Как сделать цветомузыку на телефоне
Музыкальный RGB контроллер, также как и обычный, управляет сменой цвета, уровнем яркости и динамическими эффектами светодиодной ленты.
Однако помимо этих стандартных функций, у него в корпус встроен еще микрофон и есть линейный вход для подключения внешнего источника музыкальных звуков.
Микрофон при этом реагирует на музыку играющую внутри помещения, а также на ваш голос. Он воспринимает это в соответствии с тактом, и меняет цветность и динамические эффекты Led ленты.
Очень часто такие RGB девайсы покупают автолюбители и монтируют данную подсветку на днище или в салоне своей машины.
Со стороны выглядит очень эффектно, тем более по затратам это сущие копейки.
Безусловно, эффекта профессиональной цветомузыки вы не получите. Здесь не будет явного разделения спектра звука на средние и высокие частоты, и тонкой привязки моргания от этого.
Что басы, что писк, мигать будет все одинаково, но по разному алгоритму. В идеале басы должны быть красными, высокие частоты сопровождаться синим, желтым, белым цветом, а средние — зеленым.
Здесь же этого ничего не будет, но и смысла большого в этом нет, так как контроллер управляет только целой лентой, а не отдельными ее участками.
Через линейный вход Jack на 3,5мм, при помощи штекера можно подать звук напрямую от любого источника — магнитофона, радиоприемника, магнитолы, телефона и т.п.
Микрофон при этом отключается и перестает реагировать на внешние звуковые раздражители. Вся функциональность контроллера автоматом переключается на прямой источник звука.
Разница будет заметна невооруженным глазом.
Поэтому, если хотите получить максимальный эффект от музыкального контроллера, то лучше подключать музыку напрямую. Дома это конечно не удобно, придется тянуть отдельный провод к коробочке под потолком.
А вот в автомобиле подсоединить магнитолу, лучше именно таким способом.
Чувствительность микрофона регулируется специальной ручкой.
В большинстве моделях колодку эту можно отсоединить.
Так гораздо удобнее производить коммутацию всех проводов.
В комплекте всегда идет пульт дистанционного управления. Он может быть двух типов:
Какой из них лучше? При инфракрасном управлении необходимо, чтобы контроллер находился в зоне непосредственной видимости, не более 3-4м.
Обозначаются радиоуправляемые контроллеры маркировкой RF.
На пульте помимо кнопок вкл-выкл находится еще масса других функциональных и разноцветных кнопочек.
Разноцветными можно выбирать свечение подсветки, каким-либо одним статическим цветом, если вы не хотите, чтобы у вас все переливалось как радуга.
Остальные отвечают за предустановленные программы (стробоскоп, резкая и плавная смена цветов), скорость динамических спецэффектов.
Есть еще кнопки чувствительности при воспроизведении музыки, которые как бы дублируют основную регулировочную ручку на корпусе.
При подключении RGB контроллера, смотрите на его номинальные параметры. Во-первых, на какое напряжение он рассчитан.
Соответственно именно через такой блок питания, его и нужно запитывать.
Во-вторых, максимальный ток. Исходя из этого, можно узнать какую ленту и какой длины можно через него запустить.
Например, если у него на корпусе написано 12А, то при Led ленте 12в это значение будет:
P=I*U=12А*12в=144Вт
Далее, сверяете этот параметр с маркой вашей светодиодной ленты и подсчитываете достаточно ли здесь мощности.
К примеру лента SMD 5050 60 диодов на 1 метр, потребляет на метровом отрезке 14,4Вт. Это значит, что через вышеприведенный RGB контроллер, можно будет подключить не более 10м такой подсветки.
Причем согласно правил подключения светодиодных лент, это должны быть два параллельных куска по 5м каждый.
Есть и совсем небольшие музыкальные контроллеры, размером чуть более спичечного коробка.
Они и рассчитаны соответственно на совершенно другие токи и другой метраж Led лент.
При подключении, дабы у вас не перепутались цвета, соблюдайте распиновку. От конца светодиодной ленты, уже как правило отходят припаянные отрезки разноцветных проводов.
Если их нет, придется припаять их самому. Сложного в этом ничего нет, но определенные нюансы все же существуют. Какие именно, описано в статье ниже.
При готовом 4-х пиновом коннекторе-разъеме папа-мама, подключение выглядит еще проще.
Вы начинающий радиолюбитель и вам нечем заняться? Хотите что-нибудь спаять, но не можете определиться с выбором? Делаем цветомузыку! Устроим дома дискотеку и будем зажигать, но сначала включим паяльник и немного попаяем. Не хотим дискотеку, просто поставим возле компьютера в уголок, пусть моргает под музыку.
Цветомузыкальная установка позволяет получать цветные вспышки в такт с исполняемой мелодией. Для начала возьмём транзистор, светодиод, резистор и источник питания 9В. Подключим источник звука и подадим напряжение
1-ая схема
И что мы видим? Светодиод мигает в ритм музыки. Но мигает надоедливо под уровень громкости. И тут встаёт вопрос разделения звуковой частоты. В этом нам помогут фильтры из конденсаторов и резисторов. Они пропускают только определённую частоту, и получается, что светодиод будет мигать только под определённые звуки
2-ая схема
На схеме приведён пример простой цветомузыки. Но это только небольшая приставка, с незначительной яркостью. Она состоит из трёх каналов и предусилителя. Звук подаётся с линейного выхода или усилителя НЧ на трансформатор, который нужен для усиления звука и гальванической развязки. Подойдёт сетевой малогабаритный, на вторичную обмотку которого подаётся звуковой сигнал. Можно обойтись без него, если входного сигнала достаточно для вспыхивания светодиодов. Резисторами R4-R6 регулируется вспыхивание светодиодов. Далее идут фильтры, каждый из которых настроен на свою полосу пропускания частот. Низкочастотный - пропускает сигналы частотой до 300Гц (красный светодиод), среднечастотный - 300-6000Гц (синий), высокочастотный – от 6000Гц (зелёный). Транзисторы подойдут практически любые, структуры NPN с коэффициентом передачи тока не менее 50, лучше, если больше, например те же КТ3102 или КТ315.
Вы собрали надёжное, прекрасно работающее цветомузыкальное устройство, но чего-то не хватает? Модернизируем его!
Начнём с самого главного. Увеличим яркость. Для этого будем использовать лампы накаливания на 12 вольт. В схему добавляем тиристоры и питаем устройство от трансформатора. Тиристор – управляемый диод, позволяющий управлять мощной нагрузкой с помощью слабых сигналов. При прохождении через него постоянного тока он остаётся в открытом состоянии даже без управляющего сигнала, при переменном токе принцип работы похож на транзисторный. Имеет анод, катод – как у диода, и дополнительный управляющий электрод. Способен выдерживать приличную нагрузку, поэтому используется в схеме для управления лампами накаливания.
3-яя схема
Звуковой сигнал подаётся от усилителя НЧ, мощностью 1-2 Ватта. Тиристоры практически любые, рассчитанные под ток ламп, лампы – автомобильные на 12 вольт. Трансформатор должен отдавать достаточный ток (1.5-5 ампер) в зависимости от ламп.
Если у вас есть опыт работы с сетевым напряжением, то лучшим вариантом будет использование осветительных ламп на 220 вольт. Сетевой трансформатор в таком случае не понадобится, а вот звуковой лучше оставить для защиты источника звука. При этом всё должно быть тщательно изолировано и размещено в надёжном корпусе.
Теперь делаем фоновую подсветку. Она будет работать обратно основным каналам: при отсутствии звука светодиод горит постоянно, подаётся звук – светодиод гаснет. Можно сделать один общий фоновый канал или несколько с отдельными звуковыми фильтрами и подключить по предыдущей схеме.
4-ая схема
В схеме добавлен резистор (R2) для постоянного открытия транзистора. Поэтому ток через светодиод проходит свободно, но звуковой сигнал способен закрывать транзистор, светодиод гаснет.
Заменим трансформатор на транзисторный усилитель.
5-ая схема
Избавляемся от звукового провода при помощи микрофона. Добавим его в предыдущую схему. Теперь цветомузыка будет реагировать на все окружающие звуки, в том числе и на разговор.
6-ая схема
В схеме приведён пример двухкаскадного микрофонного усилителя. Резистор R1 необходим для питания микрофона, R2 R6 устанавливают смещение, R4 – настройка чувствительности. Конденсаторы C1-C3 пропускают переменный звуковой сигнал и не дают пройти постоянному току. Микрофон – любой электретный. Если схему использовать просто как предусилитель, то R1 и микрофон убираются, звуковой сигнал подаётся на C1 и минус питания. Номиналы деталей не критичны, особая точность здесь не важна. Главное не делать ошибок и у вас всё получится.
Преимущества цветомузыки на светодиодах
В применении к цветомузыкальным устройствам (ЦМУ) светодиоды с ярким свечением имеют ряд преимуществ, по сравнению с лампами накаливания:
- потребляют заметно меньше энергии;
- их не нужно красить или ставить перед ними цветные фильтры;
- схемы ЦМУ проще, не требуется гальваническая развязка.
Простейшая схема светомузыки на 12 В
Маркировка полупроводников указана на фото. Подключаете схему к колонке или громкоговорителю машины, и светодиод начинает мигать. Если он светится постоянно, нужно уменьшить уровень громкости, если совсем не горит – наоборот увеличить. Транзистор будет открываться и обеспечивать ток питания нагрузки каждый раз, когда напряжение на его базе будет превышать определенное значение. Получилась простейшая светомузыка, так как свечение излучателя связано с громкостью музыки.
Далее мы будем постепенно наращивать функционал схем, естественно, усложняя их. Советую последовательно ознакомиться со всем материалом, так как при этом Вы научитесь комбинировать части схем, создавая собственное устройство с нужными характеристиками. При этом во всех случаях используются однотипные, взаимозаменяемые элементы.
Самая простая цветомузыка на транзисторах
Это схема именно цветомузыки, так как устройство обеспечивает связь частоты звука с цветом светового излучателя. Три канала различаются RC фильтрами, установленными перед транзисторами. В результате нижний канал цветомузыки, к которому подключен красный светодиод, реагирует на звуковые сигналы частотой ниже 300 Гц, средний, с синим светодиодом, работает в диапазоне 300-6000 Гц, а верхний, к которому подключен зеленый светодиод, работает от сигналов выше 6000 Гц. Звуковой сигнал, как и в прошлом варианте, подается с выхода для наушников, колонок или динамиков авто.
Деление на частотные диапазоны в ЦМУ условное и может быть выбрано другим. Более того, границы каналов по частоте получаются нечеткие из-за низкой избирательности фильтров, а еще они заметно сдвигаются из-за разброса параметров радиоэлементов. При этом три переменных резистора на входе схемы позволяют отрегулировать ее так, чтобы светодиоды мерцали примерно с одинаковой интенсивностью.
Маркировку керамических конденсаторов смотрите на фото. Транзисторы все те же КТ315 или КТ3102. Подойдут вообще почти любые биполярные структуры р-n-р. Можно использовать элементы проводимости n-р-n, если сменить полярность подключения питания и светодиодов.
Если установить мощные транзисторы, например, КТ805, то к выходу устройства можно подключить много светодиодов или светодиодную ленту. Еще лучше использовать составные транзисторы КТ829 с большим коэффициентом усиления, с которыми чувствительность устройства заметно вырастет.
Количество светодиодов, которые можно подключить параллельно, определяется их рабочим током и максимальным током коллектора транзистора. Например, максимальный ток коллектора транзисторов КТ315 с индексом Ж, И составляет 50 мА, значит, допускается в нагрузке один светодиод с рабочим током 30 мА. Эти же транзисторы с другими индексами допускают нагрузку до 100 мА, значит, можно подключить параллельно пару аналогичных светодиодов.
Мощные транзисторы могут использоваться с радиаторами, так что для них нужно принимать максимальный ток коллектора в том режиме, в котором Вы собираетесь их использовать. Какой ток потребляет конкретная светодиодная лента, нужно читать на ее упаковке.
Светодиоды имеют разброс параметров, так что, если их соединить параллельно без отдельных резисторов, свечение будет разным. Токоограничивающие резисторы легко рассчитать, пользуясь законом Ома. Для этого надо знать рабочее напряжение и ток используемых светодиодов. Если считать не хочется, можно сначала подключить сопротивление 200 Ом в любой из рассматриваемых схем. Если светодиод горит плохо, сопротивление надо уменьшать до того, пока ток через светодиод не достигнет нужного значения (от 10 до 30 мА в зависимости от марки).
Фильтры в этой схеме несколько другие, но сути это не меняет. Как и в прошлом случае, на входе можно предусмотреть подстроечные или переменные резисторы для выравнивания чувствительности каналов. В следующем видео демонстрируется сборка представленного выше устройства.
Маркировку электролитических конденсаторов смотрите на фото. Для монтажа простой схемы в домашних условиях нет смысла травить печатную плату. Удобно использовать навесной монтаж на макетной плате. В простейшем случае радиоэлементы самодельной приставки можно закрепить горячим клеем на пластике выводами вверх. После застывания клея радиодетали надежно зафиксированы, и их выводы нетрудно соединить пайкой с помощью провода.
Звуковой сигнал в рассмотренных схемах подается с выхода для наушников или колонок. Для того, чтобы повысить чувствительность устройства и обеспечить его работу от сигнала с линейного выхода любого гаджета, необходим предварительный усилитель. Представленная схема подключается к входу всех рассмотренных выше схем. Переменный резистор R1 обеспечивает согласование уровня сигнала, чтобы светодиоды работали оптимально.
Можно вовсе избежать электрического соединения, если снабдить самодельную цветомузыку микрофоном с подключением по представленной схеме. Переменный резистор R4 обеспечивает согласование уровня. Подойдет почти любой электретный микрофон. Резистор R1 обеспечивает питание и нагрузку микрофона. Электретный микрофон – полярное устройство, так что его минус нужно соединять с минусом питания, а плюс подключить к точке R1, С1.
Как сделать своими руками четырехканальную приставку
Если собрать вместе рассмотренные выше схемы цветомузыки, получится примерно такой вариант. В данном случае частотный диапазон звукового сигнала разделен на 4 полосы, соответственно предусмотрено 4 канала, и RC фильтры перед транзисторами немного другие.
В схеме предусмотрен стабилизированный источник питания на КР142ЕН5. Для его сборки требуется трансформатор, и зачастую проще использовать любой имеющийся блок питания постоянного тока с выходным напряжением 9-12 В. Восемь цепочек светодиодов с рабочим током по 30 мА потребуют питание порядка 240 мА, так что блок питания с максимальным током нагрузки 500 мА и более точно подойдет. Подойдет и нестабилизированный источник напряжения, так как светодиоды имеют низкий динамический диапазон свечения, и пульсации по питанию не будут вызывать их ложное срабатывание.
Мы уже обсуждали возможность параллельного включения светодиодов с токоограничивающими резисторами. В этой схеме они соединены еще и последовательно. При этом нужно обеспечить, чтобы суммарное падение напряжения на включенных последовательно светодиодах была заведомо меньше напряжения питания схемы.
Таким образом, подавая более высокое напряжение, можно включать последовательно больше светодиодов, не увеличивая мощность транзисторов. При этом безопасным следует считать напряжение не более 36 В и нужно использовать транзисторы и электролитические конденсаторы, которые имеют соответствующие параметры.
Собирать устройство удобно на печатной плате, эскиз которой представлен на фото. Размеры платы 80х45 мм.
Транзисторы КТ502 (с любым буквенным индексом) можно заменить на КТ503 с полярностью n-p-n. При этом одновременно необходимо заменить КТ361 на КТ315 или КТ3102 (с любым буквенным индексом), а также сменить полярность подключения питания, диодов, светодиодов и электролитических конденсаторов. В этом случае вместо предварительного усилителя можно подключить микрофон по рассмотренной выше схеме.
Маркировку конденсаторов мы рассмотрели выше. При параллельном соединении их емкость суммируется, что облегчает подбор элементов для фильтров. Напряжение, указанное на корпусе электролитических конденсаторов, должно быть заведомо больше напряжения источника питания. Конденсатор С8 должен быть рассчитан не менее, чем на 25 В.
Резисторы подойдут любые мощностью 0,125-0,25 Вт. Цветная маркировка поможет определить их номиналы. Подстроечные резисторы мы рассмотрели выше, переменный резистор подойдет любой, подходящий по размерам.
Диоды VD1 – VD4 любые малогабаритные. Для Д9 маркировка указана на фото.
В блоке питания в качестве выпрямителя удобнее использовать готовый диодный мост. При его отсутствии подойдут дискретные диоды типа КД105, КД106, КД209 и прочие с рабочим током не менее 300 мА. Если подобрать малогабаритные элементы, их удастся установить на плату вместо диодного моста. Светодиоды нужного цвета выбирайте с ярким свечением. Желательно знать их рабочее напряжение и номинальный ток питания.
Вместо КР142ЕН5 удобнее использовать КР142ЕН8А,Г, которая обеспечивает 9 В на выходе без резистора R22. В этом случае вместо него ставится перемычка. Трансформатор нужно подобрать с напряжением на выходе 12-15 В с током нагрузки не менее 300 мА. В следующем видео пошаговая инструкция по сборке ЦМУ.
Установка с микрофоном на светодиодной ленте RGB
Следующее ЦМУ 3-х канальное. Здесь операционные усилители (ОУ) А1.2, А1.3, А1.4 вместе с набором RC элементов образуют активные фильтры. На ОУ А1.2 собран низкочастотный фильтр, и к выходу канала подключены красные светодиоды, на ОУ А1.3 собран среднечастотный фильтр, и к выходу канала подключены зеленые светодиоды, на ОУ А1.4 собран высокочастотный фильтр, и к выходу канала подключены синие светодиоды.
Фильтры активного типа обеспечивают заметно более высокую избирательность, чем рассмотренные выше схемы. При этом частотных диапазонов всего три, и эффект связи уровня звучания музыки соответствующих частот с яркостью свечения светодиодов определенного цвета становится более выразительным.
ОУ А1.1 выполняет роль предварительного усилителя сигнала с встроенного микрофона. Резистор R1 обеспечивает питание и нагрузку микрофона. Электретный микрофон М1 – полярное устройство, так что его минус нужно соединять с минусом питания, а плюс подключить к точке R1, С3.
Переменный резистор R6 обеспечивает регулировку общей чувствительности устройства. Элементы R18, R21, R24 обеспечивают настройку яркости мерцания каждого канала по отдельности.
Четыре ОУ схемы находятся в одном корпусе микросхемы КР1402УД2 (зарубежный аналог LM324). Конечно, можно использовать четыре ОУ общего применения в отдельных корпусах, например, КР140УД708. При этом топология печатного монтажа изменится.
Выходные каскады каналов выполнены по схеме составных элементов и состоят из пары транзисторов. К коллекторам транзисторов средней мощности КТ817 подключены минусы соответствующего цвета светодиодной ленты RGB. Подстроечные элементы R19, R22 и R25 позволяют установить начальное напряжение смещения, при котором светодиоды будут немного светиться при отсутствии звукового сигнала. Такой режим работы позволит избежать резких вспышек света и сделает работу ЦМУ более плавной. Однако в этом случае на транзисторах будет выделяться значительная мощность, и они могут перегреться при использовании без радиаторов.
Хотя КТ817 допускают максимальный ток до 3000 мА, однако максимальная рассеиваемая мощность с применением без радиатора составляет 1 Вт. В пересчете это означает, что в обозначенном выше режиме при использовании без радиатора нельзя подключить более 3-х светодиодов параллельно. На практике это значит, что чем больше рабочий ток RGB ленты, тем большей площади радиаторы необходимо использовать. Все прочие радиоэлементы схемы подбираются по тем же принципам, что и для всех вышеизложенных схем.
Таким образом, мы рассмотрели схемы светомузыкальных устройств в порядке возрастания их функциональности и сложности. Цветомузыка своими руками — хороший опыт в освоении электроники, а также интересная самореализация. Если внимательно изучить материал, можно создать своими руками устройство для вечеринок по собственным требованиям, с учетом имеющихся радиодеталей. В заключение посоветую серьезно отнестись к оформлению собственно подсветки. Для создания праздника цвета и музыки ее исполнение может оказаться даже более значимым, чем выбор схемы устройства.
Варианты схем для создания цветомузыки своими руками — пошаговые инструкции, списки необходимых компонентов и советы по самостоятельному монтажу.
Преимущества светодиодов перед лампочками в цветомузыкальных приставках неоспоримы: широкая цветовая гамма и более насыщенный свет; различные варианты исполнения (дискретные элементы, модули, RGB-ленты, линейки); высокая скорость срабатывания; низкое энергопотребление.
Как сделать цветомузыку с помощью простой электронной схемы и заставить светодиоды мигать от источника звуковой частоты? Какие варианты преобразования звукового сигнала существуют? Эти и другие вопросы рассмотрим на конкретных примерах.
Цветомузыка на транзисторах КТ805АМ (3-х канальная)
Первой представляем вашему вниманию цветомузыку на 12В с транзисторами КТ805АМ.
В данной цветомузыке используется минимум деталей: 6 сопротивлений номиналом 100 Ом, конденсаторы 5-ти номиналов, 3 транзистора КТ805АМ.
Также можно использовать другие транзисторы марки КТ, у нас — КТ829.
Данная цветомузыка для дома собиралась навесным монтажом, поскольку есть мало деталей, но ниже можно скачать печатную плату цветомузыки на 2 канала (стерео)
Необходимые радиодетали для сборки цветомузыки своими руками:
- 3 биполярных транзистора (VT1–VT3) — КТ805АМ (КТ829).
- Электролитические конденсаторы — C1 100 мкФ C2, C3 4.7 мкФ, C4 47 мкФ, C5 22 мкФ, C6 1 мкФ.
- 6 резисторов (R1–R6) — 100 Ом.
- Светодиод (LED1-LED3) — 12В.
Вместо резисторов R4–R6 можно использовать переменные номиналом 10 кОм, вместо светодиодов — светодиодную ленту.
Схема цветомузыки для дома на транзисторах:
Для работы данной цветомузыки потребуется предусилитель, в качестве него можно использовать усилитель Вега10у-120с, подключаем к выходам на колонки.
Как работает данная цветомузыка, собранная своими руками, смотрите ниже:
Цветомузыка на светодиодах своими руками
Эта светомузыкальная установка создаёт зрительный эффект на домашней ёлке или на дискотеке. С первыми аккордами музыки светодиодные гирлянды разгораются разноцветными переливами.
В основе работы схемы лежит принцип частотного разделения звукового сигнала в каналах, разным частотам соответствует свой цвет свечения светодиодов. Для устранения эффекта мерцания и снижения усталости глаз введён канал подсветки, отключение которого происходит при включении в работу канала синего цвета.
Схема устройства состоит из трёх светомузыкальных каналов: низкой — красный, средней — зелёный и высокой частоты — синий. Во входных цепях установлены регуляторы уровня сигнала, от режима установки которого зависит яркость гирлянд.
Уровень входного сигнала может варьироваться от 0,5 до 3 вольт. Дополнительно, для удобства, установлен регулятор уровня входного сигнала.
- Пошаговая инструкция по созданию самодельного усилителя звука для дома
Схема светомузыкальной установки на светодиодах:
Ключевыми устройствами являются тиристоры. Внешний сигнал с разграничением по уровню подаётся на верхний или нижний вход (линия или радио). Сигнал через регулятор яркости R9 и конденсатор С3 поступает на вход усилителя на транзисторе VT1 обратной проводимости. В усилителе предусмотрено автоматическое ограничение сигнала диодом VD1. Превышение сигнала на базе транзистораVT1 приводит к открытию диода VD1 и шунтированию перехода база-эмиттер.
Снятый с коллектора транзистора VT1 сигнал поступает для распределения на входные регуляторы уровня каналов — резисторы R1. Далее сигнал поступает на фильтры каналов с частотным разделением 50–200 Гц, 250–1000 Гц, 1200–5000 Гц.
После частотного разделения сигналы поступают на вход предварительных усилителей на тиристорах VS1. Резисторы R3 позволяют подогнать чувствительность входных тиристоров в связи с разбросом характеристик.
Усиленный сигнал с нагрузки R5 катода VS1 поступает на управляющий электрод усилителя мощности на тиристорах VS2. Светодиодные гирлянды HL1–HL21 включены попарно в анодную цепь выходного тиристора по десять штук в две параллельные линии. В светодиодные линии также установлены ограничительные резисторы R6, R7 (R17, R18 в подсветке).
Канал подсветки составлен на одном тиристоре VS3 и управляется с анода выходного тиристора синего канала.
Питание предварительного усилителя и выходных каналов раздельное — предварительный усилитель питается от двухполупериодного выпрямителя на диодном мосте VD3 и далее через резистор R16 и диод VD2 в обратном включении.
Диод VD2 предотвращает шунтирование тиристоров каналов постоянным напряжением, сглаженным конденсатором С4. Каналы светомузыкальной установки питаются импульсным напряжением с выпрямителя VD3.
Силовой трансформатор Т1 установлен небольшой мощности (не более 20 ватт) от китайского адаптера. Конечно при возможной замене светодиодной гирлянды на лампочки, мощность трансформатора придётся увеличить раз в пять.
Наладка данной цветомузыки для дома заключается в подборе начальных уровней сигнала на каждом канале. Желательно подать сигнал с генератора, а затем подбором конденсаторов С1, С2 добиться соответствия полосы пропускания каналов.
Список радиоэлементов для 1 канала (красного):
- Тиристоры и симисторы (TS1, TS2) — КУ102Б (КУ101Б) и КУ102Г (КУ101Г).
- 21 красный светодиод (HL1–HL21).
- 2 пленочных или керамических конденсатора — С1 0.1 мкФ и С2 0.05 мкФ.
- Переменный резистор (R1) — 10 кОм.
- Подстроечный резистор (R3) — 100 кОм.
- Резисторы — R2 1 кОм; R4 8.2 кОм; R5 1 кОм; R6, R7 57 Ом.
- Тиристоры и симисторы (TS1, TS2) — КУ102Б (КУ101Б) и КУ102Г (КУ101Г).
- 21 зеленый светодиод (HL1–HL21).
- 2 пленочных конденсатора — С1 0.1 мкФ и С2 0.05 мкФ.
- Переменный резистор (R1) — 10 кОм.
- Подстроечный резистор (R3) — 100 кОм.
- Резисторы — R2 1 кОм; R4 8.2 кОм; R5 1 кОм; R6, R7 56 Ом.
- Тиристоры и симисторы (TS1, TS2) — КУ102Б (КУ101Б) и КУ102Г (КУ101Г).
- 21 синий светодиод (HL1–HL21).
- 2 пленочных конденсатора — С1 0.1 мкФ и С2 0.05 мкФ.
- Переменный резистор (R1) — 10 кОм.
- Подстроечный резистор (R3) — 100 кОм.
- Резисторы — R2 1 кОм; R4 8.2 кОм; R5 1 кОм; R6, R7 56 Ом.
- 21 оранжевый светодиод (HL1–HL21).
- Тиристор и симистор (TS3) — КУ102Г (КУ101Г).
- Биполярный транзистор (VT1) — КТ312Б или КТ315.
- 2 диода (VD1, VD2) — КД512А (КД106, КД512Б или другой маломощный).
- Диодный мост (VD3) — КЦ407А.
- Трансформатор (T1) — 12В 1А (можно на 2А и выше).
- Пленочный конденсатор (С3) — 1 мкФ.
- 2 электролитических конденсатора (С4, С5) — 10 мкФ х 16В.
- Переменный резистор (R9) — 10 кОм.
- Подстроечный резистор (R14) — 10 кОм.
- Резисторы — R8 100 кОм; R10 180 кОм; R11 10 кОм; R6, R12 1 кОм; R13 100 Ом; R15 1 кОм; R16 560 Ом; R17, R18 56 Ом.
Наименование | Тип | Замена | Примечание |
Транзистор VT1 | КТ312Б | КТ315 | NPN |
Резисторы R1–R18 | МЛТ 0,125 | С2-29 | — |
Тиристоры VS1–VS3 | КУ101Б | КУ101Г | 1 Ампер |
Резистор R3 | CПО | — | — |
Диод VD1, VD2 | КД 512Б | КД 106 | — |
Трансформатор T1 | ТПП | ТН | 12В 1 Ампер |
Резистор R1, R9 | СПО | СП-3 | — |
Следует заметить, что в схеме все три канала имеют одинаковые наименования деталей, так как идентичны, кроме входных фильтров. Количество каналов можно увеличить, выполнив две платы, что даст возможность дополнить цвета.
Схема собрана на печатной плате и установлена с трансформатором в пластмассовом блоке БП-1. Гирлянды располагаются по личному усмотрению, подключаются к схеме устройства тонким многожильным проводом в изоляции диаметром 0.24 мм.
Схема цветомузыки для дома — цветомузыкальное малогабаритное устройство
Описываемая конструкция цветомузыкального устройства предназначена для использования совместно с переносным радиоприемником ВЭФ-201 (или аналогичным). Благодаря расположению экрана на передней стенке рядом с громкоговорителем выполняется основной принцип цветомузыки: цвет органически связан со звуком и отображает его. Применение специальной системы рассеивания дало возможность расположить лампы накаливания почти непосредственно перед экраном. Кроме того, система излучатели — экран представляет собой разъемную конструкцию, что значительно упростило всю установку.
В основу действия данного цветомузыкального устройства положено разделение звукового диапазона на три частотных поддиапазона: низших, средних и высоких частот. Возможна также разбивка и на 4 поддиапазона, но в этом случае следует несколько изменить схему и печатную плату, а также расположение ламп перед экраном.
Цветомузыкальное устройство состоит из 3-х основных блоков:
- предварительного усилителя на транзисторах Т1 и Т2, необходимого для усиления звуковой частоты, снимаемой с НЧ детектора;
- трех фильтров на транзисторе ТЗ;
- трех усилителей мощности, собранных по аналогичным составным схемам (на рис. 1 — на транзисторах Т4 и Т5).
В зависимости от пропускаемых частот (выбранного числа каналов) в фильтре каждого канала емкости конденсаторов C3–С5 имеют номиналы, которые указаны в таблице ниже:
Цвет | 1— С, мкФ | 2 — С, мкФ |
Красный | 0.1 | 0.1 |
Зеленый | 0.03 | 0.047 |
Синий | 0.01 | 0.01 |
Зеленый | — | 0.022 |
Диод Д1 необходим для выделения на входе усилителя мощности отрицательной составляющей с тем, чтобы транзистор Т4 был всегда открыт. На вход подается сигнал непосредственно с НЧ детектора приемника.
Принципиальная схема цветомузыки для монтажа своими руками:
- Для отключения питания устройства служит клавишный выключатель В1, расположенный сверху приемника.
- Резисторы, используемые в конструкции (УЛМ или МЛТ) — 0,125.
- Электролитические конденсаторы — типа К50-6.
- Транзисторы и диоды, за исключением транзистора Т5, могут быть использованы любые низкочастотные.
- Лампы Л1 — на 2,5 В, 75 мА. Возможно использование микроламп на напряжение 9 В, но в этом случае потребляемая мощность увеличится в 1,5 раза, а чувствительность уменьшится в 1,3 раза.
-
5 биполярных транзисторов — 1 Т1 МП40 и 4 Т2–Т5 МП16.
Благодаря двум слоям трубок диаметром 1–1,5 мм, расположенным перпендикулярно друг другу, рассеяние цветов происходит практически по всей площади экрана. Необходимо также отметить, что свет попадает только на экран и не виден на шкале радиоприемника, вследствие чего конструкция системы излучатель–экран значительно упрощается.
-
Из корпуса приемника вынимаем хромированные планки и декоративную сетку.
Из тонкого листового дюралюминия вырезаем 2 пластинки размером 5х15 мм, в которых сверлим по два отверстия диаметром 3 мм. Это отражено на рисунке 4.
После пластинки сгибаем под прямым углом. Этими уголками печатную плату крепим к двум винтам, прикрепляющим громкоговоритель. Плата таким образом будет находиться на дне радиоприемника, деталями внутрь шасси.
Усилители мощности собирают на отдельной плате размером 60х25х2 мм. Эту плату приклеивают к печатной плате радиоприемника и к шасси, как показано на рисунке 5. На этом же рисунке показано расположение печатной платы на шасси радиоприемника.
Внешний вид устройства
Кнопочный выключатель питания сделан из выключателя от настольной лампы. Он крепится к блоку КПЕ. Его расположение относительно элементов радиоприемника показано на рисунке 6.
Настройка цветомузыкального устройства сводится к подбору оптимальных режимов всех каскадов и полос пропускания трех фильтров.
- Резистором R1 устанавливаем коллекторный ток транзистора Т1, равный 0,3 мА.
- Резистором R4 подбираем коллекторный ток транзистора Т2, равный 0,5–0,8 мА.
- Устанавливаем коэффициент усиления фильтров одинаковым для всех 3-х каналов.
- Полосу пропускания фильтров подбираем при помощи резисторов R10 и R11, вместо которых на время настройки ставим потенциометр.
- Наконец в режиме молчания приемника подбираем резистор R12 таким образом, чтобы лампа Л1 была на пороге загорания.
Видео о создании цветомузыки для дома своими руками:
Читайте также: