Импульсный трансформатор от телевизора применение
Импульсные источники питания (ИИП) заполонили мир. Кажется, что они применяются везде, полностью вытеснив традиционные. На самом деле, этот вопрос неоднозначный.
В обзоре речь пойдет именно об импульсных блоках питания (ИИП) – преобразователях переменного сетевого напряжения в постоянное. Следует отличать такие устройства от импульсных стабилизаторов (стабилизируют входное постоянное напряжение) и преобразователей DC/AC или AC/AC (например, 12VDC/220 VAC, преобразующих напряжение автомобильной бортсети в 220 вольт), хотя в этих устройствах применяются похожие принципы.
Отличия импульсного блока питания от обычного трансформаторного
Еще один источник повышенных размеров и габаритов – стабилизатор. В традиционных БП применяются линейные стабилизаторы. Они требуют повышенного входного напряжения, а разница между входом и выходом, умноженная на ток нагрузки, бесполезно рассеивается. Это ведет к дополнительному увеличению массы трансформатора, который должен обеспечивать необходимый бесполезный запас по мощности, а также требует больших и тяжелых теплоотводящих радиаторов. В ИИП это делается по другому принципу. Напряжение стабилизируется методом изменения ширины импульсов. Это позволяет повысить КПД и не требует отвода излишнего тепла в таком количестве.
В видео-сравнение линейного и импульсного блоков питания.
К недостаткам импульсников можно отнести усложненную схемотехнику и повышенные требования к надежности элементов. Эти минусы сходят на нет с ростом мощности. Считается, что для выходных токов до 2..3 ампер подходят трансформаторные блоки с линейными стабилизаторами, а чем выше нагрузка, тем ярче начинают проявляться преимущества ИИП. При токах от 10 А обычно о трансформаторных БП речь уже не идет.
Какие бывают виды и где применяются
Разделить импульсники можно по разным признакам. По выходному напряжению они делятся на:
- однополярные с одним уровнем напряжения;
- ондополярные с несколькими уровнями напряжения;
- двухполярные.
Эти типы можно комбинировать как угодно – принципиальных ограничений нет. Можно создать блок питания, например, с несколькими однополярными напряжениями (+5 В, +24 В) и с двуполярным (±12 В), или с двумя двуполярными выходами (±12 В, ±5 В). Все зависит от области применения.
Более интересной является информация о типе стабилизации. Здесь ИИП можно разделить на категории:
- Нестабилизированные источники. У них выходное напряжение зависит от нагрузки. Могут быть применены для питания оконечных устройств аудиоаппаратуры (усилители и т.п.).
- Стабилизированные источники. У таких устройств от нагрузки могут не зависеть напряжение, ток или и то, и другое. Источники со стабилизированным напряжением используются, например, в качестве БП для компьютеров и серверов, или для заряжания кислотно-свинцовых аккумуляторов. Стабилизированный ток подойдет для зарядных устройств для других типов АКБ.
- Регулируемые источники. У них уровень выходного напряжения и тока можно выставлять в определенных пределах в зависимости от потребности. Такие устройства используются в качестве лабораторных источников питания.
Описать все области использования импульсников невозможно. Они применяются там, где надо получить большой ток от легкого и компактного источника.
Также можно разделить ИИП по схемотехнике:
- с импульсным трансформатором;
- с накопительной индуктивностью.
В схемотехнику можно углубляться и дальше и классифицировать БП по другим критериям, но это принципиального значения не имеет.
Структурная схема и описание работы основных узлов ИБП
Структурная схема импульсника сложнее, чем у трансформаторного источника. Для понимания принципа работы импульсного блока питания в целом, надо разобрать функционирование каждого узла в отдельности.
Плавкий 5-амперный предохранитель перегорает при превышении номинального тока при аварийной ситуации в БП. Для защиты от повышения напряжения предусмотрен варистор V1. В штатном режиме он не влияет на работу устройства. При скачке в сети от открывается, его сопротивление резко увеличивается, ток через варистор возрастает. Это вызывает перегорание предохранителя.
Терморезистор с отрицательным коэффициентом сопротивления THR1 сначала имеет большое сопротивление и ограничивает ток, идущий на зарядку конденсаторов фильтра высоковольтного выпрямителя. Потом термистор прогревается проходящим через него током, его сопротивление падает, но к тому моменту емкости уже будут заряжены. Конденсаторы CX1, C11, C12, CY3 и синфазный дроссель FL1 защищают сеть от синфазных и дифференциальных помех.
Высоковольтный выпрямитель и фильтр
Высоковольтный выпрямитель обычно строится по традиционной мостовой двухполупериодной схеме и особенностей не имеет. Если в преобразователе применяется полумостовая схема, то фильтр выполняется из двух емкостей, включенных последовательно – так формируется средняя точка с напряжением, равным половине питания.
Участок схемы импульсника с высоковольтным выпрямителем D1-D4 и с емкостным делителем напряжения C1-C2.
Иногда параллельно конденсаторам ставят резисторы. Они нужны для разряда емкостей после выключения питания.
Инвертор
Преобразование постоянного напряжения в импульсное происходит с помощью инвертора на полупроводниковых ключах (часто на транзисторах). Открываясь и закрываясь, ключи подают в обмотку импульсы напряжения. Таким методом получается своеобразное переменное напряжение (однополярное), которое может быть трансформировано в напряжение другого уровня обычным способом.
Самая простая схема преобразователя постоянного напряжения в импульсное – однотактная. Для ее реализации нужен минимум элементов. Недостаток такого узла – при росте мощности резко растут габариты и масса трансформатора. Связано это с принципом действия такого преобразователя. Он работает в два цикла – во время первого транзистор открыт, энергия запасается в индуктивности первичной обмотки. Во время второго запасенная энергия отдается в нагрузку. Чем больше мощность, тем больше должна быть индуктивность, тем больше должно быть витков в первичной обмотке (соответственно, увеличивается количество витков во вторичных обмотках).
От этого недостатка свободна двухтактная схема со средней точкой (пушпульная). Первичная обмотка трансформатора разделена на две секции, которые через ключи поочередно подключаются к минусовой шине. На рисунке красной стрелкой показано направление тока для одного цикла, а красной – для другого. Минусом является необходимость иметь удвоенное количество витков в первичке, а также наличие выбросов в момент коммутации. Их амплитуда может достигать двойного значения от напряжения питания, поэтому надо применять транзисторы с соответствующими параметрами. Сфера применения такой схемы – низковольтные преобразователи.
Выбросы отсутствуют, если инвертор выполнен по мостовой схеме. Из четырех транзисторов составлен мост, в диагональ которого включена первичная обмотка трансформатора. Транзисторы открываются попарно:
- первый цикл – верхний левый и нижний правый;
- второй цикл – нижний левый и верхний правый.
Обмотка подключается к плюсу питания то одним выводом, то другим. Минусом является применение 4 транзисторов вместо двух.
Компромиссным вариантом считается применение полумостовой схемы. Здесь коммутируется один конец первичной обмотки, а второй подключен к делителю из двух емкостей. В этой схеме также отсутствуют выбросы напряжения, но применено всего два транзистора. Недостаток такого решения – к первичной обмотке прикладывается только половина питающего напряжения. Вторая проблема – при создании мощных источников емкость конденсаторов делителя растет, и их стоимость становится нецелесообразной.
Если ИИП построен по схеме с регулировкой параметров методом широтно-импульсной модуляции (ШИМ), то в большинстве случаев ключи приводятся в действие не напрямую от микросхемы ШИМ, а через промежуточный узел – драйвер. Связано это с повышенными требованиями к прямоугольности управляющих сигналов.
Фрагмент схемы промышленного импульсного источника – полумостовой инвертор на транзисторах Q1, Q2 управляется через промежуточный узел на транзисторах Q8, Q9 и трансформаторе T1.
В схемах всех преобразователей используются как полевые, так и биполярные транзисторы, а также IGBT, сочетающие свойства обоих типов.
Выпрямитель
Трансформированное во вторичные обмотки напряжение надо выпрямить. Если требуется выходное напряжение выше +12 вольт, можно применять обычные мостовые схемы (как и в высоковольтной части).
Схема импульсного блока питания с выходным напряжением до 30 вольт и мостовым двухполупериодным выпрямителем.
Если напряжение низкое, то выгодно применять двухполупериодные схемы со средней точкой. Их преимущество в том, что падение напряжение происходит только на одном диоде для каждого полупериода. Это позволяет сократить количество витков в обмотке. Для этой же цели используют диоды Шоттки и сборки на них. Недостаток такого решения – более сложная конструкция вторичной обмотки.
Фильтр
Выпрямленное напряжение надо отфильтровать. Для этой цели применяются как традиционные емкости, так и индуктивности. Для используемых частот преобразования дроссели получаются небольшими, легкими, но работают эффективно.
Цепи обратной связи
Цепи обратной связи служат для стабилизации и регулировки выходного напряжения, а также для ограничения тока. Если источник нестабилизированный, у него эти цепи отсутствуют. У устройств со стабилизацией тока или напряжения эти цепи выполняются на постоянных элементах (иногда с возможностью подстройки). У регулируемых источников (лабораторных и т.п.) в обратную связь включены органы управления для оперативной регулировки параметров.
У компьютерного БП дополнительно имеется схема управления и формирования служебных сигналов (Power_good, Stand By и т.д.).
Как устроен ШИМ контроллер
В стабилизированных и регулируемых источниках питания напряжение на выходе поддерживается методом широтно-импульсной модуляции (ШИМ). Суть метода в том, что первичная обмотка питается импульсами неизменной амплитуды и частоты. Для регулировки напряжения в зависимости от нагрузки или выбранного уровня изменяется ширина импульса. Трансформированные во вторичную обмотку импульсы затем выпрямляются и усредняются на выходном конденсаторе фильтра. Чем больше ширина импульса, тем выше усредненное напряжение. Если в результате увеличения тока нагрузки напряжение на выходе просело, ШИМ-контроллер сравнивает выходное напряжение с заданным и дает команду увеличить ширину импульсов. Если напряжение увеличилось, ширина импульсов уменьшается. Среднее напряжение также уменьшается.
Культовой микросхемой для построения импульсных источников считается TL494. На ее примере можно разобрать принцип действия
шим контроллера блока питания.
Назначение выводов микросхемы указано в таблице.
Назначение | Обозначение | Номер вывода | Номер вывода | Обозначение | Назначение | |
---|---|---|---|---|---|---|
Прямой вход усилителя ошибки 1 | IN1 | 1 | 16 | IN2 | Прямой вход усилителя ошибки 1 | |
Инверсный вход усилителя ошибки 1 | IN1 | 2 | 15 | IN2 | Инверсный вход усилителя ошибки 1 | |
Выход обратной связи | FB | 3 | 14 | Vref | Выход опорного напряжения | |
Управление временем задержки | DTC | 4 | 13 | ОТС | Выбор режима работы | |
Частотозадающий конденсатор | C | 5 | 12 | VCC | Напряжение питания | |
Частотозадающий резистор | R | 6 | 11 | С2 | Коллектор 2-го транзистора | |
Общий провод | GND | 7 | 10 | E1 | Эмиттер 1-го транзистора | |
Коллектор 1-го транзистора | C1 | 8 | 9 | E2 | Эмиттер 2 -го транзистора |
Выводы 1 и 2 служат прямым и инверсным выводами усилителя ошибки. Если напряжение на выводе 1 превышает напряжение на 2 ноге, то ширина выходных импульсов будет уменьшаться пропорционально разнице на этих выводах. Если напряжение на 2 выводе выше, чем на 1, то на выходе импульсы будут отсутствовать. Также работает второй усилитель ошибки (выводы 16 и 15). Выходы обоих усилителей соединены по схеме ИЛИ и подключены к ноге 3. Первый усилитель обычно используют для регулирования напряжения, второй – для регулирования тока.
В качестве примера можно рассмотреть схему лабораторного источника на данной микросхеме. Здесь применены практически все технические решения, описанные выше. Регулируемая обратная связь, выполненная на операционных усилителях OP1..OP4, позволяет настраивать уровень выходного напряжения и ограничивать ток. Для создания импульсного напряжения используется полумостовой инвертор на биполярных транзисторах, подключенных к микросхеме посредством драйвера.
Для наглядности рекомендуем серию тематических видеороликов.
Также при создании ИИП применяются и другие микросхемы-регуляторы ШИМ. Они могут отличаться от TL494 по функционалу и назначению выводов, но в них используются те же принципы. Разобраться в их работе не составит труда.
Читайте также: