках…
Повесть о Строчках, Точках и Крючочках
Картинка на экране телевизора образуется в результате того, что луч с бешенной скоростью чертит слева-направо сверху-вниз по экрану. Такой метод последовательной прорисовки изображения называется "развертка".
Поскольку развертка происходит очень быстро - для глаза все точки сливаются в строчки а строчки - в единый кадр.
В системах PAL и SECAM за одну секунду луч успевает пробежать весь экран 50 раз.
В американской системе NTSC - еще больше - аж 60 раз! Вообще говоря, системы PAL и SECAM отличаются лишь в передаче цвета. Все остальное у них - одинаково.
Картинка образуется за счет того, что во время "бега", луч изменяет свою яркость в соответствии с принимаемым видеосигналом. Как происходит управление яркостью?
А очень просто! Дело в том, что кроме рассмотренных электродов - анода и катода, в лампах бывает еще третий электрод - сетка. Сетка - это управляющий электрод. подавая на сетку сравнительно низкое напряжение, можно управлять током, протекающим через лампу. Иными словами, можно управлять интенсивностью потока электронов, "летящих" от катода к аноду.
В ЭЛТ сетка используется для изменения яркости луча.
Подавая на сетку отрицательное напряжение (относительно катода), можно ослабить интенсивность потока электронов в луче, или вообще закрыть "дорогу" для электронов. Это бывает нужно, например, при перемещении луча от конца одной строки к началу другой.
Теперь поговорим поподробнее именно про принципы развертки.
Для начала, стоит запомнить несколько несложных чисел и терминов:
Растр - это одна "строчка", которую рисует луч на экране.
Поле - это все строчки, которые нарисовал луч за один вертикальный проход.
Кадр - это элементарная единица видеоряда. Каждый кадр состоит из двух полей - четного и нечетного.
Это стоит пояснить: изображение на экране телевизора разворачивается с частотой 50 полей в секунду. Однако, телевизионный стандарт равен 25 кадрам в секунду. Поэтому один кадр при передаче разбивается на два поля - четное и нечетное. В четном поле содержатся только четные строчки кадра (2,4,6,8…), в нечетном - только нечетные. Изображение на экране также "рисуется" через строку. Такая развертка называется " чересстрочная развертка ".
Бывает еще "прогрессивная развертка" - когда весь кадр развертывается за один вертикальный ход луча. Она используется в компьютерных мониторах.
Итак, теперь сухие числа. Все приведенные числа справедливы для систем PAL и SECAM.
Кол-во полей в секунде - 50
Кол-во строк в кадре - 625
Количество эффективных строк в кадре - 576
Количество эффективных точек в строке - 720
А эти числа выводятся из вышеприведенных:
Кол-во строк в поле - 312,5
Строчная частота - 15625 Гц
Длительность одной строки - 64 мкС (вместе с обратным ходом луча)
Далее мы поговорим о параметрах видеосигнала и составим схему, синтезирующую импульсы синхронизации.
none Опубликована: 2006 г. 0 1
Вознаградить Я собрал 0 1
Телевизионный приемник — устройство для приема телевизионных сигналов и их преобразования в визуально-звуковые образы.
Телевизор состоит из устройства отображения визуальной информации (кинескопа, жидкокристаллической или плазменной панели); шасси — платы, которая содержит основные электронные блоки телевизора (телетюнер, декодер с усилителем аудио- и видеосигналов и др.), корпуса с расположенными на нем разъемами, кнопками управления и громкоговорителями.
Телевизионные радиосигналы, принятые антенной, подаются на радиочастотный (антенный) вход телевизора. Далее они поступают в радиочастотный модуль, называемый также тюнером, где из них выделяется и усиливается сигнал именно того канала, на который в этот момент настроен телевизор. В тюнере также происходит преобразование радиочастотного сигнала в низкочастотные видео- и аудиосигналы.
Видеосигнал после усиления подается в модуль цветности (только в телевизорах цветного изображения), содержащий декодер цветности, а затем на устройство отображения визуальной информации. Декодер цветности предназначен для декодирования сигналов цветности той или иной системы (PAL, SEC AM, NTSC).
Аудиосоставляющая подается в канал звукового сопровождения, где происходит выделение звукового сигнала и его необходимое усиление. После усиления аудиосигнал подается на громкоговоритель (динамик), преобразующий электрический сигнал в слышимый звук. Если телевизор рассчитан на воспроизведение стерео или многоканального звука, в составе его канала звукового сопровождения имеется соответствующий декодер многоканального звука, который разделяет звуковую составляющую на каналы.
Кинескопы бывают черно-белого изображения и цветного изображения, отличаются они по конструкции.
Экран кинескопа черно-белого изображения изнутри покрыт сплошным слоем люминофора, обладающего свойством светиться белым цветом под воздействием потока электронов. Тонкий электронный луч формируется электронным прожектором, размещенным в горловине кинескопа. Управление электронным лучом осуществляется электромагнитным способом, в результате чего он последовательно в ходе развертки сканирует экран по строкам, вызывая свечение люминофора. Интенсивность (яркость) свечения люминофора в ходе сканирования изменяется в соответствии с электрическим сигналом (видеосигналом), несущим информацию об изображении.
Экран кинескопа цветного изображения изнутри покрыт дискретным слоем люминофоров (в форме кружков или штрихов), светящихся красным, зеленым и синим цветом под действием трех электронных пучков, формируемых тремя электронными прожекторами. Все кинескопы цветного изображения перед экраном имеют цветоделительную теневую маску. Она служит для того, чтобы каждый из трех электронных лучей, одновременно проходящих через многочисленные отверстия маски в ходе сканирования, точно попадал на "свой" люминофор (первый — на зерна люминофора, светящиеся красным цветом, второй — на зерна люминофора, светящиеся зеленым цветом, третий — на зерна люминофора, светящиеся синим цветом).
Каждый электронный луч модулируется "своим" видеосигналом, что соответствует трем составляющим цветного изображения. Поступая на кинескоп, видеосигналы управляют интенсивностью электронных пучков и, следовательно, яркостью свечения люминофоров (красного, зеленого и синего). В результате на экране цветного кинескопа воспроизводятся одновременно 3 одноцветных изображения, создающих в совокупности цветное изображение.
К современным средствам отображения визуальной информации относят жидкокристаллические экраны, проекционные системы, плазменные панели.
В жидкокристаллических телевизорах LCD (Liquid Crystal Display) изображение формируется системой из жидких кристаллов и поляризационых фильтров. С тыльной стороны жидкокристаллическая панель равномерно освещается источником света. Управление ячейками (пикселями) жидких кристаллов осуществляется матрицей электродов, на которую подается управляющее напряжение. Под действием напряжения жидкие кристаллы разворачиваются, образуя активный поляризатор. При изменении степени поляризации светового потока, изменяется его яркость. Если плоскости поляризации жидкокристаллического пикселя и пассивного поляризационного фильтра отличаются на 90°, то через такую систему свет не проходит.
Цветное изображение получается в результате использования матрицы цветных фильтров, которые выделяют из излучения источника белого цвета три основных цвета, комбинация которых дает возможность воспроизвести любой цвет. Жидкокристаллические телевизоры отличаются компактностью, отсутствием геометрических искажений, вредных электромагнитных излучений, малой массой и потребляемой мощностью, но в то же время имеют малый угол обзора изображения.
В проекционных телевизорах изображение получается в результате оптической проекции на просветный или отражающий экран телевизора яркого светового изображения, создаваемого проектором. Проекторы, используемые в проекционных телевизорах, могут быть построены на электроннолучевых кинескопах, жидкокристаллических матричных полупроводниковых элементах, а также лазерных проекционных трубках.
Основными недостатками проекционных телевизоров являются их громоздкость, высокая потребляемая мощность, низкая четкость увеличенного изображения и узкая зона размещения зрителей перед экраном телевизора.
В основу работы плазменного телевизора положен принцип управления разрядом инертного газа, находящегося в ионизированном состоянии между двумя расположенными на небольшом расстоянии друг от друга плоскопараллельными стеклами ячеистой структуры. Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех пикселей, ответственных, соответственно, за три основных цвета. Каждый пиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов. Пиксели находятся в точках пересечения прозрачных управляющих электродов, образующих прямоугольную сетку. При разряде в толще инертного газа возбуждается ультрафиолетовое излучение, которое, воздействуя на люминофоры первичных цветов, вызывает их свечение. Изображение последовательно, точка за точкой, по строкам и кадрам развертывается на экране.
Яркость каждого элемента изображения на панели определяется временем его свечения. Если на экране обычного кинескопа свечение каждого люминофорного пятна непрерывно пульсирует с частотой 25 раз в секунду, то на плазменных панелях самые яркие элементы светятся постоянно ровным светом, не мерцая. Плазменные панели выпускается форматом изображения 16:9. Толщина панели размером экрана в 1 м не превышает 10-15 см, что позволяет использовать их в настенном варианте. Надежность плазменных панелей превышает надежность традиционных кинескопов.
Телевизор – устройство для приема телевизионных сигналов изображения и звукового сопровождения, отображающихся на экране.
Первые телевизоры
В 30-х годах прошлого века началось производство телевизионных приемников для массового потребителя. Но до того момента десятки ученых и изобретателей работали над его появлением.
Англичанин Смит в 1873 году открыл явление фотоэффекта, без которого изобретение телевизионного устройства было бы невозможно. Португалец Андриано де Пайва в 1878 году изобрел прибор для передачи изображения по проводам. Немец Карл Браун и Борис Розинг трудились над получением изображения через электронно-лучевую трубку.
В 1933 году Владимир Зворыкин изобрел передающую электронную трубку. Именно Зворыкин, изобретя иконоскоп, по праву может считаться отцом электронного телевидения.
Телевидение становится массовым
В 1929 году американская компания Western Television начинает серийный выпуск первых телевизоров Вижнетт, правда картинка изображения на таком телевизионном приемнике была размером с марку. Даже при увеличении линзой, рассмотреть можно было только общие контура, лица практически не различались. Низкое качество стало причиной плохого распространения устройства.
Шагом к массовому использованию стало появление электронного телевидения. Устройства для массового потребителя стали выпускаться в начале в Германии компанией Telefunken. Затем во Франции, Великобритании и США. Вторая Мировая война привела к снижению производства телевизоров по всему миру.
Телевизор в каждый дом
После войны в США, в отличие от пострадавшей Европы, производство телевизоров для массового потребителя только начинало набирать обороты. В 1946 году телевизоры были всего в 5 из 100 семей, а уже в 1962 году телевизионные приемники стояли у 90% населения.
Параллельно шли разработки в сфере цветного изображения, в 1953 году в США появляется система аналогового цветного телевидения NTSC. В 1955 году 40 тысяч цветных телевизоров нашли своих хозяев. В послевоенной Европе темпы распространения цветных телевизионных приемников были значительно скромнее.
В 1956 году изобретатель Роберт Адлер разработал и внедрил пульт дистанционного управления. В 1974 году появился инфракрасный пульт, которым пользуются и сейчас. В 80-х к телевизору стали подключать игровые приставки, видеомагнитофоны, компьютеры.
В середине 2000-х годов рынок заполонили плазменные и жидкокристаллические телевизоры.
Сейчас плоские телевизоры имеют стандарты высокой и сверхвысокой четкости. Большинство из них выполняет функции домашних кинотеатров, имеет выход в интернет.
История развития телевизора в СССР
29 апреля 1931 года в СССР прошел первый сеанс телевещания. А уже начиная с осени 1931 года, телепередачи начинают выходить регулярно. Так как в те времена, телевизор мог мало кто себе позволить, организовывались специальные места для коллективного просмотра. Некоторые умельцы-радиолюбители по схемам, найденным в журналах, собирали своими руками первые механические модели телевизионных приемников.
Советское правительство уделяло особое внимание развитию телевещания в стране. При разработке пятилетних планов, телевидению было отведено особое место. Все это способствовало появлению звукового телевещания. Первая передача со звуком прошла 15 ноября 1934 года.
Вторая Мировая война вмешалась в процесс развития и распространения телевидения. Телевещание было прекращено. Возобновилось только после 1945 года.
В 1947 году начато серийное производство телевизионных приемников Москвич–Т1, Ленинград–Т1.
1949 год ознаменован выпуском телевизора КВН-49, рассчитанного на массовое распространение.
Телевизор присутствует практически в каждом доме. Используете вы его для просмотра передач, интернет контента либо для различных игр — так или иначе, большой телевизор в доме вещь комфортная. В данном обзоре мы взглянем на основные стадии, которые прошло это изобретение по мере своего развития.
Содержание:
Механические телевизоры
На данный момент трудно для себя предположить телевизор, в котором не использовалась бы электроника. Однако началось всё с применения достаточно обычных механических приспособлений.
Диск Нипкова
1-ое принципиальное изобретение в истории телевизоров было создано, когда германский студент Пауль Готлиб Нипков обучался в Нойштадте. Он тосковал по маме и сильно мечтал видеть её на новогодний вечер. Чтобы воплотить собственное стремление он принял решение сделать устройство по типу телефонного аппарата либо телеграфа, благо тогда они уже были. Такие рассуждения подсказали ему идею нового прибора — сканирующего диска, кот-ый в дальнейшем получил его имя.
Его открытие состояло из крутящегося диска с отверстиями размещёнными по принципу спирали. Когда диск вращался каждое такое отверстие сканировало собственную строчку. Число строчек было пропорционально числу отверстий сделанных на диске.
Де факта каждая строчка была составляющей окружности, но учитывая большой радиус диска в соотношении с размером экрана они в полной мере сближались до ровных линий. После установки фоточувствительной панели за диском стало возможным извлекать изображение в котором разрешение строчек было равнозначным числу отверстий на диске.
Патент на изобретение Пауль Нипке получил в 1884 году. Данный факт справедливо можно считать становлением эпохи TV. Тем не менее, чтобы применять его не только лишь к распознавания, но и для трансляции картинки, понадобилось ждать более 30 лет.
Первый механический телевизор
Шотландский экспериментатор Джон Лоуги Берд в 20-е годы XX столетия проводил опыты с 2 дисками Нипкова надеясь найти способ не только сканировки, но и трансляции картинки. Концепция его опыта содержалось в том, чтобы провести синхронизацию вращения 2 дисков — 1-го сканирующего, 2-го — воссоздающего. Сзади 1-го диска был должен размещаться фотоэлемент, а сзади 2 — радиолампа. Их, так же, нужно было синхронизировать. При регистрации фотоэлементом более насыщенного света, лампа обязана была светить более ярко, при менее интенсивном — тускнее.
Потерпев несколько неудач Джон Бэрд все таки смог синхронизировать диски Нипкова. Изначальной картинкой, которую ему удалось воссоздать при помощи этого устройства, стал мальтийский крест, его контур без сомнений вырисовывался на воспроизведённом изображении.
Джон Бэрд в 1923 году оформил патент на своё ноу-хау, однако на тот момент ни один человек не смог разглядеть колоссальных возможностей. Тщетно пытаясь найти финансирование и поддержку своего изобретения, ему оставалось собственными силами продвигать проект.
В 1928 году обществу было продемонстрировано 1-ый прибор с именем The Televisor. Он представлял из себя приличных размеров ящик с внушительным экраном и диском. Он скорее был похож на слуховую телефонную трубку тех времен, с одним отличием, к ней надо было прикладываться не ухом, а глазом.
The Televisor (модель 1930 г.)
С течением времени качество изображения улучшалось: первоначальные 30 линий увеличились до 38, потом до 90, в последствии до 120. Такой подход требовал постоянно добавлять диски и их вращение нужно было увеличивать. И к тому моменту такие устройства быстро достигли предела своего развития.
Электронные телевизоры
В тоже время параллельно с механическим аналогом телевизора разрабатывался и электрический вариант. Идея основывалось на изобретении Карла Фердинанда Брауна, физика из германии лауреата Нобелевской премии. Во 1897 г. он разработал лучевую-катодную трубку. В её состав входила стеклянная колба с вертикальными и горизонтальными отводящими катушками. Генерируя усилия тока на катушки, формировалось магнитное поле и оно искожало магнитный фон, отклоняя проходивший через них поток электронов. Более сильный ток приводил к более сильному отклонению. Распределяя ток между катушками по силе подачи возможно стало довольно точно направлять поток электронов на заданное место.
Два физика в 1923 г., Владимир Зворыкин и Фило Тейлор практически в одно и тоже время продемонстрировали общественности изменённую лучевую-электрическую трубку, в последствии она и применялась в обычных телевизорах. Кто был родоначальником современного телевизора мы оставим на усмотрение экспертов. Существуют разные мнения.
Кинескопные телевизоры
Модели телевизоров с кинескопом господствовали в мире до 21 столетия. Весь этот период они интенсивно формировались. У них появился цветной экран.
Потом эти телевизоры становились более плоскими, а лучевая-электронная трубка стала очень маленькой и более эффективнее. Теперь на данный момент времени и такие технологии стали пределом совершенства. С увеличением экранов телевизоров, они стали тяжелее и больше, что приводило к увеличению потребления энергии и качество изображения не улучшалось значительно.
Современные телевизоры
На ряду с образцами с электронно-лучевыми трубками в продаже стали фигурировать модели с плоским экраном. С момента создания ЭЛТ, были применены несколько технологий, которые в свой отрезок времени предоставляли определённый спектр возможностей.
Плазменный телевизор
Технология плазменного телевидения основывается на том что определённое вещество содержится в капсуле в изменённом состоянии. Основа функционала подобной технологии была представлена в 1930-х, а основные экземпляры возникли только в 1960 годах. Но массового продаваться они стали лишь в с начала 2000 года.
Сам экран подразумевал отдельные ячейки для изображения находящиеся в середине двух слоев стекла. В ячейке содержится плазма, это газ подверженный ионизации, в котором без препятственно перемещаются ионы и электроны. В момент когда, через плазму пропускают ток, она начинает производить свет, но это был свет ультрафиолета. Однозначно его глаз человека не мог увидеть. С помощью специального флуоресцентного напыления свет преобразовывался в спектр видимый человеческому глазу и в нужном цвете.
Панели плазма довольно долго держали пальму первенства на рынке, но вскоре с течением времени их начали выражаться всё больше. Во-1-х, плазменные мониторы стали проигрывать в яркости технологиям конкурентов, при просмотре в хорошо освещённых помещениях оно стало не комфортным. Помимо этого, размеры стали фактором лимита. Плазменные экраны невозможно было сделать довольно внушительными по диагонали экрана ни довольно плоскими. Это и другие причины в общем заставили производителей в начале 2010-х начать отказываться от данной технологии в пользу OLED и LED.
LCD — LED Телевизоры со обратной подсветкой
Телевизионные панели с обратной подсветкой на данный момент более востребованы в следствие сравнительной легкости изготовления и как результат, стоимости технологического процесса. Основополагающие понимание работы таковых панелей состоит в том, что за слоем вязких кристаллов (LCD) размещается источник подсветки. Обычно, модель ТВ обусловлена механизмом такой подсветки. LCD-ТВ именуют панелями с флуоресцентной, а LED-ТВ — со светодиодной. Однако, на самом деле, их можно считать LCD.
Такие, жидкие кристаллы- это молекулы, которые способствуют поляризации света. Вместе с тем, зависимо от проходящего через них электрического потока, у них есть возможность поворачиваться на месте. От градуса угла поворота зависит, какое количество света они пропустят.
Внедрение этой технологической особенности в конвейерном производстве ТВ разрешило существенно удешевить панели, чтобы сделать их тоньше и больше. Сейчас большая часть телевизоров, которые возможно приобрести, созданы конкретно по типу жидких кристаллов с оборотной подсветкой.
OLED ТВ без обратной подсветки
Закономерным развитием технологии LCD считается OLED. В этой технологии отказались от подсветки, потому что светодиоды, применяемые в OLED-экранах могут проецировать свой свет. Данное свойство разрешает производить панели более тонкими. К примеру, наиболее тонкие ТВ-панели компании LG в толщину меньше 4 см. В том числе и 64-дюймовая модель довольно легкая и чтобы её установить традиционные крепления не требуются. ТВ прикрепляется на магнитах к металлическому листу на стене.
Характерная специфика OLED-ТВ – это самый максимальный угол обзора. В том числе и во время просмотра с дольно острого угла интенсивность и яркость отображения не понижаются, а цветовая гамма сохраняет свою четкость и яркость.
Платформа WRGB не считая 3-х базовых цветов содержит а также белый дополнительный пиксель, что дает возможность продлить срок эксплуатации приборов. Очередное явное превосходство, нет задней подсветки – отменные характеристики контрастности, которые невозможны в LCD-панелях.
С продвижением OLED-ТВ непрерывно увеличивается палитра цветов отображений, растет чёткость и концентрация оттенков, а наибольшая яркость возможна HDR-эффекту. Кроме того необходимо заметить усовершенствованную трансляцию деталей в более темных участках и улучшенную размеренность свечения.
Важная характеристика в особенностях изображения -это время отклика – выше скорость отклика, четче картинка, исчезает действие. Основной недостаток OLED-ТВ сейчас считается цена. Они на порядок дороже других телевизоров и когда цена упадет неизвестно.
Заключение
Телевизоры прошли долгую дорогу. Менее чем, за век, технология сделала огромный скачок от механического устройства до ТВ панелей при толщине в несколько сантиметров, большой диагональю и форматом изображениям 4K.
Возникают всё более продвинутые технологии при которых улучшается качество картинки. И неизвестно, какими будут телевизоры через несколько десятков лет.
Теперь у каждого дома есть телевизор, и мы можем наслаждаться наблюдением за реальной или вымышленной жизнью, проходящей где-то очень далеко. А, что такое этот телевизор? Как получается движущееся изображение? И как изображение попадает на экран?
Во-первых, любой телевизор - это просто ящик с экраном, на котором мы видим движущиеся картины. Раньше ящик был объемным и громоздким, а теперь это почти плоский лист, поверхность которого и есть экран.
Если покопаться в содержимом телевизора поглубже, то мы обнаружим там источник света и устройства для управления им. Вначале истории телевизора источником света была электронная лампа, излучавшая тонкий лучик, который и рисовал на экране изображение. Для управления этим электронным лучиком нужно было немалое количество энергии, куча ламп и других элементов, которые в итоге занимали много места, да еще и грелись. Поэтому первые телевизоры были довольно громоздкими коробками с маленькими черно-белыми экранчиками.
Все дальнейшие усовершенствования старых ламповых телевизоров приводили лишь к незначительному уменьшению размеров коробки и небольшому увеличению размеров экрана. Чтобы картинка стала цветной, применили три лампы - с красным, синим и зеленым лучом, отчего телевизор стал ещё тяжелее…
Всё изменилось, когда появились новые элементы управления – полупроводники. Они так называются, потому, что их поведение, например, проводят они ток или нет, зависит от разных условий. Эти новые элементы имеют очень маленькие размеры, но выполняют ту же задачу, что и старые громоздкие лампы. И вот телевизоры, да и другая техника, стали худеть. Постепенно в ящике телевизора осталась одна большая лампа, которая строила изображение, выдавая всё тот же древний электронный луч.
Это оказалось решающим поворотом в развитии телевизора. Вместо громоздкой лампы, оставляющей на экране точку света, стало возможным сделать светящимся и плоским весь экран, каждую его точку! Теперь, включая и выключая эти световые точки, можно нарисовать все что угодно. Вот так телевизор превратился в привычную для нас плоскую коробку с большим экраном, на котором маленькие полупроводниковые точки показывают нам изображение.
На экране с помощью светящихся цветных точек строится картинка. Мы ее видим и запоминаем, а потом картинка заменяется следующей, в которой все немного сдвинуто. Если это делать очень быстро, то мы не замечаем, когда сменились картинки и нам кажется, что изображение движется. Кстати этот эффект был открыт очень давно. Изображения каждого момента движения были на длинной пленке в виде маленьких картинок. При смене картинок изображение перекрывалось перегородкой или проскакивало с большой скоростью, и люди видели следующий кадр. Удивительно, но на суперсовременном жидкокристаллическом экране мы видим движение благодаря этому древнему открытию! Вся эта суперсовременная электроника и кибернетика просто показывает нам быстро меняющиеся картинки.
А теперь бы разобраться, как изображение попадает в телевизор.
Эта история намного длиннее. Вообще-то телевизор значит - далеко вижу, на латыни. А видеть, да и слышать далеко, люди всегда хотели. Но, даже применяя подзорные трубы и телескопы, не все далёкое можно было рассмотреть, а тем более услышать. В попытке преодолеть расстояние, люди разжигали костры, пускали дым, стучали в барабаны и отправляли голубей.
Неведомая вездесущая среда, называемая эфир, оказалась способна переносить на огромные расстояния сигнал от одного аппарата другому. Конечно, чтобы обнаружить это, было совершено очень много открытий великими мыслителями и учеными человечества. Электричество, магнитные поля, проводники, источники тока и так далее. Всё это стало основой для обнаружения электромагнитных взаимодействий, которые способны проникать на большие расстояния в бесконечное пространство.
С помощью электрических аппаратов стало возможным передавать и принимать электромагнитный сигнал на огромные расстояния.
Сначала удавалось передавать только точки тире, то есть включено, выключено. Потом удалось различить изменение сигнала и стало возможным передать звук. И вот, как итог всего пройденного пути, появился телевизор, способный принимать изображение, ну и конечно звук. Человечество получило возможность видеть и слышать то, что находится на огромных расстояниях от наблюдателя.
Такой вот ниточкой для передачи изображения стала электромагнитная волна, на которую также последовательно наносится информация о цвете каждой точки изображения. Эту работу делает телевизионный передатчик. А телевизионный приемник собирает из этих точек картинки на экране.
Ну, ладно. Пойду на улицу, полюбуюсь пейзажами, пока ещё тепло и сухо. А осень уже разукрасила всё вокруг в немыслимо яркие цвета, которые не передать никакими посредниками…
Подписывайтесь на наш канал, а я рад буду поведать ВАМ свое видение окружающих НАС вещей.
Если статья заинтересовала Вас, чтобы не пропустить новые публикации, подписывайтесь ЗДЕСЬ и ставьте палец вверх. Ваше мнение для меня очень ценно.
Читайте также: