Охлаждение блока питания компьютера своими руками
Конечно, этого не случится со многими людьми (и теперь я буду знать, как играть с большим количеством перерывов, и, возможно, вместо этого на моем рабочем столе), но все же . для науки?
Возьмите пластиковую или металлическую миску (возможно, кухонную?) С достаточно плоским дном, наполните ее небольшим количеством воды и положите на верх адаптера. Стеклянные или пластиковые не будут работать, потому что они плохо проводят тепло. Вы также можете взять большой кусок металлической фольги и положить его под адаптер, чтобы обе стороны остыли. Предупреждение: не заливайте слишком много воды, так как чаша может опрокинуться.
Мой источник питания Dell постоянно делает это на моем инопланетном программном обеспечении. У меня есть m11x, поэтому я могу установить его на охлаждающий коврик рядом с ноутбуком. Мое предложение было бы получить кулер для ноутбука, который больше, чем ваш ноутбук, а затем положить адаптер рядом с вашим ноутбуком . Это также может зависеть от размера вашего шнура от адаптера к стене, я знаю, что Dell продает их до 12 футов, что приятно или для этой цели.
Безусловно, лучшее, что вы можете сделать, это дать естественному охлаждению БП, не пытайтесь охлаждать его быстрее, так как это может привести к повреждению (если оно еще не повреждено). Дайте ему полностью остыть, прежде чем пытаться использовать его снова, и следите за своим ноутбуком и блоком питания при первом использовании, если он был поврежден.
Просто любопытно, поскольку я никогда не слышал, что быстрое охлаждение может повредить оборудование (кроме попадания в него жидкого азота или чего-то, где оно становится очень хрупким), может повредить что-нибудь, можете ли вы это сделать?
Мой источник в основном опыт, хотя с точки зрения электронного оборудования дифференциальное охлаждение было бы основной проблемой при любой технике быстрого охлаждения, которая может привести к трещинам паяных соединений и разрыву электролитических конденсаторов среди прочего (хотя в этом случае взрывные колпачки, скорее всего, в любом случае ). Естественное охлаждение современного силового блока должно уменьшить - хотя и не исключить - вероятность проблем, вызванных дифференциальным охлаждением.
Почему адаптеры питания не имеют никакой вентиляции для охлаждения . Буквально полностью запечатанный черный ящик. Это значит, что со временем он перегреется. Не может быть хорошего дизайна.
Поднимите его с пола, как предложено, и натяните на него настольный вентилятор - и / или получите более высокую мощность.
Это довольно старый вопрос, но у меня есть довольно уникальное решение. Купите хороший вентилятор для ноутбука только для мощного блока, он не обеспечит такого охлаждения, что приведет к повреждению, но будет поддерживать разумную температуру. У меня есть игровой ноутбук ASUS ROG и Alienware. Оба блока питания имеют проблемы с нагревом.
Лично я использую вентилятор, опирающийся под углом к стене, и сделал опору, чтобы удержать блок питания против вентилятора. Это держит это очень круто.
Изображение, которое я приложил, является более старой установкой, в которой я использовал размер силовых кабелей, чтобы держать его на поклоннике! (также у блока питания есть ножки, которые подходят к прорезям вентилятора
Если оно горячее на ощупь, но недостаточно горячее, чтобы обжечь вас (то есть вы можете держать его неудобно), это, вероятно, хорошо. Имейте в виду, что температуры, такие как 100 градусов по Фаренгейту, считаются относительно прохладными для электронных компонентов. Тем не менее, если жарко, так что вы не можете дотронуться до него, скорее всего, оно замкнулось, и его НЕОБХОДИМО ЗАМЕНИТЬ НЕМЕДЛЕННО ИЛИ ПОЖАР . Меньше сопротивления, больше индуктивности, больше тепла или что-то в этом роде .
Очень похожее решение, как «Elapsed's.
PS: Чтобы увеличить остыть, попробуйте метод LSerni ниже в разделе комментариев. Не обращайте на это внимания: я не пытался, но чтобы увеличить время восстановления, вы можете обернуть адаптер питания алюминиевой фольгой (фольга). Я думаю, что вы должны плотно обернуть его с помощью термопасты. Таким образом, почти каждая поверхность фольги должна контактировать с БП. Таким образом, адаптер для ноутбука может передавать его тепло алюминию.
ВНИМАНИЕ: если упаковка не плотная; Вы вызываете перегрев блока питания из-за заблокированного воздушного потока и очень горячих воздушных карманов между фольгой и поверхностью адаптера. Поэтому вам нужно попробовать небольшой кусочек алюминиевой фольги, нанеся его на адаптер с пастой. если термопаста, изготовленная для процессоров, приклеит фольгу к поверхности блока питания и сохранит ее в течение очень долгого времени, проблем не будет.
Завершите обертывание, не разрезая фольгу. Там должна быть дополнительная фольга, если диаметр вашего вентилятора. Направьте ваш вентилятор на эту дополнительную фольгу, и это ДОЛЖНО произойти: блок питания будет передавать тепло на фольгу. Вентилятор воздуха быстрее охладит блок питания, потому что больший поток воздуха будет соприкасаться с более нагретой поверхностью.
Обмотка БП термопастой плюс алюминиевая фольга будет охлаждать его меньше , а не больше. Если вы действительно хотите проявить творческий подход, вырежьте два квадратных отверстия на противоположных концах пластикового блока питания (гарантия на пустоты) и используйте его выходное напряжение 19 В для подключения двух 6-сантиметровых 12-вольтовых вентиляторов в последовательной цепи, один нагнетает воздух, другой всасывает воздух. Они будут тянуть около 1,5 - 2 Вт и хорошо охлаждают блок питания. Проблема в том, что если блок питания перегревается, то он имеет недостаточные размеры (например, 65 Вт с ноутбуком, время от времени потребляющим 70–75 Вт) и должен быть немедленно заменен на более мощный. Перегрев является симптомом .
Спасибо, Лсерни. Я предполагаю, что термопаста работает только между металлическими поверхностями или между определенными сплавами.
Особенностью работы практически всех импульсных блоков питания является их нагрев до относительно высоких температур – порядка 50-100°С в зависимости от модели – поэтому одним из важных условий эксплуатации является обеспечение приемлемой температуры окружающей среды и охлаждения блоков питания, то есть отвода тепла от нагревающихся в процессе работы элементов. Компания MEAN WELL для охлаждения блоков питания использует следующие способы:
Естественная конвекция воздуха
Наиболее распространенный способ охлаждения блоков питания. Принцип действия заключается в непосредственной передаче тепла от нагревающихся компонентов на радиаторы и затем на корпус блока питания за счёт теплопроводности материалов, радиатор (и корпус блока питания) излучает тепло в окружающее пространство, которое за счет циркуляции воздуха в среде передается дальше, то есть происходит естественная конвекция окружающего воздуха.
Такой способ обладает высокой универсальностью — в большинстве случаев габариты корпусов блоков питания позволяют устанавливать радиаторы на основные компоненты с высоким тепловыделением. Эффективность охлаждения зависит от эффективной площади рассеивания тепла радиатора, температуры и скорости проходящего через него воздушного потока. Поэтому для ряда блоков питания корпус имеет перфорацию закрывающих частей для эффективного отвода тепла.
Достоинствами этого способа является бесшумность работы блоков питания и высокий срок службы за счет отсутствия элементов, подверженных механическому износу. Недостатки – требуется дополнительный объем пространства для размещения радиаторов охлаждения в корпусе самого блока питания и соблюдение условий по размещению блока питания, чтобы обеспечить возможность притока свежего воздуха в конечном устройстве. Как правило, такой способ охлаждения используется для блоков питания достаточно небольшой мощности – до 200 Вт.
Примерами могут быть популярная серия бюджетных блоков питания LRS (кроме моделей на 350 Вт) или серия блоков питания высокой надежности HRP (модели от 75 до 200 Вт). С учетом пожеланий клиентов, компания MEAN WELL выпустила серию блоков питания UHP, которые охлаждаются только за счет естественной конвекции во всем диапазоне мощностей в серии – от 200 до 1500 Вт.
Рисунок 1. Дополнительная перфорация корпуса для естественной конвекции воздуха. LRS-100
Принудительное охлаждение
Второй по популярности способ охлаждения. Для улучшения конвекции в дополнение к радиаторам устанавливается вентилятор (кулер), который повышает теплообмен с окружающей средой. При таком способе охлаждения требуется меньше площадь радиатора и, соответственно, требуется меньший объем корпуса блока питания, то есть меньше габариты при равной или даже большей мощности блока питания. Вместе с тем, в составе блока питания появляется дополнительная точка отказа, которая влияет на общий срок службы блока питания, к тому же блок питания в месте его размещения требует профилактического ухода (очистка от пыли).
Можно выделить две разновидности использования принудительного охлаждения в блоках питания компании MEAN WELL – первый подход заключается в использовании встроенного кулера для обеспечения номинальной мощности блока питания в виде единого конструктива. Такой подход реализован в серии SE, серии RSP-320 и других.
Второй подход предлагается для мощных блоков питания открытого типа (от 75 Вт и выше), когда пользователь самостоятельно устанавливает дополнительный вентилятор охлаждения в удобном месте. Применение внешнего кулера с рекомендованными параметрами позволяет добиться максимальной мощности от блока питания, при этом разница между номинальной мощностью (с естественной конвекцией) и максимальной (при использовании кулера) может быть значительной. Для выбора подходящей модели вентилятора используется параметр оценки – скорость воздушного потока (CFM), указывается в спецификации (даташите) на блок питания. Примерами второго подхода являются: серия для медицинского применения RSP (от 75 Вт и выше), серия EPS-120, или популярная серия EPP во всем диапазоне мощностей от 100 до 500 Вт.
Рисунок 2. Крепление дополнительного вентилятора для охлаждения. RPS-400-TF
Использование теплоносителя (система жидкостного охлаждения)
Этот способ охлаждения компания MEAN WELL реализовала в своей новинке – серии блоков питания PHP-3500. На верхнюю панель блока питания можно прикрепить элемент теплообмена (радиатор теплообмена, артикул HS-656, приобретается отдельно), который заправляется теплоносителем (водой):
Рисунок 3. Радиатор теплообмена HS-656 для PHP-3500
Серия блоков питания PHP-3500 уникальна тем, что позволяет использовать любой из перечисленных способов охлаждения – допускается естественная конвекция воздуха, со снижением выходной мощности до 50% от максимальной и ограничением по температуре окружающей среды. Также допускается использование внешнего кулера или теплообменного радиатора с жидкостным охлаждением на максимальной мощности и максимально возможная температура окружающей среды. И также производителем предлагается третий – промежуточный способ охлаждения – это использование дополнительной алюминиевой пластины, увеличивающей площадь рассеивания тепла от корпуса блока питания.
Разбирал завалы на ноуте и нашел фотки 6 летней давности, где я запечатлел процесс создания самодельной системы водяного охлаждения (СВО) компьютера.
Ну начнем по порядку. Вероятно, у многих возникнет вопрос: "Анафига?"
Отвечу сразу.
Предистория
Была приобретена в свое время за кругленькую сумму денег топовая модель процессора Intel Core 2 Quad 2.83GHz/12MB L2/1333MHz /LGA775, коий и по сих пор радует своей производительностью.
Так-же установлен винт WD 1GB/32MB/Black/SATA2, 4GB DDR2 800MHz (Up to 1300MGz) с самодельным радиатором, топовая видеокарта Saphire ATI HD6870 тогда недавно появившаяся топовая модель с поддержкой DX11.
Так-же уже была приобретена игровая материнская плата ASUS R.O.G. series X35-chip 2xPCIEx16 с рассчетом на установку второй видеокарты и сборки Crossfier или SLI. Чуть позже была докуплена вторая карточка, но не аналогичная Saphire ATI HD6870 и даже не другая модель "Красного семейства", а решено было подружить двух непримиримых соперников ATI и NVidia, приобрел ASUS GeForce GT9600 исключительно для поддержки фирменной технологии "Зеленого лагеря" — PhysX.
Для тех, кто не вполне понимает, зачем это — технология PhysX дает поддержку максимально приближенной к реальности физики движения и взаимодействия мелких объектов в игровой графике, как то: пыль в лучах света, листва на ветру, разлетающиеся осколки и т.п.
Вот демонстрация эффекта технологии PhysX в водной среде:
В любимой мной когда-то игре Sacred 2
B Borderlands 2
В Batman: Arkham Origins
Ну и много где еще — можно найти в тырнете.
Почему тогда не поставить видеокарту "зеленого лагеря" ? — конкуренты из "красного лагеря" при равной мощи стоят, как правило, дешевле или имеют бОльшую мощь при равных ценах. Нехватает лишь такой мелочи, как физика) Под физику можно взять карточку весьма дешевую. Основное требование к ней — это наличие более-менее производительного GPU. Наличие "широкой" шины и быстрой и большой памяти не нужно! А такие видеокарточки стоят совсем немного.
Монстр Saphire ATI HD6870 с референсной системой охлаждения занимал ооочень много пространства в корпусе, имел высокопроизводительную и как следствие громкую турбину, откровенно дешевая ASUS GeForce GT9600 имела плохонький радиатор и убогенький кулер на нем, вследствии чего высокопроизводительный GPU нагревался до температур порядка 87-96 градусов! Не порядок!
К этому всему я добавим еще и процессор, разогнанный со штатных 2,83GHz до 3,6GHz. Тепла и шума было моооре. Такую систему я собрал с запасом на 5-6лет, пока я учился в институте (заочник, оплачивал из своего кармана, потому и брал с запасом — денег во время учебы на комп не будет), чтобы она обеспечивала комфортную графику всех игр с разрешением до FullHD и максимальных параметрах графики — идти на компромисс не привык))
Мирился попервости с шумом, открывал балкон — системник охлаждался свежим морозным воздухом, но с наступлением лета ситуация резко осложнилась. Комп попросту стал перегреваться!
Нужно было что-то решать. Начал копать интернеты в поисках способов отвода тепла. Тем временем оборудовал системник дополнительными кулерами для максимального отвода тепла из коробки.
На тот момент в системнике чудом уживались 12 (!) кулеров! Среди которых 2 — блоки питания, 1 — процессор, 1 — охлаждение системы питания процессора, 2 — видеокарты и 6 штук обеспечивали вентиляцию ящика.
Надо-ли говорить о том, какой вой был от этого монстра!
Проштудировав инет, выбран был путь самурая наиболее доступный для дома вид высокопроизводительного охлаждения — это СВО. Купить такое в Екб-то проблема, я не говорю о нашем захолустье. Да и стоят такие системы ой как не дешего. Ну и в конце концов! Наши руки не для скуки!
Так было принято решение о самостоятельном создании системы водяного охлаждения для домашнего компьютера.
Сразу прошу прощения за ужасное качество фото — был тогда только телефон и телефон был древний)
Вот так выглядел системный блок перед модернизацией. Видеокарта сначала была одна.
В первой версии был установлен один водоблок на ЦП. Вся система представляла из себя герметичную систему из прозрачных шлангов, переделанного аквариумного насоса, водоблока процессора, радиатора охлаждения с двумя 120мм вентиляторами, запитанными от 5В для минимизации шума, расширительного бачка с датчиком давления и циркуляции потока ну и схемы защиты от протечек и прекращения циркуляции ОЖ.
Водоблок процессора
Был изготовлен с нуля. Основание — теплосъемник вырезано из толстого куска электротехнической меди (~4мм толщиной). Из тонкой листовой меди (0,4мм) вырезал 120 пластин теплообменной камеры, проложил их электрокартоном, стянул вместе, залудил одну плоскость и припаял к основанию. После удаления электрокартона получили основание с радиатором отвода тепла из 120 пластинок.
Рубашку изготовил из попавшего под руку куска толстого пластика. Верх — медная пластинка 1мм с припаянными на нее медными-же штуцерами.
Сверху устанавливаем Х-образную пластину из железа 1мм с отверстиями под крепежные шпильки вместо штатных защелок крепления радиатора и стягиваем весь "бутерброд" на герметике четырьмя винтами.
Радиатор охлаждения ОЖ
Был изготовлен из медного радиатора печки Газели. Но как есть он был слишком громоздкий, а я поставил себе цель уместить всю СВО в корпус системного блока чтоб наружу ничего не торчало. Системник — обычный MidiTower.
Потому вооружаемся ножевкой по металлу и безжалостно кромсаем радиатор по размеру системника!
Пока радиатор вскрыт, меняем штуцера на меньшего диаметра, чтоб оделась наша трубочка. Так-же не забываем поставить водонепроницаемую перегородку посередине между штуцерами, дабы ОЖ проходила через радиатор, а не тупо из штуцера в штуцер. Из листовой меди вырезаем и припаиваем недостающие стенки.
Теперь немаловажный момент. Ребра радиатора расположены уж очень часто и продуть их компьютерным кулерам, да еще и на пониженном питании будет нереально. Потому вооружаемся отверткой, ножницами и крайне аккуратно сжимаем пластины радиаторов между собой, увеличивая просвет.
Обязательно проверяем на герметичность. С первого раза собрать герметично практически нереально. Потому ищем дырки и как-следует пропаиваем. Если место недоступно, то допустимо пролить герметиком. Проверять на герметичность следует после того, как раздвинули пластины т.к. тут очень высока вероятность повредить каналы радиатора (я проткнул в 2-ух местах).
После устранения дырок будем считать наш радиатор готовым к эксплуатации.
Доработка насоса
Были приобретены парочка насосов (~10$ за штуку) т.к. при поломке насоса компьютер будет невозможно эксплуатировать.
Суть доработки заключается в уменьшении шума крыльчатки и установке новых штуцеров.
Крыльчатка имеет некоторый ход относительно магнита ротора для уменьшения гидроудара. Но это создает лишний шум, потому крыльчатка была намертво приклеена к магниту на силикон. Так-же из силикона изготовлены 2 шайбы миллиметровой толщины на концы оси для смягчения продольных ударов.
Штуцеры новые были вклеены на эпоксидку.
Следует добавить, что для уменьшения передачи вибраций от насоса на корпус системного блока, насос был установлен на пружинную подвеску на кусок оргстекла, а оно в свою очередь тоже на пружинах к железу системника. Фото этого узла нет, извините.
Расширительный бачек
Сделан из подходящей пластиковой емкости. Можно хоть из стеклянной банки, хоть из куска канализационной трубы с заглушенными концами — тут кто на что горазд. Мой был плоский и широкий для того, чтоб поместиться внизу системника и не мешать установленным платам шины PCI.
Устнавливаем 2 штуцера, делаем перегородку, оставив небольшую щель — это для лучшего отделения воздушных пузыриков из воды.
В качестве датчика потока был выбран миниатюрный компьютерный трехпроводной кулер. На фото не удачное его положение. Располагать следует лопастями непосредственно перед штуцерами, чтоб тот начал вращаться.
Сигнал с датчика Холла снимается желтым проводом и идет на плату контроля циркуляции охлаждающей жидкости.
В качестве защиты от протечек был выбран вариант создания слегка пониженного давления в системе — чтобы не раздавило мягкие трубки системы, но в то-же время при образовании протечки не жидкость польется из системы, а воздух попадет в систему.
Датчик давления был создан из латекса, установлен на крышке расширительного бачка.
В крышке прорезаем отверстие меньшее на 10мм, чем диаметр латексной мембраны, клеим мембрану поверх, к ней приклеиваем небольшую контактную площадку с припаянным к ней проводком. Поверх устанавливаем П-образную конструкцию, ввинчиваем регулировочный винт и подключаем к нему проводок ( у меня это 2 ножки из оргстекла, кусок текстолита с припаянной гайкой и болт в гайке). Регулируем так, чтобы при нормальном атмосферном давлении мембрана поднимаясь замыкала контакт и винт.
Т.к. ATI у меня была еще на гарантии, разбирать дорогостоящую карту и ставить на нее водоблок я не стал. Позже водоблок был собран и установлен на "вспомогательную" видеокарту, тем самым ощутимо понизив децибеллы.
Водоблок видеокарты был создан по отличной от водоблока процессора технологии.
На медное основание были напаяны несколько спиралек из медной проволоки, образовав тем самым ребра охлаждения. Сверху выгнут и припаян медный кожух. Интенсивность нагрева видеочипа в разы меньше, потому такой упрощенный водоблок вполне имеет место быть.
Ах, да защита системы!
Ее создал на небольшой платке, которую уместил на заглушке верхнего свободного слота CD-ROM. Схема имела индикацию режимов на светодиодах, кнопку принудительного пуска насоса даже при отключенном компьютере — это для облегчения процесса наполнения систему водой, и выход на реле для отключения питания компьютера в случае протечки или прекращения циркуляции ОЖ и реле для включения насоса. Пуск компьютера остался штатным. При включении БП напряжение подается на реле включения насоса и вся система начинает функционировать.
Одно НО. Т.к. блоки питания в случае протечки обестачивались полностью, питать схему от дежурки 5В не было возможным и пришлось поставить третий уже блок питания, но маломощный на основе обычного трансформатора)) Сейчас можно было-бы поставить ЗУ от мобилки на его место.
Испытания проводил в лаборатории на столе.
Сборка и пуск
Первым делом вырезал место под второй БП снизу под HDD, предусмотрел вентиляционные отверстия для выдува теплого воздуха.
Массивный радиатор с двумя установленными на нем кулерами 120мм установил в самый верх, заняв 2 лота под CD-ROM. Естественно, выпиливаем верх системника под отвод нагретого воздуха. Что плюс, так то, что сверху мой системник имеет декоративную крышку с вентиляционными отверстиями, так что радиатор снаружи не виден!
На верхнюю заглушку отсека с радиатором ставим плату защиты с индикацией и кнопкой принудительного пуска насоса. 2 DVD-ROMa опускаются вниз.
На стенку под основным БП крепим 3 реле (2 на отключение питания и 1 на пуск насоса) — обычные 12В автомобильные, но с немного доработанной конструкцией, дабы не пустить 220 в цепи питания компа. Там-же разместится и сам насос.
Ставим водоблок на процессор.
После заполнения водой перекрываем шланг заправки и создаем разряжение в системе через заранее подготовленный шланг от медицинской системы. Глушим и его. Наш датчик давления должен разомкнуть свой контакт.
Устраиваем все как должно стоять и ставим видеокарту. Подключаем третий БП, который я установил на боковой крышке системника на разъеме.
Система собрана и запущена. Все заработало сразу. И прежде всего поразила ТИШИНА! После того адского рева, что издавал системник прежде осталось лишь едва слышное шуршание блоков питания и насоса. Ну видеокарта давала о себе знать лишь в мощных играх))
Итого, что имеем.
CPU 2.83GHz/1333MHz t=80градусов
RAM 800MHz
GPU NVidia 915MHz t=94градуса
HDD t=53градуса
Дикий рев кулеров
CPU 3,6GHz/1900MHz t=54градусов
RAM 1300MHz
GPU NVidia 1050MHz t=62градуса
HDD t=43градуса
Результаты тестов в 3DMark поднялись на 20%
И тишинаааааа…
Цена вопроса:
Насосы 2шт 20$
Радиатор печки Газель медный 30$
Трубки прозрачные 2$
Вода дистиллированная 1$
Хомутики 5$
Оргсеткло, метизы, пружины, медь, инструмент — бесплатно.
Опыт и удовлетворение от работы — бесценны!
Цель была достигнута. Имел мощный разогнанный компьютер с низким уровнем шума и стабильной работой, вся система уместилась во внутрь системного блока. Но как там все тесно… И весить он стал тонну, не иначе!)))
Но в этой бочке меда не обошлось и без капли дегтя…
Со временем начали появляться протечки, а искать и устранять не было времени и желания. Потому плата защиты была отключена, за что и поплатился через некоторое время. В один прекрасный момент компьютер встретил меня холодным черным экраном после нажатия кнопки питания. С водоблока процессора вода набежала на видеокарту, умертвив ее. Благо была вторая видеокарта, на которой продержался до покупки новой. Немного досталось и материнке, отчего срок ее работы уменьшился в разы. Сейчас стоит и новая мать, и видеокарта мощностью аналогично покойнице, но уже в 2 раза дешевле. Процессор тот-же, оперативка DDR3 4GB, жесткий тот-же.
Но вот к играм я остыл после приобретения своей самой заветной и любимой игрушки: Audi 80 Meine liebe fräulein потому проц не гоню, да и шумит он на новой материнке в разы меньше, новая видеокарта практически не шумит, БП один убрал, убрал и всю СВО… Не к чему мне теперь такая мощь да и нет желания восстанавливать и следить за ней. Зато есть что вспомнить =)
Приятных Вам выходных, теплой погоды, вкусного шашлычка и холодных компьютеров))
Ваш PC содержит много частей, почти все они нагреваются во время работы. Некоторые части, например как CPU и видеокарта, нагреваются очень сильно.
В должным образом сконфигурированном компьютере большая часть этого тепла перемещается из корпуса компьютера несколькими вентиляторами. Если Ваш компьютер не удаляет горячий воздух достаточно быстро, температура может стать настолько горячей, что Вы рискуете серьёзным повреждением своего PC. Само собой разумеется, сохранение Вашего PC холодным должно быть высшим приоритетом.
Ниже описаны одиннадцать решений для охлаждения PC. Многие бесплатны или очень недороги.
1.Пустите воздушный поток
Самая лёгкая вещь, которую Вы можете сделать, чтобы сохранить Ваш PC холодным, дать ему больше места для вентиляции, удаляя любые препятствия воздушному потоку.
Удостоверьтесь, что нет ничего находящегося прямо против любой стороны компьютера, особенно сзади. Большая часть горячего воздуха выходит с сзади корпуса компьютера. Должно быть по крайней мере 5 - 10 сантиметров свободного места с обеих сторон, а сзади абсолютно открыто и свободно.
Если Ваш компьютер стоит в столе не закрывайте дверь. Холодный воздух входит с передней стороны и иногда с боку корпуса. Если дверь закрыта, горячий воздух имеет тенденцию перерабатываться в столе, становясь более горячим и перегревая компьютер.
2.Запускайте свой PC с закрытым корпусом
"Городская легенда" об охлаждении PC - то, что работа Вашего компьютера с открытым корпусом способствует лучшему охлаждению. Действительно кажется логичным - если корпус открыт, поступает больше воздуха.
Главная здесь проблема - грязь. Когда корпус открыт, пыль и грязь забивают вентиляторы намного быстрее закрытого. Что забивает вентиляторы и ухудшает их работу.
Открытый компьютер сначала даёт небольшое преимущество, но увеличение воздействия мусора на вентиляторы оказывает намного большее влияние на температуру.
3.Очистите свой компьютер
Вентиляторы в Вашем компьютере должны сохранить его холодным. Вы знаете, что замедляет вентилятор и затем в конечном счёте заставляет это остановиться? Грязь - в форме пыли, волос, и т.д. Все это находит путь в Ваш компьютер, и большая часть застревает в вентиляторах.
Один из самых эффективных способов охладить Ваш PC состоит в том, чтобы очистить внутренние вентиляторы. Есть вентилятор на CPU, внутри электропитание, и обычно один или больше на передней стороне и/или сзади корпуса.
Отключите свой компьютер, откройте корпус и используя пылесос удалите грязь из каждого вентилятора. Если Ваш PC действительно грязен, очистите его снаружи.
4.Поставьте свой компьютер в другое место
Ваш компьютер работает в слишком горячем или слишком грязном месте. Более холодная и более чистая область той же самой комнаты может быть лучшим местом для Вашего компьютера.
Важно: От перемещения Вашего компьютера могут пострадать уязвимые части внутри корпуса. Убедитесь, что отключили все, не переносите всё сразу. Будьте аккуратны перенося корпус РС, содержащий все важные части: жёсткий диск, системная плата, CPU и т.д.
5.Замените вентилятор CPU
Ваш CPU - вероятно, самая уязвимая и дорогая часть компьютера. К тому же наиболее склонная к перегреву.
Если Вы ещё не заменили вентилятор CPU, вероятно он в данный момент работает на максимальной скорости.
Много компаний продают мощные вентиляторы для CPU, которые поддерживают температуру CPU ниже, чем фабричный вентилятор. Найдите приемлемый вариант вентилятора CPU совместимого с Вашим сокетом CPU.
6.Установите дополнительный вентилятор для корпуса (или два)
Вентилятор для корпуса - маленький вентилятор, присоединяющийся к передней или задней стороне корпуса компьютера, во внутренней части. Вентиляторы корпуса помогают перемещать воздух через компьютер.
Установка двух вентиляторов на корпус, один, чтобы переместить холодный воздух в PC и другой, чтобы переместить тёплый воздух из PC, хороший способ сохранить компьютер холодным.
Вентиляторов для корпуса много, его легче установить чем вентилятор CPU, не бойтесь открыть своё компьютер и займитесь этим делом.
7.Прекратите разгон своего PC
Разгон возможностей компьютера к его пределам оказывают прямое влияние на температуру, в которой работают Ваш CPU и любые другие разогнанные компоненты.
Если Вы разгоняете аппаратные средства своего PC, но не озаботились сохранить их холодными, рекомендуется реконфигурировать Ваши аппаратные средства к настройкам заводской настройки.
8.Замените блок электропитания
В блок питания Вашего PC встроен мощный вентилятор. Воздух, который Вы чувствуете, держа руку позади своего компьютера именно от этого вентилятора.
Если у Вас нет вентилятора для корпуса, вентилятор блока электропитания - единственный способ удаления горячего воздуха, создаваемого в Вашем компьютере. Если этот вентилятор не работает компьютер может нагреться очень быстро.
К сожалению, не возможно просто заменить вентилятор блока электропитания. Если вентилятор не работает, Вам придётся заменить весь блок электропитания.
9.Вентиляторы на определённые компоненты
Безусловно CPU - крупнейший производитель тепла в Вашем компьютере, но и почти любой компонент также даёт тепло. Быстродействующая память высшего качества и видеокарты высокого класса так же могут добавить тепла Вашему CPU.
Если Вы видите, что Ваша память, видеокарта, или какой-либо другой компонент перегреваются, Вы можете охладить их специальным вентилятором. Другими словами, если у Вас греется память, купите и установите вентилятор для памяти. Если во время игры перегревается Ваша видеокарта, установите более мощный вентилятор видеокарты.
Увеличение быстродействия аппаратных средств приводит к увеличению нагрева его частей. Производители вентиляторов знают это и создали специализированные решения почти для всех компонентов Вашего компьютера.
10.Установите водяное охлаждение
В очень высококачественных компьютерах увеличение тепла может стать такой проблемой, что даже самые быстрые и эффективные вентиляторы не могут его охладить. В корпусах таких компьютеров устанавливается водяное охлаждение. Водная теплопередача может решительно уменьшить температуру CPU.
"Вода в компьютере? Это опасно!" Не волнуйтесь, вода, или другая жидкость, полностью блокирована в системе транспортировки. Насос циклически подаёт охлаждённую жидкость к CPU, где она поглощает тепло, а затем откачивает горячую жидкость из Вашего компьютера, где тепло рассеивается.
11.Установите модуль фазового перехода
Модули фазового перехода являются самыми мощными из охлаждающих технологий. Модуль фазового перехода можно назвать холодильником для Вашего CPU. Он используется в тех же самых технологиях для охлаждения или даже заморозки CPU.
После покупки своего первого компьютера, мне почему то хотелось на нем работать ночью. Может потому что никто не мешает, может потому что думается ночью по другому, не знаю. Однако желание было и что бы его реализовать необходим был компьютер с минимальным уровнем шума. Эта идея и осталась идеей, если бы не начальник, который так же увлекался модернизацией и снижением шума от своего компьютера. В результате получился бесшумный компьютер фото которого можно будет увидеть в конце статьи.
1. Виды и источники шума в компьютере
Бывает два вида шума: вибрационный и акустический (от потоков воздуха). Источников же шума несколько: корпусные вентиляторы, блок питания, система охлаждения процессора, система охлаждения видеокарты, система охлаждения материнской платы (и такое бывает), устройства чтения оптических дисков и накопители HDD.
Есть два варианта снизить шум компьютера: уменьшить количество источников шума и снизить уровень шума самих источников. Наибольший эффект получается при использовании двух вариантов. С устройствами чтения оптических дисков ничего не поделаешь, разве что не устанавливать их вообще. (Как в таком случае установить операционную систему с флешки можно почитать здесь).
Рассмотрим варианты снижения уровня шума для основных компонентов компьютера.
-
: ASUS P5Q : Intel Core2Duo E8500 : Radeon HD3870 : AEROCOOL AeroEngine Plus Black
2. Вентиляторы и корпус
В базовой комплектации корпус имел 3 вентилятора диаметром: 180, 140 и 120 мм. 180 мм на боковой стенке — вдув, 140 — впереди — вдув и 120 — вытяжной сзади.
Так же перед вентилятором 140 мм была турбина, которая вращалась от создаваемого вентилятором потока воздуха. Так как функция турбины была чисто декоративная — она сразу была удалена.
Для рационального охлаждения корпуса необходимо что бы, холодный воздух поступал внутрь, а горячий выбрасывался. Из школьной программы известно, что холодный воздух опускается, а горячий поднимается. Исходя из этого рекомендуется нижние вентиляторы ставить на вдув, а верхние на выдув. Тогда холодный воздух снизу поступает в корпус, нагревается охлаждая комплектующие, поднимается и верхними вентиляторами выбрасывается за его пределы.
Так как вытяжных вентиляторов у меня оказалось два: один корпусной другой на блоке питания, было принято решение корпусной отключить и посмотреть на температуры. Мониторинг системы удобно осуществлять с помощью программы AIDA64 (старое название Everest). Практически ничего не изменилось и вентилятор покинул пределы моего корпуса.
Далее стоит уделить особое внимание потокам воздуха внутри корпуса, что бы уменьшить сопротивление и улучшить охлаждение системы. Необходимо определиться со всеми проемами корпуса и понять какой воздух заходит или выходит через них. В этом корпусе как и у большинства отверстия были везде, кроме как снизу и сверху.
Для исключения остальных источников шума 180 мм и 140 мм необходимо было обеспечить достаточное охлаждение жесткого диска. Для этого сделал воздухонепроницаемым боковые крышки корпуса, убрав 180 мм и вставив туда акриловые вставки вместо пластиковых решеток.
Получилось красиво и эффективно. После этих усовершенствований холодный воздух в корпус мог попасть через переднюю панель с помощью 140 мм и через отверстия на задней поверхности корпуса (там где был убран 120 мм на выдув).
При такой системе охлаждения получилось что блок питания, который должен вытягивать теплый воздух из всего корпуса, вытягивает воздух поступавший через заднюю панель. Было принято решение закрыть задние вентиляционные отверстия.
Теперь холодный воздух поступал только через 140 мм на передней панели. Этот вентилятор был громче всех так как был ближе всех ко мне. Сделал попытку его отключить. Незначительно повысилась температура HDD и видеокарты. Все было в норме и 140 мм покинули корпус.
Система стала значительно тише. Осталось всего 3 вентилятора: в блоке питания, в системе охлаждения видеокарты и в системе охлаждения процессора. Так же для более лучшего охлаждения были извлечены пластинки закрывающие разъемы для слотов расширения, что бы холодный воздух заходил через нижние передние и задние проемы и охлаждал HDD и видеокарту. На этом мои экзекуции над корпусом прекратились.
Вывод. Необходимо сделать что бы в корпус снизу поступал холодный воздух, а теплый выбрасывался сверху. Идеальный вариант это перфорации на нижней и верхней панелях корпуса. Себе не делал так как это сильно испортило внешний вид корпуса. Лишние проемы мешающие или создающие помехи при прохождении воздуха в корпусе необходимо закрыть (проемы в боковых крышках). Так же считаю что вентиляторов менее 120 мм в тихом, тем более в бесшумном, компьютере быть не должно. Вентилятору 92 мм и 80 мм, для создания такого же воздушного потока как 120 мм, требуется большая частота вращения и как следствие выше шум. Поэтому, если у вас есть такие вентиляторы попробуйте их заменить на 120 мм. По поводу фирмы, обратите внимание на вентиляторы Noctua. Они все сделаны с использованием гидродинамического подшипника. Т.е. трение практически отсутствует, что положительно сказывается на долговечности, надежности и шумовых характеристиках. Так же некоторые модели содержат в комплекте переходники с впаянными резисторами, для уменьшения частоты вращения.
Комплект поставки вентилятора Noctua NF-P12 PWM
Как видно на рисунке выше в комплект так же могут включать силиконовые держатели для вентилятора (используются для предотвращения передачи вибраций от вентилятора к корпусу).
3. Видеокарта
Следующий элемент который жаждал моего внимания был видеоадаптер. Эта серия карт отличается тем, что без драйвера греется на полную катушку и соответственно — издает приличный шум. Это отлично слышно пока не загрузилась операционная система.
Поискав в интернете информацию о возможных системах охлаждения для моей карты остановил свой выбор на фирме Тhermalright.
На сайте производителя моей системы охлаждения не нашел, поэтому приведу подобную. Вес около 400 гр.
30 минут времени и еще один вентилятор был удален из корпуса.
Протестировал конструкцию игрой WarCraft 3. Температура достигла 95 градусов, но игра шла без сбоев. Температура в простоя не поднималась выше 50 градусов Цельсия. Уже хорошо, но если играть, то придется устанавливать 120 мм на обдув.
После тщательного поиска было найдено дополнение этой же фирмы, которое устанавливалось на обратную сторону графического чипа. Еще 30 минут и температура упала почти на 5 градусов. На этом процесс модернизации охлаждения видеоадаптера завершился
Вывод. Если это возможно обойтись встроенной графикой. Если первый вариант не подходит, обратите внимание на видеокарты с пассивным охлаждением.
Если вы хотите играть в серьезные игры тогда выбирайте видеоадаптер и сразу систему охлаждения к ней.
4. Материнская плата
В большинстве случаев системные платы производятся с пассивным охлаждением, но бывают и исключения.
Свое отношение к вентиляторам менее 120 мм в диаметре уже высказал. Эта плата подкупает только 5-ти летней гарантией. В любом случае стоит выбирать материнскую плату с пассивной системой охлаждения. Меньше движущих частей — выше надежность продукта.
Мой компьютер строился на базе ASUS P5Q
Все было хорошо, но при ощупывании радиатора на южном мосте (самый левый желтый маленький) была замечена высокая температура (субъективно около 70°). Естественно стал вопрос замены системы охлаждения на Thermalright Chipset Heatsink HR-05 SLI/IFX.
Все было замечательно, но при установке я сильно прикрутил радиатор и повредил плату. Ситуация успешно решилась выбором материнской платы ASUS P5Q Pro с более развитой системой охлаждения чипсета).
От P5Q в P5Q Pro перекочевал только радиатор на мосфеты (элементы питания процессора) в самом верху материнской платы.
Система приняла следующий вид
После замены больше ничего в материнской плате не модернизировал.
5. Жесткий диск
Жесткий диск это источник вибрации в первую очередь. Его необходимо изолировать от корпуса. Идеальный вариант это подвесить на что либо. В моем случае это оказалась витая пара. Эффект получился потрясающий, как будто жесткий диск работает завернутым в футболку.
Так же отличный вариант заклеить изолентой места соприкосновения жесткого диска и корпуса, если у вас прямой контакт, не через салазки (как у меня на фото).
Замечу, что один из жестких дисков на 1.5 ТБ Seagate напрочь отказался заводится. Пришлось его использовать для резервного копирования вместе с док-станцией в вертикальном положении.
Для гашения вибраций HDD существуют способы с большими капиталовложениями и с сомнительной эффективностью отлично описаны в этой статье. Исключение составляет SCYTHE QUIET DRIVE
В политику охлаждения жестких дисков для бесшумного компьютера не входит использовании активных систем охлаждения. Максимум, если у вас несколько HDD, примените 120 мм на 500-800 об/мин для обдува всей корзины.
Минимальное выделение тепла исключает использование активного охлаждения.
Так же при выборе корпуса обратите внимание на системы крепления HDD к корзине или к корпусу. Многие производители корпусов комплектуют свои изделия антивибрационными резиновыми прокладками. В корпусах высокого уровня этому уделяется немало внимания.
Вывод. Использовать в системе один HDD или, лучше SSHD. Если необходима производительность — установите SSD. Если необходима емкость — используйте внешние жесткие диски, но так же с пассивной системой охлаждения. Если не подходит использование внешних HDD попробуйте использовать два зеленых диска и максимально разнесите их в корпусе. Например вставьте в самый нижний и самый верхних отсек в корзине жестких дисков. Для меня оптимальным решением является использовании гибридных дисков SSHD. У них сниженная частота вращения шпинделя и есть несколько гигабайт флеш-памяти для повышения производительности.
6. Процессор
Как выбрать процессор можно почитать здесь. В этой же статье мы поговорим о том, как его охлаждать. Все процессоры с обозначением BOX, комплектуются штатным кулером. Кулер включает в себя небольшой радиатор и скромный вентилятор.
Естественно летом при нагрузке издает приличный шум. Как же быть
- Вариант 1. заменить вентилятор на 120 мм или больше. При этом можно максимально снизить обороты и получить достаточное охлаждение при низком уровне шума.
- Вариант 2. Заменить радиатор на модель с большей площадью рассеивания и при необходимости установить 120 мм вентилятор.
Так же при выборе системы охлаждения необходимо обращать внимание на расстояние между алюминиевыми пластинами (ребрами). Чем больше последнее, тем лучше конвекция воздуха и эффективней система охлаждения. Рекомендуется 2 мм и больше.
Исходя из этой информации мои поиски остановились на Cooler Master Hyper Z600
Вес в 1045 грамм окончательно развеяли все сомнения и в добавок эта модель появилась на прилавке магазина. 45 минут и радиатор был готов отвести от процессора 65 Вт заявленного тепловыделения.
Температура выше 55 градусов в игре не поднималась, что так же освобождало от использования вентилятора.
Нажмите на рисунок для его увеличения
Так же был установлен дополнительный HDD. Для увеличения потока воздуха через них были заклеены проемы для карт расширения. В результате видеокарта добавила около 3 градусов, зато оба HDD чувствовали себе отлично.
Вывод. Заменять вентиляторы на 120 мм и по желанию заменить радиатор.
7. Блок питания
Рекомендации те же. Заменить вентилятор и подключить его к материнской плате, что бы иметь возможность хоть как то управлять процессом. При выборе нового блока питания для бесшумного компьютера рекомендуется обратить внимание на блоки фирмы Seasoniс серии Fanless или FSP.
В этих блоках питания отсутствует вентилятор. Именно благодаря таким решениям мечта любого пользователя, о бесшумном компьютере, осуществима).
Эти комплектующие более эффективно устанавливать в корпуса с нижним расположением блока питания. Так как теплый воздух будет беспрепятственно подниматься вверх, пусть даже немного нагревая другие компоненты. При верхнем расположении, блок питания оказывается в перевернутом положении, что значительно затрудняет вентиляцию. При таком расположении в блок питания может попадать теплый воздух от других комплектующих, что так же может усугубить ситуацию.
Вывод. В имеющимся блоке питания заменить вентилятор на более тихоходный и подключить его к материнской плате. При выборе нового блока отдать предпочтение решениям без вентилятора или сертифицированным в соответствии со стандартом эффективности Gold или Platinum. За счет высокого КПД эти блоки тратят минимум энергии на нагрев = меньше греются = тише в них работают вентиляторы. Так же некоторые блоки до определенной нагрузки, например до 300 Вт, могут работать в пассивном режиме.
Вывод
В данной статье мы рассмотрели как сделать полностью бесшумный компьютер, а так же как уменьшить шум от уже имеющегося. Основной совет остается в силе. Необходимо уменьшить количество источников шума и утихомирить оставшиеся. В системе не должно быть вентиляторов менее 120 мм в диаметре. Это позволит вам достичь желаемого уровня комфорта.
Мне удалось довести свою систему до наличия всего одного вентилятора. Желаю вам превзойти мои результаты.
По поводу памяти. Радиаторы необходимы только при экстремальном разгоне с повышением напряжения. Во всех остальных случаях это просто хороший маркетинговый ход (на который я повелся).
Почему у меня радиаторы прижаты к модулям канцелярскими прищепками, для улучшения контакта и для более эффективного охлаждения).
Обещанное фото последней версии моего компьютера. Для увеличения нажмите на рисунок
Читайте также: