Ракетный двигатель для моделей своими руками
Простейший импульсный реактивный двигатель легко сделать из обычной банки или пустого баллона . Нужно только проделать в нем отверстие -конструкция безумно примитивно но тем не менее , способна обеспечить полный цикл работы этого двигателя .
Именно выход рабочей смеси через отверстие с образованием внутри спирта с подсосом воздуха.Заливаем немного медицинского спирта и с помощью размешивания помогаем ему смешаться с воздуха и поджигаем . Однако, сильно не обольщайтесь. Несмотря на всю простоту ,чтобы добиться устойчивой работы ,нужно соблюсти пару важных условий.
1 И самое главное- это диаметр отверстия для каждой банки. Оно уникально. Слишком маленькое отверстие не позволит достаточному количеству воздуха попадает в камеру сгорания, слишком мало будет кислорода и двигатель заглохнет. Если отверстие слишком большое ,скорость истечения газов будет мало. И вы не получите необходимое разрежение внутри, а значит воздух опять туда не попадёт. Проведя множество экспериментов могу сказать ,что вытянутая банки высота которых несколько раз превосходит ее диаметра работают лучше коротких,например из под консервированной кукурузы. Маленькие мне так и не удалось запустить.
Самый большой плюс стеклянных банок в том что они позволяют увидеть всю красоту процесса горения происходящего внутри удивительное зрелище правда длится недолго поэтому лучше и безопаснее использовать железные емкости и тут мы выходим на вторую проблему.
2 В работе этого двигателя перегрев. Дело в том, что корпус банке за считанные секунды весьма сильно разогревается . И это влечёт за собой бурное вскипание топлива. Оно слишком сильно испаряется и в результате снова именем нехватку воздуха в камере сгорания .В итоге двигатель глохнет чтобы этого не происходило его нужно активно охлаждать.
Например, поместите в емкость с водой хотя бы нижнюю часть двигателя. Или обернуть пористой салфеткой ,обильно смоченной в воде. Поверьте ,это на порядок увеличит производительность работы двигателя. Больше всего мне хотелось найти какое-то более практичное применение для этой забавной игрушки ,например поставить его на шоссе и сделать реактивную машинку. Но как оказалось в горизонтальном положении какой двигатель работает весьма неохотно. Возможно , это связано с изменением геометрии процесса горения или чем-то еще. Но. После множества неудач мне всё же удалось приручить дракона.
Необходим простейший набор измерительных и чертежных инструментов: линейка, штангенциркуль, карандаш.
Корпус двигателя делается из 10-ти слоев высококачественной офисной бумаги. Для этого из стандартного листа А4 отрезаются по длине две полоски шириной 69 мм. Далее берется оправка – ровный гладкий и прочный, лучше металлический, стержень (или трубка) длиной более 80 мм и диаметром 15 мм. Чтобы корпус не прилипал к оправке, можно отрезать кусок широкого скотча по длине оправки и накатать его на оправку в поперечном направлении. Затем на оправку наматываются последовательно полоски бумаги, которые в процессе намотки обильно, без пропусков, промазываются силикатным клеем. Прилегающую к оправке сторону первого витка промазывать клеем, конечно, не надо.
После этого неплохо прогнать еще сырой корпус через внешнюю оправку – металлический цилиндр с внутренним диаметром 18 мм. Корпус движка должен достаточно плотно проходить через эту оправку, этого надо добиться обязательно, поскольку в дальнейшем придется проводить набивку корпуса топливом, что без плотно сидящей внешней оправки делать нельзя. Если такую трубку найти не удастся, надо будет изготовить внешнюю оправку намоткой не менее 15-ти слоев офисной бумаги на уже готовый корпус двигателя, так – же на силикатном клею. Слегка подсушив корпус, надо снять его с оправки предварительно провернув против намотки. Дальше, пока корпус полностью не высох надо вставить с одной стороны готовое сопло. Для этого конечно необходимо, чтобы сопло уже было подготовлено.
Итак, изготавливаем сопло. Рекомендую сделать сразу два сопла, далее будет понятно почему. Обычно несложно найти деревянный стержень диаметром 16-18 мм, лучше из твердого дерева вроде бука или граба. Аккуратно торцуем его, т.е. делаем ровный перпендикулярный оси спил на одном конце. Для этого надо отрезать ровную полосу ватмана, шириной ~100мм и плотно намотать на стержень точно виток над витком. По краю этой намотки постепенно поворачвая стержень и удерживая ватман на месте делаем круговой пропил. Слегка зачистив шкуркой место спила получаем четкий торец. Здесь мы подошли вплотную ко второму правилу, непосредственно вытекающему из первого:
2) при любых операциях требующих геометрической точности использовать всевозможные оправки, шаблоны, кондукторы .
Первый этап сборки двигателя - установка сопла. Делать это надо пока корпус еще не просох, т.е. практически сразу после намотки. Сопло устанавливается в корпус с одного торца на силикатном клею заподлицо с краем корпуса.
Вот мы и подошли к третьему правилу:
3) строго соблюдать соосность всех центральных каналов и осевую симметричность всех деталей ракеты.
Конечно, это правило интуитивно понятно, но частенько про него забывают.
Топливо.
Непосредственно назрел вопрос о топливе. Конечно, его надо решить в первую очередь, перед тем как приступать к производству ракеты, но я веду рассказ, так сказать, в порядке логической очередности. Соблюдать этот порядок при изготовлении ракеты конечно не обязательно. Самым доступным, безопасным и одним из самых эффективных считается карамельное порошковое топливо, состоящее из смеси тонко измельченного сахара 35% и калиевой селитры 65%. Процентовка только по весу. Достать компоненты несложно. Про сахар я не говорю, а селитру ищите в садоводческих магазинах и рынках. Лучше всего, конечно, купить качественную селитру в специализированной фирме (Русхим, Вектон). Точное соблюдение весовых соотношений обязательно. Отсюда и четвертое правило:
4) точно соблюдать пропорции химических компонентов, степень измельчения и технологию производства топлива .
5) топливо надо обязательно проверить .
Для этого прессуем небольшую тонкую таблетку-лепешку из топлива и в безопасном месте на гладкой негорючей поверхности поджигаем ее с одного края. Таблетка должна гореть активно, пламя должно иметь четкую направленность, сама таблетка должна вести себя беспокойно, норовя сорваться с места. После сгорания не должно остаться практически никаких шлаков. Такое топливо можно считать подходящим.
Если корпус движка просох можно приступать к набивке. К этой операции я призываю отнестись с максимальной серьезностью. От качества ее проведения зависит не только качество работы движка, но и само его существование. Проще говоря, некачественная набивка может привести к взрыву.
Сначала разбираем систему центровки сопла и помещаем корпус движка во внешнюю оправку, о которой я уже упоминал. Это обязательно, поскольку при набивке возникают усилия, которые могут повредить корпус. Напомню, корпус должен входить во внешнюю оправку свободно, но плотно, без люфтов. Сначала при помощи подходящего стержня или хвостовика сверла плотно запрессовываем топливом канал сопла. Только аккуратно без фанатизма - сопло может расколоться. Затем помещаем движок в оправке на ровную прочную поверхность. Засыпав небольшую порцию топлива, при помощи подходящего по диаметру (~14,5мм) прочного стержня с плоским торцом и молотка прессуем эту порцию. Здесь важно, чтобы порции топлива были все время одинаковыми – приблизительно объем маленькой ложечки от мороженного Баскин-Роббинс "с горкой", чтобы удары молотком шли по нарастающей от слабого к довольно сильному, и количество их было одинаковым. Движок при этом надо удерживать на столе вертикально без перекосов, дабы не повредить его. Продолжаем эту нудную, но ответственную операцию до тех пор, пока до верхнего края движка останется незаполненным 12 мм по высоте. Высота топливного заряда будет составлять 45 мм. Аккуратно почистив стенки свободного объема, берем заглушку, смазываем силикатным клеем и вставляем ее в верхнюю часть. Не вынимая корпус из внешней оправки, подпрессовываем молотком заглушку пока она плотно не сядет на топливо. Теперь достаем движок из оправки и делаем перетяжку на корпусе, фиксирующую заглушку, по схеме, описанной для сопла. Единственное, что надо будет предварительно сделать, это, поскольку корпус уже приобрел приличную прочность, сначала продавить его по линии отметки перетяжки каким-нибудь металлическим предметом имеющим тонкую, но не острую кромку. Можно воспользоваться стальной проволокой 2мм (спица от велосипеда). Обязательна обмотка нитками на клею в месте перетяжки.
Если наша заглушка делается из второго сопла, т.е. имеет "технологическое" отверстие, то напоминаю, надо либо переед установкой подложить под неё копейку, либо залить отверстие эпоксидкой. В данный момент как раз пора воспользоваться смолой.
Зажигание.
6) Время до срабатывания двигателя должно быть таким, чтобы можно было отойти на безопасное расстояние .
7) все, что можно, должно быть испытано и замерено заранее .
Планер.
Теперь будем делать собственно ракету. Можно конечно примотать движок к рейке и запустить из бутылки, но, по-моему, это низведение достаточно изящного процесса ракетостроительства до изготовления простой шутихи. Я применяю реечный вариант только для отработки движков, когда надо испытать несколько вариантов, результат запуска которых заранее неизвестен. Поэтому я расскажу, как сделать очень простую, но все-таки ракету, со всеми ее атрибутами. Поскольку на этом этапе всегда возникает соблазн проявить инициативу и творчество, сразу предупреждаю, усложнять здесь для начала не стоит, поскольку вероятность потерять ракету после запуска очень велика, на стадии отработки я потерял подряд три ракеты. Улетают они - будь здоров!
Схема ракеты показана на рис.2.
Конструкция, которую я предлагаю, очень проста. Корпус фюзеляжа делается так же как и у движка, только для этого берется один кусок офисной бумаги шириной 110мм и наматывается на оправку диаметром 18мм. Надо проконтролировать, чтобы движок с трением, но свободно вставлялся в корпус ракеты. Можно сделать корпус ракеты немного больше диаметром, а движок подогнать намоткой колец бумаги по краям движка.
Стабилизаторы делаются склейкой двух заготовок, см. Рис.3, из тонкого картона, типа визиточного. Всего надо сделать три штуки. В месте крепления к корпусу на заготовках делается отгиб 4мм в разные стороны, что после склейки половинок создает удобную поверхность для приклеивания к фюзеляжу. Размер и форма стабилизаторов дело весьма произвольное, естественно в определенных рамках. Так что лучше для начала не экспериментировать, а сделать по приведенной схеме. Клеятся стабилизаторы на корпус быстросохнущим клеем типа "Супермомент", по предварительно сделанной четкой разметке. Определить положение стабилизаторов совсем несложно, для этого не нужно даже вспоминать школьные формулы. Первая отметка, т.е. положение первого стабилизатора - клеевой шов на фюзеляже. Далее берем тонкую металлическую линейку, упираем ее нулевой отметкой в клеевой шов и прокатываем на столе на один оборот. Положение клеевого шва после оборота покажет нам периметр фюзеляжа. Поделив его на 3, получаем положение двух других стабилизаторов относительно первого. Путем такой же накатки линейкой делаем отметки на фюзеляже.
Опыт показал, что клеевого соединения недостаточно, поэтому в стабилизаторах впритык к корпусу делаются шилом два отверстия, сквозь которые, с помощью иголки наматывается не менее пяти витков х/б нитки №10. Под нижнюю намотку предварительно вставляется один направляющий кольцевой зацеп. Нитки промазываются силикатным клеем. Такой же направляющий зацеп крепится с помощью ниток и клея в носовой части ракеты строго над нижним. Направляющие зацепы делаются из маленьких канцелярских скрепок, с таким расчетом, чтобы в них легко проходил стержень диаметром 5 мм.
Носовой обтекатель ракеты можно сделать из винной деревянной пробки, обточив ее как сопло, на дрели. Пробковый материал довольно сложен в обработке, поэтому действовать надо аккуратно, используя не очень грубую шкурку. Тут надо поэкспериментировать.
Пусковая установка.
8) запуск ракеты без направляющей недопустим.
Поскольку центр тяжести у такой ракеты находится спереди от центра давления и точки приложения тягового усилия, недостаточно разогнавшись, ракета может перейти в горизонтальный полет и догнать незадачливого моделиста. Кстати, к такому развитию событий надо быть готовым даже при наличии качественной направляющей и не зевать в случае чего.
Перед запуском
9) надо проверить аэродинамическую устойчивость ракеты, т.е. способность ракеты придерживаться выбранного направления полета.
Запуск
Запуск ракеты самый интересный момент. Но и тут нельзя расслабляться. Надо обязательно
10) обеспечить безопасность окружающих.
Ваше увлечение не должно быть источником опасности для других. Поэтому надо найти площадку, на которой в радиусе 200м нет посторонних людей, строений, легко воспламеняющихся объектов.
Расчет
- Класс С11
- время работы t=0.81 сек
- Kn максимальный Knmax=64
- давление в камере Pmax=0.68 МПа
- тяга максимальная Fmax=18.8 H
- тяга средняя Favg=11.9 H
- импульс полный Itot=9.4 Н*сек
- импульс удельный Isp=97.9 сек
На графике рис.4 приведено изменение числа Kn по времени, т.е. отношения площади горения к площади критического сечения сопла по времени.
На графике рис.5 приведено изменение давления в камере движка по времени. (Один МегаПаскаль соответствует 10-ти атмосферам).
На графике рис.6 приведено изменение тяги по времени.
Обратите внимание, тяга такого небольшого простейшего движка может превысить 1,5кг. И это для ракеты весом 30-35г!
Точность расчета оставим на моей совести. Думаю все же, результаты достаточно близки к истине, т.к. сравнение результатов многочисленных запусков с разными параметрами движка и результатов соответствующих расчетов выявили явное соответствие. Освоить расчетную методу я очень рекомендую, тем паче, что она не сложна. При проектировании своего двигателя очень полезно оценить все критические параметры, дабы не получить вместо движка петарду. Полезно также бывает провести сравнительные вычисления по какому-нибудь параметру (например, по диаметру критики), чтобы не проводить кучу экспериментальных запусков, результаты которых порой заценить достаточно проблематично без соответствующей аппаратуры.
Высоту полета ракеты, максимальную скорость и время подъема тоже можно легко рассчитать по программе Ричарда Накка EzAlt. Несмотря на простоту, программа похоже дает приличную точность. По крайней мере, для данной ракеты расчет и измерение по триангулярному методу показали одинаковый результат для высоты подъема с работающим двигателем - 90м. Выше ракета летит уже по инерции не оставляя за собой следа, да еще с бешеной скоростью, поэтому замерить максимальную высоту полета проблематично. Расчет по EzAlt при самых неблагоприятных условиях дает 300м! Хочется в это верить.
Для начинающего ракетостроителя (пусть даже ракета и сделана из картона), не проблема рассчитать площадь стабилизаторов и длину ракеты, т.к. сделать это совсем не сложно. Основная проблема при изготовлении ракет — это двигатель. Сегодня мы поговорим об изготовлении прочного двигателя из картона и бумаги.
- Как сделать двигатель для ракеты
- Как сделать реактивный двигатель
- Как сделать ракету в домашних условиях
- Плотный картон
- Ножницы
- Линейка
- Карандаш
- Клей ПВА
- Деревянный брусочек
- Инструменты для работы по дереву
Следует сразу сказать, что все размеры двигателя будут зависеть от параметров конкретно вашей ракеты. У кого-то она может быть шире, у кого уже, так же и с длиной. Поэтому мы дадим основу технологии изготовления двигателя для ракеты, а размеры вы определите для себя самостоятельно. Все, что вам потребуется — это клей ПВА и картон. Исключение составляет сопло, но его мы рассмотрим отдельно.
Итак, для начала вам следует определить, какой ширины будет ваша ракета. Исходя из этого значения мы будем определять ширину самого двигателя. Советуем вам не делать корпус ракеты раньше, чем сделан двигатель. Т.к. абсолютно точно узнать ширину двигателя заранее не удастся, а в уже готовый корпус более широкий двигатель будет невозможно установить без изменения конструкции корпуса ракеты.
Проще говоря, определите минимальную ширину для ракеты. Затем прикиньте, какой длины должен быть будущий двигатель.
Отрежьте полосу картона, длина которой должна быть равна нескольким обхватам будущего корпуса ракеты согласно минимальной ширине. Желательно, чтобы длина отрезаемой полосы позволила сделать трубку со стенками из трех-четырех слоев картона. Можно, конечно, и больше, но это будет утяжелять конструкцию.
Промажьте клеем полосу и начните сворачивать ее в трубку. Следите за тем, чтобы слои картона наиболее плотно прилегали друг к другу — это даст более крепкие стенки двигателю, когда клей высохнет и затвердеет.
Сделав основу корпуса двигателя, вы уже можете снять с него мерки и получить реальную ширину для будущей ракеты. Также вы будете знать, какой диаметр брать для изготовления сопла.
Далее следует изготовить заглушку. Тут есть два варианта — либо вырезать деревянный кругляш по диаметру двигателя и вклеить его в трубку, либо сделать кругляш из бумаги. Если с деревом все понятно, то из бумаги заглушка делается аналогично картонной трубке. Возьмите обычную бумагу и вырежьте полоску шириной, равной ширине будущей заглушки.
Полученную полоску бумаги промазывайте клеем и аккуратно сворачивайте ее наподобие свитка. Слои должны прилегать друг к другу так плотно, насколько это возможно. После того как клей просохнет, полученная шайба по прочности не будет уступать дереву.
Вклейте бумажную шайбу или деревянный кругляш в картонный корпус с любой стороны. Двигатель почти готов.
Теперь следует изготовить сопло. Легче всего взять деревянную шайбочку соответствующего диаметра и обработать его таким образом, чтобы получить сечение, аналогичное представленному на рисунке.
Осталось только вклеить сопло, после чего можно будет засыпать порох и установить фитиль. Бывает и так, что для лучшего розжига топлива по центру создают полость, в которой будет находится фитиль. Т.к. с установленным соплом сделать это будет проблематично, можно проделать отверстие в массиве пороха заранее, после чего аккуратно вклеить само сопло.
Вы знали, что если в согнутую дугой трубу положить сухого спирта, подуть воздухом из компрессора и подать газ из баллона, то она взбесится, будет орать громче взлетающего истребителя и краснеть от злости? Это образное, но весьма близкое к истине описание работы бесклапанного пульсирующего воздушно-реактивного двигателя – настоящего реактивного двигателя, построить который под силу каждому.
Бесклапанный ПуВРД — удивительная конструкция. В ней нет движущихся частей, компрессора, турбины, клапанов. Простейший ПуВРД может обойтись даже без системы зажигания. Этот двигатель способен работать практически на чем угодно: замените баллон с пропаном канистрой с бензином — и он продолжит пульсировать и создавать тягу. К сожалению, ПуВРД оказались несостоятельными в авиации, но в последнее время их всерьез рассматривают как источник тепла при производстве биотоплива. И в этом случае двигатель работает на графитовой пыли, то есть на твердом топливе.
Наконец, элементарный принцип работы пульсирующего двигателя делает его относительно безразличным к точности изготовления. Поэтому изготовление ПуВРД стало излюбленным занятием для людей, неравнодушных к техническим хобби, в том числе авиамоделистов и начинающих сварщиков.
Несмотря на всю простоту, ПуВРД — это все-таки реактивный двигатель. Собрать его в домашней мастерской весьма непросто, и в этом процессе немало нюансов и подводных камней. Поэтому мы решили сделать наш мастер-класс многосерийным: в этой статье мы поговорим о принципах работы ПуВРД и расскажем, как изготовить корпус двигателя. Материал в следующем номере будет посвящен системе зажигания и процедуре запуска. Наконец, в одном из последующих номеров мы обязательно установим наш мотор на самодвижущееся шасси, чтобы продемонстрировать, что он действительно способен создавать серьезную тягу.
От русской идеи до немецкой ракеты
Чтобы работать было приятно и безопасно, мы предварительно очищаем листовой металл от пыли и ржавчины с помощью шлифовальной машинки. Края листов и деталей, как правило, очень острые и изобилуют заусенцами, поэтому работать с металлом надо только в перчатках.
Конечно же, речь идет о клапанных пульсирующих двигателях, принцип действия которых понятен из рисунка. Клапан на входе в камеру сгорания беспрепятственно пропускает в нее воздух. В камеру подается топливо, образуется горючая смесь. Когда свеча зажигания поджигает смесь, избыточное давление в камере сгорания закрывает клапан. Расширяющиеся газы направляются в сопло, создавая реактивную тягу. Движение продуктов сгорания создает в камере технический вакуум, благодаря которому клапан открывается, и в камеру всасывается воздух.
В отличие от турбореактивного двигателя, в ПуВРД смесь горит не непрерывно, а в импульсном режиме. Именно этим объясняется характерный низкочастотный шум пульсирующих моторов, который делает их неприменимыми в гражданской авиации. С точки зрения экономичности ПуВРД также проигрывают ТРД: несмотря на впечатляющее отношение тяги к массе (ведь у ПуВРД минимум деталей), степень сжатия в них достигает от силы 1,2:1, поэтому топливо сгорает неэффективно.
Прежде чем отправляться в мастерскую, мы начертили на бумаге и вырезали шаблоны разверток деталей в натуральную величину. Осталось лишь обвести их перманентным маркером, чтобы получить разметку для вырезания.
Горючая смесь в ПуВРД сгорает с дозвуковой скоростью. Такое горение называется дефлаграцией (в отличие от сверхзвукового — детонации). При воспламенении смеси горючие газы вырываются из обеих труб. Именно поэтому и входная, и выходная трубы направлены в одну сторону и сообща участвуют в создании реактивной тяги. Но за счет разницы длин в тот момент, когда давление во входной трубе падает, по выходной еще движутся выхлопные газы. Они создают разрежение в камере сгорания, и через входную трубу в нее затягивается воздух. Часть газов из выходной трубы также направляется в камеру сгорания под действием разрежения. Они сжимают новую порцию горючей смеси и поджигают ее.
Читайте также: