Avc что это в телевизоре
H.265 (HEVC), в отличии от H.264 (AVC), становится наиболее часто используемым форматом для сжатия видео и записи контента 4K / 8K UHD, не говоря уже о видео HD / SD. Увеличение количества видео 4K и 8K бросает вызов текущему стандарту сжатия H.264, поскольку ему больше не удается кодировать видео Ultra HD с удовлетворительной скоростью передачи данных, чем контент HD.
Вследствие этого, стандарт сжатия видео HEVC следующего поколения получает преимущество над AVC благодаря лучшей эффективности сжатия. Это позволяет на 50% снизить скорость передачи, но обеспечивает такое же качество видео.
Этот пост показывает различия между двумя стандартами, основанные на размере файла, использовании полосы пропускания, скорости передачи данных, качестве и совместимости.
Что такое H.265 (HEVC)?
H.265 также называется высокоэффективным кодированием видео (HEVC). Данный формат в два раза более эффективен, чем H.264 при кодировании. Он вдвое снижает скорость передачи при том же уровне качества по сравнению со своим предшественником. Предназначен для дисплеев HDTV следующего поколения и систем захвата контента, которые имеют прогрессивную частоту кадров и разрешение, а также улучшенное качество изображения с точки зрения уровня шума, цветовых пространств и динамического диапазона.
Что такое H.264 (AVC)?
H.264 или MPEG-4 AVC – это формат кодирования видео, который в настоящее время является одним из наиболее часто используемых для сжатия и доставки видеоконтента. AVC экономит битрейт на 50% и более по сравнению с его предшественником MPEG-2. Имеет более широкий спектр приложений, охватывающих все сжатое видео, начиная от потоковых приложений с низким битрейтом (YouTube, iTunes, Vimeo, Facebook, Instagram) для различных передач HDTV по наземному, кабельному и спутниковому телевидению. Он также широко используется для дисков Blu-ray, DVD, IP-сетей и приложений для цифрового кино с кодированием, практически без потерь.
Сравнение форматов сжатия видео
Эффективность сжатия
H.265 отличается от H.264 эффективностью сжатия. HEVC удваивает эффективность кодирования по сравнению со своим предшественником. Это означает, что кодек H.265 экономит около 50% битрейта при том же качестве кодирования. В частности, среднее уменьшение битов для H.265 составляет 64% при 4K UHD, 62% при 1080p, 56% при 720p и 52% при 480p. Таким образом, если загрузить фильм в H.265 и воспроизвести его на устройстве iPhone Android, то будет сохранено 50% памяти мобильного устройства. И качество фильма не пострадает!
Сравнение форматов видео и эффективность сжатия
Полоса пропускания
H.265 превосходит H.264 и в отношении использования полосы пропускания. Поскольку алгоритм HEVC использует эффективное кодирование, он обещает приблизительно 40-50% уменьшения полосы пропускания передачи, необходимой для сжатия видео (например, в формате 720p), с тем же качеством. Как правило, для потоковой передачи 4K H264 (AVC) требуется полоса пропускания 32 Мбит / с, а для передачи видео 4K HEVC – всего 15 Мбит / с. Таким образом, можно наслаждаться 4k видео без проблем даже при перегруженном сетевом соединении.
H.264 и H.265 – полоса пропускания
Качество видео
Большая разница между рассматриваемыми кодеками заключается в качестве видео при одинаковой скорости передачи данных. В AVC границы областей блока, вероятно, будут искажены, потому что каждый макроблок является фиксированным, а данные независимы друг от друга. В то время как H.265 предлагает более четкие детали на гранях и сглаживает градиентные области с меньшим количеством артефактов.
Таким образом, H.265 лучше, чем H.264, когда речь идет о сжатии видео с лучшим качеством изображения.
Размер файла
Высокая степень сжатия также тесно связана с требованием цифрового хранения видеопотоков и передачи. Уменьшенная пропускная способность приводит к уменьшению размера файла. Тесты показывает, что видео, закодированное с помощью H.264, в 1-3 раза больше, чем H.265. Это выгодно для хранения информации на жестком диске или устройствах с ограниченным пространством хранения, необходимого для размещения видеоданных. В этом отношении большое преимущество H.265 перед H.264.
H.265 vs H.264 сравнение форматов – размер файла
Совместимость форматов
Ничто не совершенно. Так же, как и HEVC. Все, сказанное выше, является преимуществом HEVC перед H264. Но есть и недостаток – плохая совместимость. В настоящее время новый формат далеко не так популярен, как H264. Современные устройства и платформы, поддерживающие кодек H264, составляют 99%. Поддержка кодека H265, может составлять около 30-40%.
Преимущества и недостатки
H.265 имеет много преимуществ перед H.264. Например, он поддерживает до 8K UHDTV (разрешением, максимум 8192 × 4320), скорость передачи данных составляет несколько ГБ / с, а размер файла вдвое меньше, и это с лучшим качеством! H.265 имеет большое влияние на увеличение спроса и продажи экранов 4К, предлагая более высокое качество видео даже в сети с ограниченной пропускной способностью.
Но есть и обратная сторона. HEVC требует больше времени для кодирования по сравнению с AVC. Во-вторых, поскольку перспективный кодек, который сейчас широко не используется, просмотр видео H.265 не так прост. Поэтому преобразование H.265 в H.264 по-прежнему очень востребовано в наши дни.
Пишите в комментариях ниже какую информацию добавить или убрать для форматов сжатия видео – H.264 (AVC) vs H.265 (HEVC). Открыт для предложений по оформлению и наполнению страницы.
Сегодня, кажется, все стремятся стать кинематографистами. Люди используют для видеосъемки самые различные гаджеты и девайсы, включая мобильные телефоны, цифровые фотокамеры, портативные и профессиональные видеокамеры. А последнее поколение цифровых зеркальных фотокамер позволяет записывать видео с поддержкой высокого разрешения.
Чтобы научиться снимать хорошее видео, потребуется приложить определенные усилия, но все становится еще более сложным, когда вы захотите во всей красе продемонстрировать свой шедевр другим людям. Может быть, вам нужно загрузить его на YouTube, может вы собираетесь записать свой Blu-ray или DVD диск, возможно, захотите загрузить видео на мобильный телефон или планшетный компьютер.
Разобраться в том, какой кодек и контейнер лучше подойдет для создания вашего видеошедевра порой достаточно сложно. Помочь в решении этой проблемы сможет представленный далее материал.
Какая разница между кодеком и контейнером?
Начинающие пользователи часто бывают озадачены, когда пытаются выяснить разницу между кодеками и контейнерами. Сейчас слово Кодек стало чем-то общеупотребительным, а изначально термин являлся сокращением от понятия КОмпрессор-ДЕКомпрессор. Что же делают кодеки?
Они принимают цифровые медиа данные и либо сжимают их (для передачи и хранения), либо распаковывают для просмотра и перекодирования. Каждый кодек использует определенный метод кодирования и декодирования цифровых данных.
Давайте разберемся с типами кодеков.
Общее понятие о кодеках
Если вы пообщаетесь с людьми, которые занимаются видеообработкой или посетите соответствующие веб форумы, то будете, так или иначе, причастны к, порой бурным, дебатам о том, какой кодек лучше. В действительности, эффективность любого кодека во многом зависит от используемого режима сжатия и типа обрабатываемых видеоматериалов. Так что стоит рассматривать различные кодеки и с учетом их конкретного использования и особенностей сжимаемого материала. Далее в основном рассматриваются видео кодеки, но в разделе, посвященном контейнерам форматов, упоминается и об использовании аудиокодеков.
Ввод и архивирование видео
Большинство устройств современной бытовой электроники получает контент в каком-либо уже сжатом формате. Как правило, только профессиональные видеооператоры работают с несжатым HD видео. Конечно в идеале, если это возможно, при наличии очень емкой системы хранения, видеоархивы нужно хранить в оригинальном формате съемки, потому что при этом обеспечивается максимальное качество. Перекодировка видео из одного типа сжатия в другой может привнести едва различимые искажения, которые могут снизить качество изображения. (Подобные погрешности минимизирует хорошее программное транскодирование.) Сегодня предлагается множество кодеков, с определенной специализацией. С большинством из них обычный пользователь может никогда и не столкнуться. Следующий раздел посвящен кодекам, как системам сжатия/декомпрессии, используемым в составе специального программного обеспечения, которое позволяет кодировать или перекодировать видеофайлы.
x.264/ MPEG-4 AVC (Advanced Video Coding). Этот наиболее распространенный кодек используется в современных цифровых видео- и фотокамерах, в которых результаты съемки сохраняются в виде файлов на встроенных жестких дисках, картах памяти, и т.д.
MJPEG (Motion JPEG). Это более старый формат, используемый некоторыми цифровыми камерами и видеотехникой прежнего поколения. Он был разработан теми же специалистами (Joint Picture Experts Group), которые занимались еще ранее разработкой кодека JPEG для сжатия обычных статичных изображений, отсюда и название этого кодека.
DV и HDV. Стандарт DV был разработан консорциумом компаний производителей видеотехники для ленточных систем хранения информации и часто использовался в видеокамерах со слотом для ленточных мини кассет. Некоторые версии DV успешно использовались в профессиональных видеокамерах, была разработана версия HDV для поддержки высокого разрешения с ленточными кассетами.
Дисковые форматы
Перейдем к устаревающим уже DVD или чуть более модным Blu-ray дискам. Несмотря на растущую популярность потокового видео, возможность передачи медиа данных с помощью дисков в обозримом будущем по-прежнему будет востребована. Записанные на диски материалы спокойно можно передавать там, где нет каналов связи и смотреть везде, даже там, где нет возможности подключиться к интернету.
MPEG-2. Необходимо различать кодек MPEG-2, также известный как x.262, от формата контейнера MPEG-2. MPEG-2 используется для сжатия видео на дисках DVD и сигналов телевидения высокой четкости (DVB), передаваемого по эфирным каналам. Первоначально MPEG-2 применяли и для сжатия на Blu-ray дисках, хотя большинство современных Blu-ray фильмов не используют MPEG-2.
x.264/MPEG-4 AVC. x.264 используется при сжатии видео для Blu-ray дисков. По сути это тот же кодек, который применяется для сжатия видео в современных видеокамерах. Данный метод очень масштабируемый и при высоком битрейте сжатое по стандарту x.264видео выглядит просто фантастически.
Microsoft VC-1. Microsoft VC-1 включает три разных по степени сжатия кодека. VC-1 Advanced Profile, также известный как Windows Media Video 9 Advanced Profile или просто WVC1 является одним из трех кодеков, применяемых для кодирования содержимого Blu-ray дисков. VC-1 в качестве альтернативы технологии Adobe Flash используется в интернет-платформе Microsoft Silverlight.
Потоковое и веб видео
Передача видео через интернет обязательно подразумевает компромиссы, в основном между качеством изображения и скоростью передачи данных, которая сегодня и ограничивает максимально достижимое качество. Скорость передачи или, как еще говорят, ширина канала во многом зависит от возможностей интернет-провайдера и используемой им технологии доставки сигнала в вашу квартиру.
MPEG-1. Это старый боевой конь для доставки видео в сети интернет. Хотя YouTube, Netflix, и другие поставщики относительно качественного потокового видео уже отказались от MPEG-1, масса видео стандартного разрешения на базе MPEG-1 все еще доступна на других сайтах.
WMV (Windows Media Video). Есть Windows Media Video кодек и контейнерный формат файла. Хотя, этот метод сжатия был и не так используем, как MPEG-1, в сети все еще есть много WMV контента. Но при создании своих видеоматериалов, его очевидно также не стоит применять.
x.264/ MPEG-4 AVC. x.264 обеспечивает при относительно низкой скорости передачи, достаточно высокое качество видео. x.264, вероятно, становится наиболее распространенным кодеком. Adobe поддерживает его во Flash, x.264может использоваться с изображениями HTML 5, на x.264ориентируется YouTube и Apple полностью поддерживает этот метод компрессии. Однако при создании видео сжатого в форматах x.264вы не сможете воспроизводить их на старых устройствах, это ставка на будущее.
Правильный контейнер: гибкий и удобный
Далее кратко рассмотрены наиболее распространенные сегодня контейнерные форматы медиафайлов. У каждого из них есть свои достоинства и недостатки. Выбор зависит от предполагаемой задачи. Контейнерные файлы, кроме сжатого видео, вмещают и цифровой звук, сжатый соответствующими аудио кодеками, а также меню и дополнительную информацию.
Контейнеры для архивирования и ввода
Также, как и с кодеками, Вы должны выбрать контейнерный формат для хранения сжатого видео с максимально возможным в ваших условиях качеством. Для большинства пользователей нужен просто способ сохранить свое видео, для того чтобы затем передавать его в потоковом виде по домашней сети или даже через интернет, но при этом никто не хочет видеть впоследствии на экране пиксельную структуру и смазанное изображение. Правильный контейнер поможет сохранить баланс между качеством и потоковыми возможностями.
Advanced Systems Format (ASF) – разработанный Microsoft контейнерный формат. Встречается несколько расширений, включая .asf, .wma и.wmv. Отметьте, что файл с расширением .wmv, вероятно, сжат кодеком WMV (Windows Media Video), но сам файл помещен в контейнерный файл ASF. Файлы ASF, в теории, могут содержать видео и аудио файлы, сжатые любым кодеком. Однако, практически воспроизведение иногда может стать проблемным, особенно с видео, сжатым кодеками x.264. Если вы планируете пользоваться продуктами Microsoft, ASF прекрасный выбор, но могут быть проблемы с медиа файлами на основе иных кодеков.
Audio Video Interleave (AVI) – один из более старых контейнерных форматов Microsoft. Вероятно, его уже не стоит использовать в новых проектах.
QuickTime: компания Apple продвигает собственный контейнерный формат QuickTime, который поддерживает множество кодеков для аудио и видео. Apple - убежденный сторонник x.264, таким образом, файлы QuickTime (.mov, .qt) могут содержать видео, сжатое кодеком x.264.
MP4. Этот контейнерный формат разработан Motion Pictures Expert Group, известен также как MPEG-4, часть 14. Видео внутри файлов MP4 кодируется кодеком x.264, а аудио – кодеком AAC, но могут использоваться и другие стандарты сжатия звука.
VOB и BDAV MPEG-2. Эти контейнерные форматы используются для упаковки данных на DVD и Blu-ray дисках, соответственно. В файлах Blu-ray дисков (.m2ts) могут содержаться видеозаписи сжатые кодеками x.264и VC-1, звук может быть сжат одним из кодеков Dolby или использоваться несжатый многоканальный сигнал в формате PCM.
AVCHD: Этот стандарт контейнера применен во многих видеокамерах. Снимаемое видео предварительно сжимается кодеком x.264. Аудиосигнал для контейнера кодируется кодеком Dolby Digital (AC3) или используется несжатый – PCM.
Flash: Компания Adobe имеет собственный контейнерный формат Flash, который поддерживает множество кодеков. Большая часть недавно созданного Flash видео кодирована с использование видеокодека x.264и аудиокодека AAC, но не стоит ожидать, что на всех сайтах используются только эти кодеки, особенно для ранее созданного видео.
Прочие контейнеры: Среди прочих форматов контейнеров, широко используемых особенно для доставки видео через интернет, можно упомянуть популярный во многом за счет своей универсальности и открытого кода формат Matroska (.mkv, .mk3d, .mka, .mks), а также OGG и DiVX. Файлы с расширением .divx вмещают видео, ужатое одноименным кодеком с пиратской родословной, который позволяет получить достаточно высокое качество видео при эффективной компрессии видеоматериалов. Долгое время Divx официально не признавался и его использование не приветствовалось. Однако сегодня многие известные производители уже встраивают аппаратные кодеки DiVX в свою видеотехнику.
Какой кодек и контейнер выбрать
Если вы будете размещать свое видео на домашнем сервере, с тем чтобы впоследствии смотреть его на экране телевизора, подключаемого непосредственно к сети или через медиаплеер, необходимо выяснить какие форматы распознают телевизор и плеер. Практически всеми устройствами поддерживается сегодня кодирование в соответствии со стандартом MPEG-2, но в этом случае потребуется достаточно большой объем для хранения видео в HD разрешении. Очевидно, наиболее подходящим в ближайшем будущем можно считать различные варианты кодека x.264, в котором реализован алгоритм сжатия, поддерживаемый всеми популярными контейнерами.
Если больше интересует воспроизведение готового видео, и вы планирует нарезать (ripping) фильмы из своей персональной коллекции DVD дисков для передачи по домашней сети, вас может устроить контейнер MP4, как удачный компромисс между степенью сжатия и качеством.
Что включает в себя понятие High Definition?
В чём ключевое отличие HD и SD и что принято называть High Definition?
Общеизвестным мерилом видео стандартной чёткости является формат DVD с его разрешением 720х576 (PAL) или 720х480 (NTSC). Именно DVD-Video является олицетворением потенциала SD (Standard Definition – стандартное разрешение). Настоящим же HD считается видеоряд с разрешением не менее 1280х720 точек, а в идеале – 1920х1080 точек. Помимо высокого разрешения новый формат использует более широкий набор утверждённых официально кодеков и, кроме стандартных, более совершенные алгоритмы кодирования звука. Также в отличие от SD базовое соотношение сторон кадра для HD равно 16:9.
Каковы разрешения HD-видео?
High Definition FAQ: сравнение физических разрешений 1080p и 576i
High Definition FAQ: FullHD против PAL
Чем отличается прогрессивная развёртка от чересстрочной?
High Definition FAQ: налицо неистребимые для чересстрочной развёртки артефакты отрисовки чётных и нечётных строк
High Definition FAQ: видеоряд с чересстрочной развёрткой
High Definition FAQ: видеоряд с прогрессивной развёрткой
Какая аппаратура нужна для воспроизведения High Definition?
Сейчас в AV-индустрии переходный период: HDV видели многие, многие хотят смотреть фильмы именно в таком качестве, но не знают, как именно это сделать. Вполне логично, что для воспроизведения HD-видео нужно соответствующее устройство отображения (плазменный или ЖК-телевизор либо видеопроектор) с поддержкой HD, но как быть с источником сигнала? Необходимость разработки носителей нового поколения возникла из-за того, что повышение разрешения и, соответственно, качества изображения вылилось в существенное увеличение занимаемого видеоматериалом места на цифровом носителе. К тому же наряду с изображением было решено улучшить и качество многоканального звука. Для этого были модернизированы алгоритмы Dolby Digital и DTS, новые версии которых получили названия Dolby Digital TrueHD и DTS HD.
В итоге один полнометражный фильм с разрешением HD1080 и высококачественным звуковым сопровождением требует до 25-30 Гбайт информационного пространства. DVD с его максимальной ёмкостью 9 Гбайт, разумеется, не может вместить столько данных. Соответственно, понадобились новые оптические носители, способные вместить практически любой фильм в высоком разрешении целиком. Так и появились на свет диски нового поколения – HD DVD и Blu-ray.
Какие диски используются для HD-видеоматериала?
На сегодняшний день существует два типа оптических дисков нового поколения для хранения видео высокой чёткости – это HD DVD и Blu-ray. К сожалению, разработчики не смогли договориться и прийти к общему стандарту. Поэтому оба типа носителей сегодня присутствуют на рынке, развиваются параллельно и, помимо этого, ещё и жёстко конкурируют между собой.
High Definition FAQ: логотип HD DVD
High Definition FAQ: логотип HD DVD
High Definition FAQ: логотип Blu-ray
High Definition FAQ: логотип Blu-ray
Что такое HD DVD?
Аббревиатура HD DVD расшифровывается как High Density Digital Versatile Disc – универсальный диск высокой плотности. Данный стандарт является прямым потомком DVD-Video и продвигается на рынок компаниями Toshiba, NEC и Sanyo. Несмотря на аналогичный DVD диаметр носителя HD DVD, этот диск способен вместить до 15 Гбайт на каждый информационный слой. Слоев же может быть несколько: на данный момент уже разработаны экспериментальные 3-слойные диски ёмкостью 45 Гбайт. Впрочем, даже штатных двухслойных дисков более чем достаточно для большинства фильмов. Увеличения плотности записи удалось добиться благодаря применению сине-фиолетового лазера с длиной волны 405 нанометров. Сам по себе формат HD DVD предполагает работу с видеопотоком разрешения до 1080p, звуком вплоть до 7.1 и поддержкой протокола защиты информации HDCP. Скорость считывания данных составляет 32,4 Мбит/с. Поддерживаются алгоритмы кодирования видео – MPEG-2 HD, VC1 (Video Codec 1, базируется на Windows Media Video 9) и H.264/MPEG-4 AVC.
High Definition FAQ: для HD DVD обычно используются коробки из красного пластика с логотипом сверху
High Definition FAQ: внешний вид коробок HD DVD
Что такое Blu-ray Disc?
High Definition FAQ: для Blu-ray обычно используются коробки из синего пластика с логотипом сверху
High Definition FAQ: внешний вид коробок Blu-ray
Существуют ли записываемые диски Blu-ray и HD DVD?
Да, существуют. Для Blu-ray приняты спецификации записываемых дисков BD-R и BD-RE. В первом случае диск предназначен для однократной записи, во втором – для многократной. Диски обоих форматов могут быть как однослойными и вмещать по 25 Гб информации, так и многослойными, емкостью 50 Гб каждый. В свою очередь, для HD DVD предусмотрены аналогичные стандарты – HD DVD-R и HD DVD Rewritable. При этом ёмкость дисков для однократной записи составляет 15 Гб, а перезаписываемых 20 Гб. В обоих случаях диски однослойные. В ближайшее время должны появиться двухслойные версии обоих форматов HD DVD ёмкостью 32 Гб. Также в разработке находятся и более ёмкие версии записываемых дисков обоих форматов.
High Definition FAQ: для обоих форматов предусмотрены и записываемые диски
High Definition FAQ: для обоих форматов предусмотрены и записываемые диски
Что же выбрать: HD DVD или Blu-ray?
Битва форматов в самом разгаре. Несмотря на ухищрения, агитацию и прочие маркетинговые прелести, ни один из форматов не смог подавить конкурента. Сейчас можно смело утверждать, что оба конкурирующих формата будут и дальше развиваться параллельно, тем более что уже начали появляться мультиформатные приводы и плееры с поддержкой обеих технологий.
High Definition FAQ: комбинированный HD DVD/Blu-ray привод LG GGW-H10N с поддержкой записи на диски Blu-ray и воспроизведения HD DVD
High Definition FAQ: комбинированный HD DVD/Blu-ray привод LG GGW-H10N
High Definition FAQ: комбинированный стационарный HD DVD/Blu-ray проигрыватель LG BH100 с полноценной поддержкой Blu-ray и ограниченной – HD DVD
High Definition FAQ: комбинированный стационарный HD DVD/Blu-ray проигрыватель LG BH100
High Definition FAQ: комбинированный стационарный HD DVD/Blu-ray проигрыватель Samsung BD-UP5000 Duo HD с полноценной поддержкой воспроизведения обоих форматов
High Definition FAQ: комбинированный стационарный HD DVD/Blu-ray проигрыватель Samsung BD-UP5000 Duo HD
Все ли телевизоры c логотипами, содержащими аббревиатуру HD, воспроизводят этот формат с максимальным качеством?
Нет. К примеру, один из самых распространённых логотипов – HD Ready – означает лишь возможность воспроизведения видео высокой чёткости с интерполяцией до физического разрешения матрицы телевизора или проектора. При этом оно может быть любым, даже SDTV. К примеру, такой логотип имеют многие плазменные панели с матрицами 848х480 точек. Отобразить видео высокой чёткости с максимальным качеством могут лишь телевизоры и проекторы с физическим разрешением 1920х1080 точек и поддержкой прогрессивной развёртки. Чаще всего их оснащают логотипом FullHD. Но лучше всего обращать внимание именно на разрешение, а не на рекламные надписи.
High Definition FAQ: логотип HD Ready
High Definition FAQ: логотип HD Ready
High Definition FAQ: логотип FullHD (вариант Sony)
High Definition FAQ: логотип FullHD (вариант Sony)
Какие интерфейсы используются для передачи HD-сигнала?
Видео высокой чёткости можно передавать посредством как аналогового, так и цифрового трактов. Но в связи с распространением полностью цифровых устройств отображения видеосигнала (проекторы, плазменные и ЖК-телевизоры) необходимость в использовании аналогового тракта отпала. Тем более обеспечить достойную защиту от копирования в этом случае невозможно. На сегодняшний день существует два основных цифровых интерфейса для передачи HD-сигнала – DVI и HDMI. DVI расшифровывается как Digital Visual Interface, а литера после аббревиатуры означает тип: I – Integrated, D – Digital, A – Analog. В первом случае по одному кабелю может передаваться как аналоговый сигнал RGB, так и цифровой, во втором – только цифровой, в третьем – аналоговый. Максимальная пропускная способность интерфейса составляет 3,7 Гбит/с по одноканальной шине (single link) и 7,4 Гбит/с при двухканальном интерфейсе (dual link). Этого более чем достаточно для передачи любого видеопотока HD.
High Definition FAQ: цифровые интерфейсы DVI и HDMI для передачи HD-видео
High Definition FAQ: цифровые интерфейсы DVI и HDMI для передачи HD-видео
Что такое HDCP?
HDCP – это система шифрования данных, разработанная специально для цифровых интерфейсов DVI и HDMI. Она предотвращает запись или копирование фильмов. Кстати, старые телевизоры, цифровые интерфейсы которых не поддерживают HDCP, не смогут отобразить фильмы с HD DVD или Blu-ray. Так что при покупке телевизора будьте внимательны!
Какие форматы используются для кодирования видеосигнала для HDTV?
Как может транслироваться HDTV и каковы его перспективы в России?
Средства для трансляции HDTV аналогичны используемым для привычного телевидения. Это эфирное, кабельное, спутниковое и IPTV. Наиболее эффективный вариант – эфирное телевидение, но в условиях отсутствия в России цифрового ТВ, а также неопределённости с провайдерами и арендой частот рассматривать этот вариант пока не приходится. Кабельное телевидение имеет больше шансов на успех, но и здесь есть проблемы, главная из которых – отсутствие инфраструктуры для передачи сигнала. Со спутниковым телевидением дела обстоят лучше. На сегодняшний день трансляции HD-контента уже начались. Жаль только, что в нашей стране в этой области весьма слабая конкуренция, да и не все желающие могут поставить себе спутниковую тарелку по объективным причинам, особенно в условиях мегаполиса. IPTV – это один из наиболее перспективных и универсальных способов передачи видеосигнала. Единственным ограничением для начала трансляций HDTV на сегодняшний день является необходимость внедрения стандарта ADSL2+, который, в отличие от текущего ADSL2, имеет достаточную пропускную способность для трансляции HDTV. Также IPTV может транслироваться посредством локальной сети или Интернета. В последнем случае полностью решается проблема создания инфраструктуры – осталось лишь дождаться момента, когда отечественные интернет-провайдеры смогут обеспечить необходимую пропускную способность. А судя по темпам развития данного направления, произойти это может в течение ближайших двух лет.
Многим кажется, что современные телевизоры умеют едва ли не все: устанавливают интернет-соединение, транслируют потоковое видео с YouTube и других онлайн-сервисов, воспроизводят фильмы, записанные на флеш-картах и съемных дисках, могут синхронизироваться со смартфоном. И тем больше разочарование, когда оказывается, что фильм не воспроизводится, так как телевизор не поддерживает формат видео. Полезно знать, что делать в таких случаях и как изменить формат видео для телевизора.
Какие форматы видео поддерживает телевизор
На вопрос о том, какой формат видео лучше для телевизора, универсального ответа не существует. На современные телевизоры устанавливаются операционные системы, многие производители разрабатывают собственное ПО. Набор встроенных кодеков зависит от производителя устройства, модели, прошивки. Чем новее модель, тем больше кодеков она поддерживает.
Как узнать, поддерживает ли телевизор конкретный формат видео? Самый простой способ – прочитать инструкцию к телевизору. В ней всегда указан поддерживаемый данной моделью базовый набор кодеков. Но производители периодически выпускают новые прошивки для различных моделей. При обновлении прошивки количество кодеков, поддерживаемых устройством, может увеличиться.
В большинстве современных телевизоров предусмотрена поддержка самых популярных кодеков:
- MPEG1,2,3,4 – семейство распространенных кодеков, используемых, в частности, для сжатия видео в сервисе YouTube, мессенджере Skype
- H.264 (MPEG-4 Part 10, или AVC) – кодек, обеспечивающий сохранение качества видео при высокой степени сжатия
- HEVC (H.265) – формат сжатия видео с использованием высокоэффективных алгоритмов
- DivX – кодек на основе MPEG4, с его помощью можно формировать файлы типов DivX, MKV, MOV, AVI
Телевизоры Sony, кроме перечисленных форматов, поддерживают кодеки WMV (9/VC1), Asf, AVC, MP. В телевизорах Philips дополнительно предусмотрена поддержка формата RealMedia.
В инструкции к телевизору обычно указывают не только кодеки, но и ограничения. Так, телевизоры Samsung поддерживают кодек HEVC исключительно для файлов типа TS, MP4 и MKV. Кодек H.264 UHD поддерживается только до версии 5.1.
Что делать, если не поддерживается формат видео на телевизоре
Даже на самых современных телевизорах файл может не открыться из-за того, что не поддерживается один из кодеков, при помощи которого сформирован контейнер. Бывают ситуации, когда с видеокодеком все в порядке, но не поддерживается кодек аудио. Часто возникают проблемы с открытием старых файлов-контейнеров, например, VOB. Файлы такого типа использовались для хранения DVD-видео, из-за чего любители киноклассики порой испытывают сложности с воспроизведением любимых фильмов.
Если формат файла не поддерживается телевизором, есть несколько способов решить проблему:
- Обновить прошивку
- Открыть видео на ПК, соединив его с телевизором при помощи кабеля HDMI
- Установить сторонний проигрыватель, поддерживающий много форматов (например, VLC)
- Перекодировать файл в формат, поддерживаемый телевизором
Обновление прошивки – способ, доступный только продвинутым пользователям. К сожалению, вероятность того, что требуемый формат станет поддерживаться после обновления прошивки, довольно низкая.
Соединить телевизор с ПК или ноутбуком легко, но тогда в процессе воспроизведения видео будет задействовано два устройства вместо одного. Последствия очевидны: громоздкость всей системы, двойное потребление электроэнергии, лишение кого-то из членов семьи возможности поработать или поиграть на компьютере.
Установка стороннего проигрывателя (VLC) – вариант неплохой, но на телевизорах Samsung и LG нереализуемый. Установить сторонний проигрыватель можно только на телевизорах с ОС Android TV (Sony, Philips). В Tizen OS (Samsung) и Open webOS (LG) такая возможность не предусмотрена.
Самый простой и беспроигрышный способ посмотреть невоспроизводимый файл – изменить его формат с помощью конвертера.
Как изменить формат видео для просмотра на телевизоре
Чтобы изменить формат видео, нужен конвертер. Существуют как онлайн-сервисы, так и десктопные приложения, с помощью которых можно перекодировать видео из одного формата в другой. Однако список форматов, поддерживаемых онлайн-конвертерами зачастую ограничен только самыми популярными. К тому же процесс онлайн-конвертации требует от пользователя недюжинного терпения: приложения работают, мягко говоря, не быстро, а на скачивание перекодированного файла с сервера требуется дополнительное время. Причем для того, чтобы сервис смог успешно конвертировать видео, необходимо стабильное интернет-соединение.
Чтобы не тратить времени зря, лучше использовать десктопный видеоконвертер. Такие программы работают намного быстрее онлайн-сервисов и не требуют подключения к Интернету. Чтобы избежать сложностей с воспроизведением каких-либо видеофайлов, нужно выбрать десктопную программу, поддерживающую как можно больше форматов.
При всей простоте интерфейса функционал программы удовлетворит самого придирчивого киномана. С помощью приложения легко изменить формат, битрейт, разрешение. Предусмотрены функции редактирования, так что при желании можно вырезать из видео фрагмент для GIF-анимации или собственного клипа.
Расширенное кодирование видео ( AVC ), также называемое H.264 или MPEG-4 Part 10, Advanced Video Coding ( MPEG-4 AVC ), представляет собой стандарт сжатия видео, основанный на блочно-ориентированном кодировании целочисленного DCT с компенсацией движения . Это, безусловно, наиболее часто используемый формат для записи, сжатия и распространения видеоконтента, который по состоянию на сентябрь 2019 года использовался 91% разработчиков видеоиндустрии. Он поддерживает разрешения до 8K UHD включительно .
H.264 был стандартизирован Группой экспертов ITU-T по кодированию видео (VCEG) 16-й Исследовательской комиссии вместе с группой экспертов ISO / IEC JTC1 по движущимся изображениям (MPEG). Проект партнерства известен как Joint Video Team (JVT). Стандарт ITU-T H.264 и стандарт ISO / IEC MPEG-4 AVC (формально ISO / IEC 14496-10 - MPEG-4 Part 10, Advanced Video Coding) поддерживаются совместно, поэтому имеют идентичное техническое содержание. Окончательная редакционная работа над первой версией стандарта была завершена в мае 2003 года, и в последующие редакции были добавлены различные расширения его возможностей. Высокоэффективное кодирование видео (HEVC), также известное как H.265 и MPEG-H Part 2, является преемником H.264 / MPEG-4 AVC, разработанным теми же организациями, хотя более ранние стандарты все еще широко используются.
H.264, пожалуй, наиболее известен как наиболее часто используемый формат кодирования видео на дисках Blu-ray . Он также широко используется для потоковой передачи Интернет-источников, таких как видео с Netflix , Hulu , Amazon Prime Video , Vimeo , YouTube и iTunes Store , веб-программного обеспечения, такого как Adobe Flash Player и Microsoft Silverlight , а также для различных передач HDTV по наземным каналам. ( ATSC , ISDB-T , DVB-T или DVB-T2 ), кабельные ( DVB-C ) и спутниковые ( DVB-S и DVB-S2 ) системы.
H.264 ограничивается патентами, принадлежащими различным сторонам. Лицензия, охватывающая большинство (но не все) патентов, важных для H.264, находится в ведении патентного пула, администрируемого MPEG LA .
Коммерческое использование запатентованных технологий H.264 требует выплаты лицензионных отчислений MPEG LA и другим владельцам патентов. MPEG LA разрешил бесплатное использование технологий H.264 для потоковой передачи Интернет-видео, которое является бесплатным для конечных пользователей, и Cisco Systems выплачивает роялти MPEG LA от имени пользователей двоичных файлов для своего кодировщика H.264 с открытым исходным кодом .
СОДЕРЖАНИЕ
Именование
История
Общая история
В начале 1998 года Группа экспертов по кодированию видео (VCEG - ITU-T SG16 Q.6) объявила конкурс предложений по проекту под названием H.26L с целью удвоить эффективность кодирования (что означает снижение вдвое скорости передачи данных, необходимой для заданный уровень точности) по сравнению с любыми другими существующими стандартами кодирования видео для широкого спектра приложений. VCEG возглавил Гэри Салливан ( Microsoft , ранее PictureTel , США). Первый проект проекта этого нового стандарта был принят в августе 1999 года. В 2000 году Томас Виганд ( Институт Генриха Герца , Германия) стал сопредседателем VCEG.
В декабре 2001 года VCEG и Группа экспертов по движущемуся изображению ( MPEG - ISO / IEC JTC 1 / SC 29 / WG 11) сформировали Объединенную группу по видео (JVT) с уставом для окончательной доработки стандарта видеокодирования. Официальное утверждение спецификации было получено в марте 2003 года. Председателями JVT были Гэри Салливан , Томас Виганд и Аджай Лутра ( Motorola , США: позже Arris , США). В июле 2004 года проект Fidelity Range Extensions (FRExt) был завершен. С января 2005 года по ноябрь 2007 года JVT работала над расширением H.264 / AVC в сторону масштабируемости с помощью Приложения (G) под названием Масштабируемое кодирование видео (SVC). Команда менеджеров JVT была расширена Йенсом-Райнером Ом ( RWTH Aachen University , Германия). С июля 2006 г. по ноябрь 2009 г. JVT работала над Multiview Video Coding (MVC), расширением H.264 / AVC для 3D-телевидения и телевидения с ограниченным диапазоном просмотра и свободного просмотра . Эта работа включала разработку двух новых профилей стандарта: Multiview High Profile и Stereo High Profile.
Расширение диапазона Fidelity и профессиональные профили
Стандартизация первой версии H.264 / AVC была завершена в мае 2003 года. В первом проекте по расширению исходного стандарта JVT затем разработала то, что называлось Fidelity Range Extensions (FRExt). Эти расширения обеспечили более качественное кодирование видео, поддерживая увеличенную точность дискретизации битовой глубины и информацию о цвете с более высоким разрешением, включая структуры дискретизации, известные как Y′C B C R 4: 2: 2 (также известный как YUV 4: 2: 2 ) и 4: 4: 4. Некоторые другие функции также были включены в проект FRExt, такие как добавление целочисленного дискретного косинусного преобразования 8 × 8 (целочисленное DCT) с адаптивным переключением между преобразованиями 4 × 4 и 8 × 8, определяемые кодером взвешивающие матрицы квантования на основе восприятия, эффективное межкадровое кодирование без потерь и поддержка дополнительных цветовых пространств. Конструкторские работы по проекту FRExt были завершены в июле 2004 г., а эскизные работы по ним - в сентябре 2004 г.
Масштабируемое кодирование видео
Кодирование видео с несколькими ракурсами
Стереоскопическое кодирование 3D-AVC и MFC
Позже были разработаны дополнительные расширения, которые включали кодирование 3D-видео с совместным кодированием карт глубины и текстуры (называемое 3D-AVC), стереоскопическое кодирование с поддержкой кадров с несколькими разрешениями (MFC) и кодирование 3D-MFC, различные дополнительные комбинации функций и более высокий кадр. размеры и частота кадров.
Версии
Патентообладатели
Следующие организации владеют одним или несколькими патентами в патентном пуле MPEG LA H.264 / AVC .
Приложения
Формат видео H.264 имеет очень широкий диапазон приложений, охватывающий все формы цифрового сжатого видео, от приложений потоковой передачи в Интернете с низкой скоростью передачи данных до приложений для телевещания HDTV и приложений цифрового кино с кодированием практически без потерь. Сообщается, что при использовании H.264 скорость передачи данных снижается на 50% или более по сравнению с MPEG-2 Part 2 . Например, сообщалось, что H.264 обеспечивает такое же качество цифрового спутникового ТВ, что и текущие реализации MPEG-2, с битрейтом менее половины, при этом текущие реализации MPEG-2 работают со скоростью около 3,5 Мбит / с, а H.264 - только с 1,5. Мбит / с. Sony утверждает, что режим записи AVC со скоростью 9 Мбит / с эквивалентен качеству изображения формата HDV , который использует приблизительно 18–25 Мбит / с.
Чтобы обеспечить совместимость и беспроблемное внедрение H.264 / AVC, многие органы по стандартизации внесли поправки или добавили в свои стандарты, связанные с видео, чтобы пользователи этих стандартов могли использовать H.264 / AVC. И формат Blu-ray Disc , и формат HD DVD, который сейчас не выпускается, включают H.264 / AVC High Profile как один из трех обязательных форматов сжатия видео. Проект цифрового видеовещания ( DVB ) одобрил использование H.264 / AVC для телевещания в конце 2004 года.
Advanced Television Systems Комитет (ATSC) орган по стандартизации в США одобрил использование H.264 / AVC для телевизионного вещания в июле 2008 года, хотя этот стандарт еще не используется для фиксированных передач ATSC в Соединенных Штатах. Он также был одобрен для использования с более поздним стандартом ATSC-M / H (Mobile / Handheld), использующим части H.264 AVC и SVC.
CCTV (Closed Circuit TV) и видеонаблюдения рынки включили технологию во многих продуктах.
Многие распространенные зеркальные фотокамеры используют видео H.264, упакованное в контейнеры QuickTime MOV, в качестве собственного формата записи.
Производные форматы
AVCHD - это формат записи высокой четкости, разработанный Sony и Panasonic, который использует H.264 (соответствует H.264 с добавлением дополнительных функций и ограничений для конкретных приложений).
AVC-Intra является внутрикадровым -только форматом сжатия, разработанный компанией Panasonic .
XAVC - это формат записи, разработанный Sony, который использует уровень 5.2 H.264 / MPEG-4 AVC, что является наивысшим уровнем, поддерживаемым этим видеостандартом. XAVC может поддерживать разрешение 4K (4096 × 2160 и 3840 × 2160) со скоростью до 60 кадров в секунду (fps). Sony объявила, что камеры, поддерживающие XAVC, включают две камеры CineAlta - Sony PMW-F55 и Sony PMW-F5. Sony PMW-F55 может записывать XAVC с разрешением 4K при 30 кадрах в секунду при 300 Мбит / с и разрешением 2K при 30 кадрах в секунду при 100 Мбит / с. XAVC может записывать разрешение 4K со скоростью 60 кадров в секунду с выборкой цветности 4: 2: 2 со скоростью 600 Мбит / с.
Дизайн
Функции
H.264 / AVC / MPEG-4 Part 10 содержит ряд новых функций, которые позволяют сжимать видео намного эффективнее, чем старые стандарты, и обеспечивают большую гибкость для применения в самых разных сетевых средах. В частности, некоторые из таких ключевых функций включают:
Эти методы, наряду с некоторыми другими, помогают H.264 работать значительно лучше, чем любой предыдущий стандарт, в самых разных обстоятельствах и в самых разных средах приложений. H.264 часто может работать радикально лучше, чем видео MPEG-2, обычно обеспечивая такое же качество при половинной или меньшей скорости передачи данных, особенно при высокой скорости передачи данных и видеоконтенте с высоким разрешением.
Как и другие стандарты видео ISO / IEC MPEG, H.264 / AVC имеет эталонную программную реализацию, которую можно бесплатно загрузить. Его основная цель - дать примеры функций H.264 / AVC, а не быть полезным приложением как таковым . Некоторая работа по проектированию эталонного оборудования была также проведена Группой экспертов по движущимся изображениям . Вышеупомянутые аспекты включают функции во всех профилях H.264. Профиль кодека - это набор функций этого кодека, определенных для соответствия определенному набору спецификаций предполагаемых приложений. Это означает, что многие из перечисленных функций не поддерживаются в некоторых профилях. Различные профили H.264 / AVC обсуждаются в следующем разделе.
Профили
Стандарт определяет несколько наборов возможностей, которые называются профилями , ориентированными на определенные классы приложений. Они объявляются с использованием кода профиля (profile_idc) и иногда набора дополнительных ограничений, применяемых в кодировщике. Код профиля и указанные ограничения позволяют декодеру распознавать требования для декодирования этого конкретного битового потока. (И во многих системных средах разрешено использовать только один или два профиля, поэтому декодерам в этих средах не нужно заботиться о распознавании менее часто используемых профилей.) Безусловно, наиболее часто используемым профилем является профиль High Profile.
Профили для немасштабируемых 2D-видеоприложений включают следующее:
Ограниченный базовый профиль (CBP, 66 с набором ограничений 1) В первую очередь для недорогих приложений, этот профиль чаще всего используется в видеоконференцсвязи и мобильных приложениях. Он соответствует подмножеству функций, которые являются общими для базового, основного и высокого профилей. Базовый профиль (BP, 66) В первую очередь для недорогих приложений, требующих дополнительной устойчивости к потере данных, этот профиль используется в некоторых приложениях видеоконференцсвязи и мобильных приложениях. Этот профиль включает в себя все функции, которые поддерживаются в ограниченном базовом профиле, а также три дополнительных функции, которые можно использовать для обеспечения устойчивости к потерям (или для других целей, таких как композитинг многоточечного видеопотока с низкой задержкой). Важность этого профиля несколько снизилась с момента определения ограниченного базового профиля в 2009 году. Все битовые потоки ограниченного базового профиля также считаются потоками битов базового профиля, поскольку эти два профиля имеют одно и то же значение кода идентификатора профиля. Расширенный профиль (XP, 88) Этот профиль, предназначенный для использования в качестве профиля потокового видео, обладает относительно высокой способностью сжатия и некоторыми дополнительными приемами для обеспечения устойчивости к потерям данных и переключению потоков сервера. Основной профиль (MP, 77) Этот профиль используется для цифрового телевещания стандартной четкости, в котором используется формат MPEG-4, как определено в стандарте DVB. Однако он не используется для телевещания высокой четкости, поскольку важность этого профиля уменьшилась, когда в 2004 году для этого приложения был разработан High Profile. Высокий профиль (HiP, 100) Основной профиль для приложений вещания и хранения на дисках, особенно для приложений телевидения высокой четкости (например, это профиль, принятый форматом хранения дисков Blu-ray и службой вещания DVB HDTV). Прогрессивный высокий профиль (PHiP, 100 с набором ограничений 4) Аналогичен высокому профилю, но без поддержки функций кодирования полей. Ограниченный высокий профиль (100 с набором ограничений 4 и 5) Аналогичен профилю Progressive High, но без поддержки срезов B (с двунаправленным прогнозированием). Профиль High 10 (Hi10P, 110) Этот профиль, выходящий за рамки типичных возможностей массовых потребительских продуктов, построен на основе High Profile, добавляя поддержку точности декодированного изображения до 10 бит на выборку. Профиль High 4: 2: 2 (Hi422P, 122) Этот профиль, в первую очередь ориентированный на профессиональные приложения, использующие чересстрочное видео, построен на основе профиля High 10, добавляя поддержку формата выборки цветности 4: 2: 2 при использовании до 10 бит на выборку с точностью декодированного изображения. Высокий 4: 4: 4 прогнозирующий профиль (Hi444PP, 244) Этот профиль построен на основе профиля High 4: 2: 2, поддерживает выборку цветности до 4: 4: 4, до 14 бит на выборку, а также дополнительно поддерживает эффективное кодирование области без потерь и кодирование каждого изображения как трех отдельных цветов. самолеты.
Для видеокамер, монтажных и профессиональных приложений стандарт содержит четыре дополнительных профиля только внутри кадра , которые определены как простые подмножества других соответствующих профилей. В основном это профессиональные приложения (например, камеры и системы редактирования):
High 10 Intra Profile (110 с набором ограничений 3) Профиль High 10 предназначен только для внутреннего использования. Высокий 4: 2: 2 Intra Profile (122 с набором ограничений 3) Профиль High 4: 2: 2 предназначен только для использования внутри помещений. Высокий 4: 4: 4 Intra Profile (244 с набором ограничений 3) Профиль High 4: 4: 4 предназначен только для внутреннего использования. CAVLC 4: 4: 4 внутри профиля (44) Профиль High 4: 4: 4 ограничен только использованием Intra и энтропийным кодированием CAVLC (т. Е. Не поддерживает CABAC).
В результате расширения масштабируемого кодирования видео (SVC) стандарт содержит пять дополнительных масштабируемых профилей , которые определены как комбинация профиля H.264 / AVC для базового уровня (идентифицируемого вторым словом в имени масштабируемого профиля. ) и инструменты, которые достигают масштабируемого расширения:
Масштабируемый базовый профиль (83) Этот профиль, в первую очередь нацеленный на приложения для видеоконференцсвязи, мобильных устройств и видеонаблюдения, строится на основе профиля ограниченного базового уровня, которому должен соответствовать базовый уровень (подмножество битового потока). Для инструментов масштабируемости включено подмножество доступных инструментов. Масштабируемый ограниченный базовый профиль (83 с набором ограничений 5) Подмножество масштабируемого базового профиля, предназначенное в первую очередь для приложений связи в реальном времени. Масштабируемый высокий профиль (86) Этот профиль, в первую очередь нацеленный на широковещательные и потоковые приложения, построен на основе H.264 / AVC High Profile, которому должен соответствовать базовый уровень. Масштабируемый ограниченный высокий профиль (86 с набором ограничений 5) Подмножество Scalable High Profile, предназначенное в первую очередь для приложений связи в реальном времени. Масштабируемый профиль High Intra (86 с набором ограничений 3) Этот профиль, в первую очередь нацеленный на производственные приложения, является масштабируемым высоким профилем, предназначенным для использования только внутри помещений.
В результате расширения Multiview Video Coding (MVC) стандарт содержит два профиля многовидового режима :
Стерео высокий профиль (128) Этот профиль предназначен для стереоскопического 3D-видео с двумя ракурсами и сочетает в себе инструменты профиля High с возможностями межвидового прогнозирования расширения MVC. Высокопрофильный Multiview (118) Этот профиль поддерживает два или более ракурса с использованием как межкадрового (временного), так и межвидового предсказания MVC, но не поддерживает изображения полей и кодирование поля кадра с адаптацией к макроблокам.
Расширение Multi-Resolution Frame-Compatible (MFC) добавило еще два профиля:
МФЦ высокий профиль (134) Профиль для стереоскопического кодирования с двухуровневым улучшением разрешения. Глубина МФЦ высокий профиль (135)
Расширение 3D-AVC добавило еще два профиля:
Многоканальный профиль глубины, высокий профиль (138) Этот профиль поддерживает совместное кодирование информации о карте глубины и видеотекстуре для улучшенного сжатия трехмерного видеоконтента. Улучшенный профиль глубины мультиракурса высокого разрешения (139) Улучшенный профиль для комбинированного многооконного кодирования с информацией о глубине.
Поддержка функций в определенных профилях
Уровни
Читайте также: