Заземление в сварочном цехе
Заземление оборудования — это обязательная мера для предприятий разной направленности. Необходимо заземлять следующее оборудование:
- корпуса электродвигателей;
- корпуса сварочных аппаратов;
- регулировочную аппаратуру;
- металлические элементы светильников;
- корпуса всех механизмов и машин, выполненные из металла.
Если напряжение в сети не превышает значение в 200 В, заземление оборудования осуществляется только в тех местах, которые создают опасность для поражения током. Например, в помещениях с повышенной влажностью, склады с большим количеством металлических масс и наружные установки, подвергающиеся воздействию атмосферных осадков.
Способы заземления оборудования разных видов
Существует несколько вариантов заземления для оборудования, и выбор конкретного варианта зависит от возможностей предприятия. В качестве естественных заземлителей для оборудования может использоваться широкий ряд элементов, включая:
- конструкции зданий из металла и железобетона, находящихся в контакте с землей, например фундамент здания, оснащенный гидроизоляционным покрытием;
- металлические водопроводные трубы, расположенные в земле;
- обсадные трубы в буровых скважинах;
- рельсовые пути железных дорог и подъездные пути, в которых имеются специальные устройства перемычек;
- свинцовые оболочки и металлическая броня кабелей.
Стоит упомянуть, что заземление оборудования нельзя осуществлять с помощью алюминиевых оболочек кабеля. Не подходят для заземления и трубопроводы канализации, центрального отопления и по которым проходит транспортировка горючих или взрывоопасных жидкостей и газов.
Рисунок 1 Таким образом, если на предприятии есть возможность монтировать заземление к естественным заземлителям, это позволит использовать более экономичные способы заземления оборудования. Однако если такой возможности нет, появляется необходимость монтажа искусственных заземлителей.
В качестве искусственных заземлителей могут выступать стальные проводники, заложенные в грунт в разных положениях — в горизонтальном, вертикальном или наклонном — и соединенных между собой. Вертикальные заземлители выполняются из оцинкованной стали диаметром не менее 6 мм или угловые варианты с толщиной не меньше 4 мм закладываются в грунт и соединяются между собой полосами стали. К ним с помощью сварки присоединяется заземляющий проводник (провод ПуГВ или ПВ3), который должен обладать сечением не менее 16 мм 2 .
Заземление технологического оборудования: монтаж шины заземления
После того, как выбран или смонтирован заземлитель, следует установить главную заземляющую шину PE. Сечение шины не должно быть меньше сечения проводника линии электропитания. Шина РЕ выполняется из меди и устанавливается в электрощитовой (рис. 1).
Рисунок 2 А уже от главной заземляющей шины производится заземление технологического оборудования предприятия — каждое оборудование присоединяется к шине с помощью отдельного проводника. Заземление сварочного оборудования и других видов техники производится с помощью надежных болтовых соединений (рис. 2).
Также важен выбор проводника для подключения оборудования. Для заземления отлично подходит проводник с сечением 16 мм2, например провод марки ПВ3 (ПуГВ) или ПВ4 — гибкие медные провода с изоляцией из ПВХ. Также можно приобрести более дорогостоящий провод ПВ6, который отличается высокой гибкостью.
Заземление силового оборудования и цеховых сетей
Для чего заземляются электроустановки, какую опасность для людей представляют не заземленные цепи, и наконец, в каких случаях и как в промышленности выполняется заземление? На эти и другие вопросы даст ответ наша статья. Вы узнаете, каким образом устанавливаются заземлители, как прокладываются для них проводники в различных условиях; что запрещено, а что разрешено использовать для устройства защитного заземления. Мы поговорим о нюансах заземления оболочек кабелей, и том как выполняется прокладка проводников в сухих и сырых помещениях.
Несмотря на то, что проводники электрических сетей изолированы электрически между собой и от земли, емкостным токам изоляция проводников препятствовать не может, ведь электросеть и земля образуют собой обкладки протяженного конденсатора, между которыми неизбежно протекает емкостный ток. То есть всегда имеет место паразитная электрическая цепь, которая через эту емкость замкнута на землю. Поэтому, при случайном контакте, при прикосновении даже к изолированному проводнику, человек подвергается опасности поражения током.
Безусловно, повреждения проводов, находящихся под высоким переменным потенциалом, представляют для людей гораздо большую опасность, однако для предохранения от последствий замыкания на токопроводные корпуса оборудования, сами эти кожухи предварительно соединяются с землей при помощи заземлителей.
В различных промышленных электрических установках на напряжение до 1000 вольт с глухозаземленным нулем однофазного источника, либо с заземленной нейтралью, так же как и в потребителях постоянного тока с глухозаземленной нулевой точкой, выполняют зануление, чтобы в случае аварии размыкание происходило бы автоматически и при том максимально быстро. Скорость срабатывания зависит от выбранного устройства защиты.
С этой целью части оборудования, которые случайно могут попасть под высокое напряжение в аварийной ситуации, зануляют, соединяют с заземленным нулевым проводником сети. Например если на корпус осветительного прибора произойдет замыкание, и корпус при этом занулен, то автоматически сработают предохранители, и напряжение с цепи будет мгновенно снято. ПУЭ предписывают выполнять монтаж большинства установок на 380 и 220 вольт с глухозаземленной нейтралью (непосредственно присоединенной к заземляющему устройству).
В электрических установках с рабочим напряжением до 1000 вольт с изолированной нейтралью, и всегда, когда рабочее напряжение выше 1000 вольт, выполняют заземление, смысл которого — снизить ток, могущий протечь через человека, до ничтожно малой величины. Это достигается заземлением частей оборудования, причем заземляющее устройство обязано иметь сопротивление значительно меньшее, чем у организма человека, который обладает в свою очередь сопротивлением в диапазоне 800 Ом - 100 кОм, что зависит от множества факторов, физиологических в том числе (состояние здоровья, обувь, одежда и т.д).
В электрооборудовании с изолированной нейтралью и классом не превышающим 1000 вольт, сопротивление цепи заземления не должно превышать 4 Ома, а для установок с заземленной нейтралью: для 660 В — не более 2 Ом, для 380 В — не более 4 Ом, и для 220 В — не более 8 Ом. Для высоковольтного оборудования, номиналом от 3000 до 35000 вольт, сопротивление устройств заземления рассчитывается по формуле 125/(ток в землю при замыкании), при этом нормирован максимум в 10 Ом.
Если заземление выступает общим для оборудования различного класса напряжения, то его сопротивление должно быть меньше или равно крайним верхним значениям, иначе защита не даст требуемого эффекта в плане безопасности в силу существенного падения напряжения на элементах оборудования.
Электроустановки переменного трехфазного тока на 380 и более вольт; оборудование постоянного тока на 440 и более вольт, всегда выполняются с занулением или заземлением. В цехах особой опасности, а также в открыто стоящих установках переменного напряжения от 42 вольт, и в оборудовании постоянного напряжения от 110 вольт, — тоже всегда делают зануление или заземление. Взрывоопасное оборудование без вариантов зануляются или заземляются, независимо от уровня рабочего напряжения, поскольку любая случайно возникшая искра или нагрев могут привести к трагедии.
Зануляют или заземляют внешние элементы трансформаторов, двигателей и генераторов, осветительных приборов, различных аппаратов, а также приводы, измерительные обмотки токовых трансформаторов, внешние оболочки щитов, подвижные и съемные элементы конструкций с установленным внутри них электрическим оборудованием, муфты кабелей и другие кабельные конструкции, проводящие оплетки как проводов, так и кабелей, проводящие трубы для защиты электропроводки, каркасы шинопроводов, тросы и т. п. Это касается как стационарного, так и мобильного электрического оборудования, и то и другое встречается в промышленности.
Но есть случаи, когда заземление не обязательно. Так, не делают зануления и не заземляют корпуса оснащенные дополнительной изоляцией, и корпуса тех электрических потребителей, которые имеют подключение к сети не напрямую, а через изолирующий трансформатор. Допускается не делать вообще зануление и не заземлять корпуса, установленные непосредственно на уже зануленных или заземленных проводящих конструкциях при надежном между ними контакте. Это не предмет данной статьи, но подобные меры защиты при косвенном прикосновении призваны защитить электроустановки.
Каждый из зануляемых или заземляемых элементов составного электроприемника соединяется с сетью зануления или заземления своим персональным отводом. Запрещено включать части защищаемой установки последовательно между собой и затем в защитный нулевой или в заземляющий проводник.
Тем не менее несколько различных конструкций, например обрамлений кранов и рельсов, можно подключить последовательно, если они непосредственно используются в роли нулевых защитных или заземляющих шин, либо если сами являются зануляющими или заземляющими магистралями. Каждый болт зануляющей или заземляющей магистрали фиксирует, тем не менее, один индивидуальный проводник.
Когда человек работает с электроинструментом, он все равно касается проводящего корпуса, и при проблемах с изоляцией, корпус иногда может попасть под сетевое напряжение, представляющее опасность для рабочего. Монтажный электроинструмент нередко запитывают от щитка, где а качестве устройств защиты выступают плавкие вставки, срабатывающие, однако, лишь при значительном ток. Но сопротивление провода в петле замыкания играет против нас, и срабатывание защиты может занять более секунды, а это уже опасно для человеческого организма.
Чтобы избежать риска, применяют автоматические устройства защитного отключения, которые успевают срабатывать не более чем за 210 мс после момента замыкания на землю или на корпус.
Защитные устройства данного рода бывают разных видов: для контроля непрерывности заземляющей цепи, для контроля изоляции фаз (от земли), для защиты от попадания фазного тока на корпус, для защиты от двухфазных или однофазных замыканий с землей, для защиты от прямого прикосновения к уязвимым для тока элементам корпуса. Устройства с контролем ТНП типа С-901 и ИЭ-9807, обладают чувствительностью в 10 мА, а время их срабатывания менее 51 мс. Такие устройства не дают току успеть причинить вред человеку.
С целью заземления электроустановок прежде всего применяют естественные заземлители, у которых сопротивление растеканию удовлетворяет ПУЭ. Это может быть железобетонный фундамент здания, закопанная труба водопровода, обсадная труба и т.п. Заземлять электрическое оборудование о трубопроводы с транспортируемым по ним горючим, о чугунные трубы, о временные трубопроводы запрещено.
В первую очередь в качестве нулевых и заземляющих проводников функционируют стандартные рабочие нулевые проводники; проводники специального назначения; проводящие конструкции зданий и части сооружений производственного профиля, например шахты лифтов, рельсы под кранами и т.п., разнообразные трубопроводы, оболочки мощных кабелей, короба электропроводок.
Запрещено использовать как заземляющие проводники: оболочки изолирующих трубок, гофры, несущие тросы, оболочки свинцовые и защитную броню проводов и кабелей, ведь они сами должны грамотно заземляться. Электроустановки и проводящие элементы строительной инфраструктуры, а также всевозможные трубопроводы, подключают к сети зануления или заземления чтобы выравнять их потенциал. Хватает естественного контакта металлов в соединениях.
Если все же требуется искусственный заземлитель, то применяют заглубленные, горизонтальные и вертикальные промышленные заземлители. Для их изготовления типично применяют круглого сечения сталь, от 10 до 16 мм в диаметре, чаще полосовую сталь 40 на 4 мм, либо угловую 50 на 50 на 5 мм. Вертикальные имеют длину от 2,5 до 5 метров, их ввинчивают (до 5 метров) или забивают (до 3 метров) вглубь грунта вручную или при помощи электрического или иного специального инструмента.
Электроустановки, связанные с землей, обладающей удельным сопротивлением превышающим 200 Ом-м, заземляют углубленным заземлителем или дополнительно обрабатывают землю с целью повысить электропроводность — для вертикальных заземлителей укладывают попеременными слоями Ca(OH)2 или NaNO3 и землю, и диаметр такой обработки составляет пол метра на одну треть высоты стержня в верхней его части. По завершении укладки каждого из слоев, их поливают поочередно водой.
Если поблизости есть участки земли с более высокой проводимостью, прибегают к выносным заземлителям с использованием дополнительных кабелей или проводов. В условиях вечной мерзлоты заземлители устанавливают в талых зонах, водоемах, а также в буровых скважинах по типу артезианских.
В качестве материала стационарных проводников для заземления традиционно служит сталь, если конечно для этого не используется четвертый нулевой проводник трехфазной системы (медный). В таблице приведены минимальные размеры для нулевых и заземляющих проводников, включая стальные заземлители. При напряжении электроустановки с изолированной нейтралью от 1000 вольт, сопротивление заземляющих проводников не может, согласно ПУЭ, превышать сопротивления фазных более чем в 3 раза. Минимально разрешенные значения сечений указаны в таблицах.
Для электроустановок напряжением до 1000 вольт, в промышленных помещениях, в цехах, применяют магистраль заземления, стальную шину сечением не меньше 100 кв.мм, а при напряжении более 1000 вольт, минимальное сечение для нее составляет 120 кв.мм. Использовать металлоконструкции, трубопроводы, оборудование, как рабочий нулевой проводник запрещено.
Мобильные электроустановки для зануления или заземления используют индивидуальный проводник в виде жилы в составе кабеля, в одной оболочке, общей и для фазных проводников, того же сечения, что и фазные жилы.
Для заземления и в качестве защитных нулевых проводников на взрывоопасном оборудовании, на опасных производствах, применяют специализированные проводники. Использовать можно и металлоконструкции, стальные трубы, оболочки кабелей и т. д., но только как вспомогательную меру, прежде всего должен присутствовать специальный заземляющий проводник.
Для взрывоопасных установок с глухозаземленной нейтралью при напряжении до 1000 вольт, зануление силовых сетей исполняется дополнительно проложенным проводником: четвертым — для трехфазных сетей, и третьим — для двухфазных и однофазных сетей. Даже осветительные однофазные сети во взрывоопасных зонах класса В-1 оснащены третьим защитным проводником.
Когда естественные конструкции не удовлетворяют требованиям ПУЭ, не остается другого выхода, кроме как возводить искусственные заземлители.
Углубленные заземлители монтируют, укладывая их на дно котлована еще при начале монтажа фундамента сооружения, на этапе строительства. Вертикальные заземлители забивают или просто вдавливают, загоняя в грунт при помощи специальных приспособлений, таких как автоматические коперы или гидропрессы. Закладка верха делается на отметке от 0,6 до 0,7 метров ниже уровня отметки земли, а высота выступа от дна котлована — 0,1 — 0,2 метра. Это делается для того, чтобы затем было удобно приваривать соединительные проводники в виде полос или цилиндрические стержни.
Соединяются проводники в цепях заземлителей путем сварки внахлестку. Если грунт агрессивен и может привести к коррозии металла, то сечение заземлителей увеличивают, применяют как стойкую к коррозии альтернативу омедненные или оцинкованные заземлители, а для большей надежности добавляют антикоррозийную электрическую (катодную) защиту.
Защита асбестовыми трубами добавляется к горизонтальным заземлителям, если они пересекают подземные коммуникации, железнодорожные пути и другие сооружения, могущие способствовать причинению механических повреждений какой-нибудь из пересекающихся конструкций. Когда монтаж окончен, и котлован готов к окончательной засыпке, составляется обязательный акт, где юридически фиксируется, что осуществлена скрытая прокладка.
Нулевые защитные и заземляющие проводники должны по возможности быть легко доступными для диагностики и осмотра. Это, конечно же, не касается жил и оболочек кабелей, труб скрытой проводки и металлических конструкций, которые изначально находятся в фундаментах и в земле, нулевых и заземляющих проводников, смонтированных в скрытых необслуживаемых и несменяемых трубах.
Если помещение сухое, то заземляющие проводники прокладывают прямо по кирпичному или бетонному основанию, проводящие полосы шин крепятся к нему дюбелями. В сырых же помещениях необходимы прокладки или держатели, чтобы проводник располагался на расстоянии в 1 см от основания или более.
На прямых поверхностях основания проводники закрепляют на расстоянии 60 — 100 см между крепежными элементами, а на поворотах — с отступом в 100 см от угла и от мест ответвлений, на расстоянии 40 — 60 см от пола, и не менее 5 см от съемных канальных перекрытий. Чтобы проложить заземляющий проводник сквозь стену, применяют гильзы или монтажные проемы, а в местах пересечения температурных швов добавляют компенсаторы.
К металлическим элементам установок заземляющие проводники приваривают, исключением являются разъемы, служащие для измерений. Нахлестку при сварке делают по длине равной шестикратному диаметру круглого проводника или равной приблизительно ширине полосы.
Корпусы машин традиционно имеют специальный болт для фиксации заземляющего проводника, а установленные на салазкаи станки заземляются присоединением проводника прямо к салазкам. Если оборудование вибрирует при работе, то дополнительно устанавливают контргайку. Прежде чем соединить контактные поверхности, их до блеска зачищают и наносят тонким слоем немного вазелина.
Трубопроводы, примененные как заземлители, иногда оснащены задвижками, встречаются на них и водомеры, и фланцы, в таких местах нужны обходные перемычки площадью сечения от 100 кв.мм, которые приваривают или устанавливают при помощи хомутов.
Нулевые защитные и заземляющие проводники, смонтированные открыто, специально маркируются, чтобы можно было их отличить от других коммуникаций, - желтая полоса на зеленом фоне. Места для присоединения переносных заземлителей не окрашивают.
Броню контрольных и силовых кабелей, их металлические оплетки, заземляют. Заземляют также концевые и соединительные муфты кабелей, проводящие кабельные сборки, короба, лотки и тросы крепления кабелей. Стальные трубы, внутри которых в зданиях прокладывают кабели, - тоже заземляются.
Гибкими многопроволочными медными проводниками обеспечивают контакт оболочки и брони с концевыми и соединительными муфтами. На концах линий эти проводники соединяют с магистралями заземления. Сечения гибких проводников, в соответствии с сечением проводящей жилы кабеля, принимаются равными: 6 кв.мм для сечения жилы кабеля до 10 кв.мм, 10 кв.мм для кабеля 16-35 кв.мм., 16 кв.мм для 50-120 кв.мм и 25 кв.мм для 150-240 кв.мм.
Для обеспечения непрерывности заземляющей цепи кабелей, на местах стыковки соединительными свинцовыми муфтами, применяют пайку: с одного конца кабеля к броне припаивается проводник заземления, затем проводник заземления припаивается к центру муфты, далее - к броне конца следующего куска кабеля. Для заземления проводящих коробов и лотков монтаж осуществляют аналогичным образом, - минимум в паре мест с обоих концов линии делают припайки.
Если кабель проложен на тросах, то все проводящие части, включая и сам трос, заземляются. Применяемые для заземления стальные трубы надежно соединяются с нулевым проводом либо с заземляющим устройством.
Для сохранения в безопасности людей, выполняющих обслуживание, а также для защиты свинцовой или алюминиевой оболочки кабеля, на случай пробоя изоляции на землю, заземляют всю металлическую оболочку и броню кабеля, проводящие корпуса муфт и опорных конструкций.
Надеемся, что эта статья была полезной для вас, и теперь вы имеете представление о том, как и зачем реализуется заземление электроустановок.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Как заземляется сварочное оборудование
Любое электрооборудование, согласно правилам безопасности, должно быть заземлено, поэтому важно знать, как заземляется сварочное оборудование. Такая норма необходима, чтобы защитить сварщика от случайного удара током. Это же требование прописано и в инструкции к любому сварочному аппарату.
Конечно, из каждого правила существуют исключения, и, возможно, многие видели, как сварщики работают без заземления установок. Но допускается это лишь в исключительных случаях и при условии сухой погоды. В нашей статье мы расскажем, как и зачем заземлять сварочное оборудование, приведем важные нюансы, на которые нужно обратить внимание.
Необходимость заземлять сварочное оборудование
Сварочный аппарат стационарного типа, как правило, оснащен индивидуальным заземляющим контуром вне зависимости от схемы подключения к электросети. То, как заземляется сварочное оборудование, в этом случае условно выглядит так: с одной стороны заземляющий провод крепится к металлической оболочке прибора, а с другой – к железному штифту, вкопанному в землю.
Такой контакт сварочного агрегата и грунта создает между ними равенство потенциалов. Благодаря этому, если корпус прибора будет под напряжением, а мастер прикоснется к нему, – человека не ударит током. Эта система работает и для других элементов, проводящих электричество. Учитывая то, что при работе со сваркой используется ток высокого напряжения, пренебрежение заземлением может быть чревато трагичными последствиями.
Зануление, заземление, заземлитель – в чем разница
Цель данной статьи – дать развернутое описание заземления и всего, что с ним связано. В первую очередь необходимо обозначить разницу между этими понятиями. Не стоит путать заземление, заземлитель и заземляющее устройство при наладке сварочного оборудования. Так, заземление – это запланированный контакт оборудования или некоторых его частей с заземляющим устройством.
Иными словами, заземление – это процесс, а заземляющее устройство и заземлитель – нет. Заземляющее устройство представляет собой ансамбль заземлителя и заземляющих проводников. Заземлителем же может быть один либо несколько элементов, проводящих ток. Чаще всего эту роль играет кабель. Его главная задача – соединить сварочный аппарат с землей и передавать на нее вышедшую из-под контроля электроэнергию.
То, как заземляется сварочное оборудование, определяется целью и функциями заземляющего устройства. Так, последние условно подразделяются на три типа: защитные, грозозащитные и рабочие. Их задача обозначена в самом названии: защитные устройства оберегают людей и животных от удара током при соприкосновении со сварочной установкой. Они пригодятся в случае, если кабель фазы соприкоснется с металлической частью установки, не предназначенной для передачи тока, тем самым передав на нее напряжение.
Грозозащитные устройства направляют электричество от удара молнии в землю, заземляя при этом стержневые или тросовые разрядники и молниеотводы.
Рекомендуем статьи по металлообработке
Рабочие устройства, отвечающие за заземление оборудования, обеспечивают его бесперебойный режим работы в штатных и в аварийных условиях. Иными словами, защита такого типа нацелена не на безопасность мастера, а на обеспечение исправного функционирования агрегата.
Существуют также устройства, которые одновременно выполняют и защитные, и рабочие функции. По своей природе заземлители разделяются на естественные и искусственные. Разница не в том, что одни рукотворные, а другие – нет. Дело в том, что естественные изначально задумывались не как заземлители. Это может быть арматура в металлическом каркасе бетонного строения или водопровод. Важно знать, что нельзя использовать в качестве заземлителя трубы, имеющие изоляционное покрытие. А вот искусственные – это заземлители, которые были специально созданы для этих целей.
VT-metall предлагает услуги:
Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы
Зануление – это факт создания связи между металлическим каркасом электрического прибора и нейтральности генератора или трансформатора. Как правило, для этого используется отдельный кабель, который так и называется – нулевой. Функция зануления заключается в создании возможности автоматического отключения питания от прибора, если произойдет короткое замыкание. Так, при возникновении проблемы аварийный участок будет моментально обесточен предохранителем или автоматом.
Основные требования к заземлению сварочного оборудования
Если говорить о том, как заземляется сварочное оборудование, то важно знать параметры заземлителя. Кабель должен быть выполнен из меди, а его диаметр не должен быть меньше 6 мм. Вместо провода можно использовать арматуру, тогда величина ее сечения начинается от 12 мм. Заземлитель крепится к корпусу устройства при помощи специального болта, при этом важно его как-то обозначить (например, подписать «земля»). В случае с электродуговой сваркой, заземление также необходимо обеспечить для зажима вторичной обмотки, который соединяется с проводником, подключенным к обрабатываемой поверхности.
Если провод подачи тока имеет две жилки, то в качестве заземлителя трансформатора аппарата нельзя применять кабели «фаза» и «ноль».
Перед тем как заземлять сварочное оборудование, важно ознакомиться с основными правилами:
- все элементы установки, не подающие ток, должны быть соединены с заземляющим контуром;
- все участки устройства, подключенные к заземляющему контуру, должны крепиться к нему при помощи специальных болтов с соответствующим обозначением;
- разные аппараты должны быть подключены к индивидуальным заземляющим устройствам;
- нельзя выполнять заземление нескольких агрегатов, соединяя их последовательно;
- при отсутствии возможности подключения заземления, необходимо обеспечить аварийное защитное отключение.
Согласно правилам электробезопасности, сопротивление заземлителя не должно превышать 5 Ом. Чтобы добиться такого показателя, необходимо обеспечить как можно большую площадь соприкосновения кабеля с землей, а также высокую проводимость тока.
Еще один немаловажный момент при заземлении сварочного оборудования – соединения. Заземлитель крепится к заземляющему устройству при помощи хомутов или сварки. При любых условиях место скрепления должно быть защищено от появления коррозии. Как правило, для этих целей его промазывают смолой.
В целях обеспечения электробезопасности необходимо проводить ежемесячную проверку оборудования на наличие оголенных проводов, замыканий на металлический каркас, повреждения заземляющего контура.
Важно также обратить внимание на возможные замыкания в обмотке трансформатора, безотказность аварийных систем.
Из-за специфики работы электродуговых сварочных аппаратов, когда между электродом и обрабатываемой деталью создается напряжение, способ их заземления несколько отличается. Так, помимо металлического каркаса, необходимо заземлить и вывод вторичной обмотки, который соединяется обратным проводником с рабочей поверхностью.
Монтаж заземлителя
Перед тем как заземлять сварочное оборудование, необходимо выбрать металлические заготовки для защитного контура. При этом нужно исходить из размеров его отдельных элементов, типа грунта и погодных условий конкретной местности.
Основные показатели заземляющего устройства и их зависимость от климатических условий отражены в соответствующих разделах нормативного документа «Правила устройства электроустановок».
Типичный заземляющий контур выглядит как равносторонний треугольник, в углах которого располагаются вбитые в землю (не менее чем на 2 м) металлические штыри. Они соединяются друг с другом посредством обвязывания отрезками стальных шин.
Говоря о том, как заземляется сварочное оборудование, важно отметить расположение сварочного контура. Он должен находиться в районе осуществления сварки и соединяться аппаратом при помощи специального отвода, позволяющего ему стыковаться со сварочной клеммой агрегата.
Так же, как и прочие заземляющие устройства, такая система должна иметь сопротивление утечки, установленное на уровне, требуемом нормативными документами. Он не должен превышать максимальных показателей для текущих условий.
Чтобы определить силу сопротивления конструкции, используют омметры – специальные электроприборы. Благодаря им удается вычислить переходное сопротивление звеньев цепи с точностью до доли ома.
Главная задача заземления сварочного оборудования – защита мастера от опасных производственных случаев. Оно защищает от случайной подачи тока на металлический корпус прибора и причинения вреда здоровью человека. Особенно важно озаботиться заземлением при работе во влажных условиях.
Контроль заземления сварочного оборудования
Правила устройства электроустановок гласят, что для обеспечения безопасных условий работы общее сопротивление заземляющей конструкции не должно превышать 5 Ом.
В таком случае, как заземляется сварочное оборудование? Очень важно учесть вышеупомянутое требование, обеспечить нужный уровень токопроводимости, увеличив при этом площадь соприкосновения проводников с землей.
В реальности же достижение уровня сопротивления заземляющей конструкции 5 Ом и ниже практически невозможно. Поэтому применяются особые методы по его снижению. Как правило, в почву добавляют специальные химические составы.
Открытые участки заземляющей системы любого типа должны быть обработаны антикоррозийным составом. В особенности это касается швов. Чаще всего в подобных целях используется разжиженная смола.
Стоит отметить, что, согласно нормативной документации, должны проводиться регулярные осмотры конструкции для заземления сварочных аппаратов в целях оперативного выявления дефектов и поддержания системы в рабочем состоянии.
Такие проверки включают в себя визуальный осмотр открытых участков заземляющей конструкции и точек сцепления и случайную выборку почвы с тех участков, которые прописаны в документе «Правила устройства электроустановок». Выемка грунта осуществляется для того, чтобы отследить состояние скрытых в нем шин и соединений конструкции.
Требования к заземляющей клемме
Говоря о том, как заземляется сварочное оборудование, когда требуется надежный контакт заземляющего устройства с металлической деталью, которая находится в работе, стоит отметить использование заземляющих клемм. Наиболее ходовой вариант – зажимы формата «крокодил».
К клеммам, как и к другим фиксаторам заземляющей системы, предъявляются определенные требования. Так, их проверяют на:
- прочность – зажим должен быть устойчив не только к механическим нагрузкам, но и к температурным изменениям;
- надежность фиксации – клемма должна крепко крепить заземляющий кабель на рабочей заготовке;
- соответствие «крокодила» параметрам сварочного аппарата – он должен выдерживать силу тока до 300 ампер.
Последнему требованию соответствуют зажимы типа «КЗ-300». Они как раз рассчитаны на работу с оборудованием, чья нагрузка доходит до 300 ампер.
Заземляющие клеммы отлично справляются со своей задачей, так как заземление сварочного оборудования непременно требует сочетания прочного соединения элементов системы и минимального сопротивления конструкции.
Заземление автономного сварочного оборудования
Бывают случаи, когда у мастера нет возможности подключить сварочный аппарат к сети, – в таких условиях используются автономные модели. Как правило, их напряжение тока вторичной сети составляет 120 или 240 вольт. Заземление при этом обеспечить бывает нелегко. А нужно ли это делать?
Ответ на этот вопрос зависит от конструкции устройства и условий его использования. Последние можно условно разделить на две группы:
1. При соблюдении всех факторов из этого списка корпус аппарата можно не заземлять, когда:
- сварочный аппарат находится в кузове автомобиля либо трейлера;
- питание от вторичной сети происходит через вилку или кабель;
- розетка оснащена кабелем заземления;
- рама сварочного устройства соединена проводом с рамой транспортного средства.
2. При наличии хотя бы одного фактора из данного списка заземление автономной сварки необходимо:
- питание оборудования идет за счет подключения к проводке здания (например, для аварийного электроснабжения);
- вторичная сеть получает питание напрямую, без использования вилки или кабеля;
- вторичная сеть получает постоянное питание без использования розетки или провода.
Выше мы описали лишь ключевые вопросы, касающиеся того, как заземляется сварочное оборудование автономного типа. Более полную информацию можно получить в нормативной документации по электробезопасности.
Если питание сварки происходит с использованием удлинителей, то важно регулярно проверять их на наличие разрывов и надломов. Из-за того, что такие кабели чаще всего располагаются на полу, они, подвергаясь дополнительной нагрузке, быстрее изнашиваются. С помощью специального тестера легко держать их состояние под контролем и, в случае неисправности, своевременно принять меры по их устранению.
Правильная установка заземляющей системы сварочного аппарата сильно снижает риск получения производственных травм, однако не гарантирует стопроцентной безопасности. Ток проходит по заземляющему контуру, не причиняя при этом вреда, но если человек станет его частью, то он послужит проводником, что чревато неприятными последствиями. Поэтому крайне важно избегать телесного контакта с заземляющей конструкцией, носить средства индивидуальной защиты, а изоляционные перчатки непременно должны быть сухими. Также необходимо контролировать целостность кабелей, горелок и электродержателей.
Выполняя эти рекомендации, можно также избежать удара током от сети. Исправность оборудования во многом снижает производственные риски для мастера.
Почему следует обращаться именно к нам
Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.
Наши производственные мощности позволяют обрабатывать различные материалы:
- цветные металлы;
- чугун;
- нержавеющую сталь.
При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.
Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.
Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.
Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.
Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.
Заземление цеха, расчёт контура заземления цехов, правила монтажа в цехах.
Работа электрических приборов всегда связана с таким опасным для человека явлением, как напряжение. Выход из строя оборудования часто сопровождается короткими замыканиями, либо возникновением перегрузок.
Электрический ток, в результате неисправности оборудования, может проходить через непредназначеннуюо для этого часть. От прикосновения к корпусу оборудования под напряжением человек получает удар электрическим током. Последствия могут нанести вред здоровью и поставить угрозу для жизни человека.
Для защиты электроустановок от поломок, а человека от опасного воздействия электрического тока применяют заземление. Заземление электроустановок осуществляется за счет электрического соединения с землей или иными элементами металлических частей, не предназначенных для проведения тока.
Заземление оборудования может быть двух видов:
- Защитное заземление — специальное присоединение оборудования с устройством заземления. Целью этой меры является ограничение человека от опасного воздействия при контакте с корпусом прибора.
- Зануление — подсоединение элементов оборудования с заземленной нейтралью с нулевым проводом. Зануление способствует отключению оборудования при возникновении неисправностей в его работе.
Защитное заземление включает в свою конструкцию сам заземлитель, а также проводники. В свою очередь заземлители могут быть естественными и искусственными. К первым относят металлические элементы в конструкции зданий, объектов, которые имеют соединение с землей.
Искусственными являются схема из металлических труб, штырей, уголков, ввинченных в землю и имеющие между собой соединение из полос или проволоки.
Заземляющими проводниками выступают шины из стали или меди, они создают соединение между оборудованием и непосредственно заземлителем. Крепят шины болтами или сварочным способом.
Заземляющее устройство
Заземляющее устройство – система, состоящая из заземляющего контура и проводников, обеспечивающих безопасное прохождение тока через землю. Исходя из Правил Устройства Электроустановок, естественными заземлителями могут быть:
- Каркасы зданий (железобетонные или металлические), которые соединены с землей.
- Защитная металлическая оплетка проложенных в земле кабелей (кроме алюминиевой)
- Трубы скважин, водопроводов, проложенных в земле (кроме трубопроводов с горючими жидкостями, газами, смесями)
- Опоры высоковольтных линий электропередач
- Неэлектрифицированные железнодорожные пути (при условии сварного соединения рельсов)
Для искусственных заземлителей, по правилам, используют неокрашенные стальные прутки (с диаметром более 10 мм), уголок (с толщиной полки более 4 мм), листы (с толщиной более 4 мм и сечением в разрезе более 48 мм2). Для создания системы с искусственным заземлением возле сооружения вкапывают или вбивают в землю металлические пруты, уголок или листы с указанными выше толщиной и сечением, но длиной не менее 2,5 м. Затем их сваркой соединяют между собой с помощью прутковой или листовой стали. От поверхности земли данная конструкция должна находиться более 0,5 м. По требованиям, контур заземления здания должен иметь не менее двух соединений с заземлителем. В зависимости от назначения, заземление оборудования делится на два типа: защитное и рабочее. Защитное заземление служит для безопасности персонала и предотвращает возможность поражения человека электрическим током вследствие случайного прикосновения к корпусу электроустановки. Защитному заземлению подлежат корпуса электроустановок и электрических машин, которые не закреплены на «глухозаземленных» опорах, электрошкафы, металлические ящики распределительных щитов, металлорукав и трубы с силовыми кабелями, металлические оплетки силовых кабелей. Рабочее заземление используют в том случае, когда для производственной необходимости в случае повреждения изоляции и пробоя на корпус требуется продолжение работы оборудования в аварийном режиме. Таким образом, например, заземляют нейтрали трансформаторов и генераторов. Также, к рабочему заземлению относят подключение к общей сети заземления молниеотводов, которые защищают электроустановки от прямого попадания молний.
Согласно Правилам Устройства Электроустановок обязательно подлежат заземлению электрические сети с номинальным напряжением свыше 42 В при переменном токе и свыше 110 В при постоянном.
Как работает заземление
Для начала разберемся, почему на корпусе стиральной машинки или другого электрооборудования появилось опасное напряжение. Всё достаточно просто – изоляция проводников по какой-то причине испортилась или повредилась и поврежденный участок касается металлического корпуса какой-то из деталей оборудования.
Если заземление или зануление электрооборудования отсутствует, то при касании человеком поврежденного прибора может возникнуть напряжение прикосновения (разность потенциалов на поверхности между точками касания). При нахождении рядом с поврежденным оборудованием может возникнуть шаговое напряжение (разность потенциалов между ступнями, соприкасающимися с землей). Напряжение прикосновения и шаговое напряжение могут иметь опасное для человека значение. Чтобы уменьшить их значение до безопасной величины, применяется защитное заземление.
Для человека опасны даже такие маленькие значения как 50 мА – такой ток может привести к фибрилляции желудочков сердца и смерти.
Так вот принцип работы заземления заключается в следующем: к заземлителю подключаются корпуса всех электроприборов, дополнительно устанавливается УЗО. В случае возникновения опасного напряжения на корпусе заземление всегда притягивает опасный потенциал к безопасному потенциалу земли и напряжение «стекает» на заземление.
Классификация систем заземления
Различают следующие системы заземления:
- Система ТN (которая в свою очередь разделяется на подвиды TN-C, TN-S, TN-C-S)
- Система TT
- Система IT
Буквы в названиях систем взяты из латиницы и расшифровываются так: Т – (от terre) земля N – (от neuter) нейтраль C – (от combine) объединять S – (от separate) разделять I – (от isole) изолированный По буквам в названиях систем заземления можно узнать, как устроен и заземлен источник питания, а также принцип заземления потребителя.
Система ТN
Это наиболее известная и востребованная система заземления. Основным ее отличием является наличие «глухозаземленной» нейтрали источника питания. Т.е. нулевой провод питающей подстанции напрямую соединен с землей. TN-C – подвид системы заземления, которая характеризуется объединенным заземляющим и нейтральным нулевым проводником. Т.е. они идут одним проводом от питающего трансформатора до потребителя. Отсутствие отдельного РЕ (защитного нулевого) проводника в данной системе однозначно является недостатком. Система TN-C широко использовалась в советских зданиях и непригодна для современных новостроек, т.к. в ней отсутствует возможность выравнивания потенциалов в ванной комнате. TN-S – система, в которой защитный проводник системы уравнивания потенциалов и рабочий нулевые проводники идут раздельными проводами от источника питания до электроустановки. Эта система только обретает широкое применение при подключении зданий к электроснабжению. Является наиболее безопасной. К недостаткам можно отнести ее дороговизну, т.к. требуется монтаж дополнительного проводника. TN-C-S – система, в которой нулевой защитный проводник и нейтральный рабочий идут совмещенным проводом, а разделяются на входе в распределительный щит. По требованиям Правил Устройства Электроустановок для этой системы необходимо дополнительное заземление.
Система TT
Это система, в которой питающая подстанция и электроустановка потребителя имеют различные, независимые друг от друга заземлители. Областью применения системы ТТ являются мобильные объекты, имеющие электроустановки потребителей. К ним относят передвижные контейнеры, ларьки, вагончики и т.д. В большинстве случаев для потребителя в системе ТТ применяется модульно-штыревое заземление.
Система IT
Система, в которой источник питания разделен с землей через воздушное пространство или соединен через большое сопротивление, т.е. изолирован. Нейтраль в этой системе соединена с землей через сопротивление большой величины. Система IT используется в лабораториях и медицинских учреждениях, в которых функционирует высокоточное и чувствительное оборудование.
Что еще входит в комплект?
Рассмотрим компоненты готовых комплектов заземления, представленных на рынке РФ. Про стержни много было сказано выше, поэтому поговорим об остальных комплектующих:
Для лучшего погружения в землю на конец первого стержня устанавливают стартовый наконечник. В российских комплектах он выполнен из черной стали (St), в немецких из тугоплавкого чугуна (TG/FT) или оцинкованной стали (St/FT).
У отечественных комплектов для соединения стержней на их соседние концы накручиваются муфты (выполняются из нержавеющей стали или латуни). Немецкие исключают использование этого элемента, поскольку соединяются в стык по принципу «папа – мама» (см. выше), за счет чего у них в месте соединения нет утолщения диаметра конструкции и как следствие получается более надежное соединение с хорошим электрическим контактом между соседними заземлителями.
Для передачи ударного усилия при монтаже у наших стержней в муфту с противоположной стороны вкручивается удароприемная головка (болт), а у немецких она просто надевается на конец стержня с накатной цапфой. Визуально это два разных элемента, у отечественных ударный болт выполнен из черной стали (St), а у импортных ударный наконечник из ковкого чугуна (TG/FT).
Для улучшения качества соединения элементов и лучшей проводимости тока комплекты поставляются с токопроводящей смазкой, консистенция которой варьируется от жидкого до пастообразного состояния. Она наносится в местах стыковки компонентов конструкции.
На последний (верхний) электрод одевается диагональный или крестовой зажим (соединитель), к нему же подключается заземляющий проводник (круглый пруток или полоса). Выполняется он из нержавеющей или оцинкованной стали, последнюю для лучшей коррозионной стойкости лучше использовать с ПВХ-покрытием.
Место соединения стержня и заземляющего проводника через зажим бинтуют антикоррозионной лентой.
Опционально модульно-штыревые комплекты поставляются с насадкой для перфоратора и заземляющим проводником, иногда еще и шиной заземления.
Требования к заземлению электродвигателя
Согласно требованиям и правилам установленный электродвигатель перед пуском должен быть заземлен. Исключением являются те случаи, в которых корпус электродвигателей установлен на металлическую опору, соединенную с землей через металлоконструкцию здания или через проводник заземлителя. В остальных случаях корпус электродвигателя должен быть соединен проводом с контуром заземления здания, выполненного из полосы металла при помощи сварки.
Это является рабочим заземлением. В противном случае при нарушении изоляции между обмоткой двигателя или токопроводом и корпусом электродвигателя защитное устройство не сработает и не отключит питание. А двигатель продолжит работу. Каждая электрическая машина должна иметь индивидуальное соединение с заземлителем. Последовательное соединение электродвигателей с контуром заземления запрещено, т.к. при нарушении одного из соединений с заземлителем, вся цепь будет изолирована от земли. Для установки защитного заземления, необходимо наличие дополнительного заземляющего проводника в силовом кабеле, один конец которого подключают к клеммной коробке электродвигателя, а другой к корпусу электрошкафа управления двигателем. Электрошкаф предварительно должен быть соединен с землей. В случае пробоя между токопроводом и этим заземляющим проводником образуется ток короткого замыкания, который разомкнет защитное или коммутирующее устройство (тепловое или токовое реле, защитный автомат). Сечение заземляющего проводника, удовлетворяющее требованиям Правил Устройства Электроустановок приведено в таблице 1:
Сечение фазных проводников, мм2 | Наименьшее сечение защитных проводников, мм2 |
S≤16 | S |
16 < S≤35 | 16 |
S>35 | S/2 |
Сечение фазных проводников рассчитывается по токовой нагрузке потребителя.
Техническое задание
В соответствии с требованиями нормативов на любом энергозависимом объекте перед монтажом заземляющего контура подготавливается техническое задание (ТЗ). В нем обязательно учитываются следующие рабочие моменты:
- тип используемого заземления (одно- или двухконтурное, стационарное или переносное);
- схема и способ прокладки заземляющих шин;
- геометрические размеры и форма погружаемой в грунт части конструкции;
- материал, используемый для изготовления заземляющих проводников и заземлителя (сталь, медь или алюминий);
- способ их соединения (сварка или ботовое сочленение).
Это позволяет в дальнейшем быстро и своевременно выполнить работы по монтажу заземления, а также подготовить документацию.
Требования к заземлению сварочных аппаратов
Как и для любого технологического оборудования, потребляющего электрический ток, для сварочных аппаратов существуют правила подключения заземления. Помимо необходимости заземления корпуса сварочной электроустановки с контуром заземления здания, заземляют один вывод вторичной обмотки аппарата, а ко второму, соответственно подключается электрододержатель. При этом вывод вторичной обмотки, требующей заземления, должен быть обозначен графически и иметь стационарное выведенное крепление, для удобного соединения с заземлителем. Переходное сопротивление контура заземления не должно превышать 10 Ом. В случае необходимости увеличения электрической проводимости контура заземления, увеличивают контактную площадь соединения.
Последовательное соединение сварочных аппаратов с заземлителем также запрещено. У каждого аппарата должно быть отдельное соединение с заземленной магистралью здания. Заземление электроустановок потребителей – это не формальность, а необходимая техническая мера безопасности, которая позволит не только стабилизировать работу оборудования, но и спасти жизнь персоналу, обслуживающему и контактирующему с ним.
Конструктивные особенности
Как уже было сказано выше базовым элементом конструкции являются стержни заземления. Их количество, материал, диаметр и длина зависят от условий монтажа и показателя удельного сопротивления грунта растеканию тока. Чем выше сопротивление, тем больше общая длина и/или диаметр, количество точек установки заземлителей.
Стержни имеют резьбу на концах и соединяются между собой посредством муфт. При этом для обеспечения лучшей токопроводимости в местах их установки конструктив смазывают токопроводящей смазкой (пастой).
Зарубежные производители используют цапфовое безмуфтовое соединение, оно более контактное и его не нужно смазывать пастой. То есть получается самозакрывающаяся конструкция (на примере ниже показан разрез в месте соединения).
Для облегчения монтажа в землю в состав комплектов входят наконечники и удароприемные головки. Производители из России делают эти компоненты с резьбой, зарубежные исключают риски, возникающие при резьбовом контакте, особенно при забивании, и соединяют элементы надежно в стык.
В месте выхода последнего (верхнего) заземлителя всю конструкцию подключают с помощью зажима к системе молниезащиты или шине заземления. Геометрия зажима значения не имеет (диагональный или крестовой), важно лишь чтоб его материал в плане коррозии не «конфликтовал» с материалом заземлителей и заземляющих проводников.
Читайте также: