Варисторы в сварочных аппаратах

Обновлено: 24.01.2025

Плановая продувка,заодно и сфотографировал, tehsvar ,что там за паутинка?Я думал пыль,от лака что ли и обязательно ли продувать верхнюю часть в аппарате?Пыль там конечно была,но не сказать что критично.

pavel83 , фитулька (фиксик катушки на валу) ВАЩЕ бесит. Даже для бытовухи это слишком! (сам имел дело с таким безобразием)

зарабатываем и получаем удовольствие от процесса.

copich , Занес с холода в тепло(изморось на трансформаторах). Сам аппарат не стоит своих денег. Моторчик игрушечный.Варить не побывал.

так это изделие только по 0.6-0.8 и то раз в год. Поэтому и транс детский и моторчик такой же. Дуга жесткая, настройки жуткие. В общем для гараж-монтаж. Задачу решить можно но после сварки много и долго чистить. Т.е. удовольствия от работы этого аппарата не получить.

Вот и GYS 4000 (ГУСЬ)

Маленький, без выходного дросселя. В общем теперь работает. Детская болячка одна вылечена.

На мой взгляд, один из неудобных аппаратов для ремонта, т.к. для демонтажа силового модуля нужно высверливать заклепки и потом опять заклепывать + некоторое неудобство демонтажа "гребенки" (на раз обойдется, но потом будут дорожки отслаиваться).

Пришел в ремонт без признаков жизни, взорвавшегося, вспухлого и т.п. ни чего не было (при включении вилки в сеть - ТИШИНА)

Прикрепленные изображения

Она милая. Была заменена на аналог с переделкой схемы. Завелся аппарат с пол оборота. Ни обвязка ни она сама, все было снаружи целое. Просто на нее приходит, а выход 0. Хорошая микросхемка 1055.

copich , почти такой же, сгорел варистор, но работает.

Повезло. Так в свое время автомагнитолы приходили, из 10 одной везло, защитный диод спасал от переплюсовки. Но варисторы обычно испаряются. Если варистора нет или обуглился - аппарат труп. Редко кто нормальные автоматы применяет которые успеют сработать при срабатывании варистора.

copich ,.а если обуглился, но аппарат работает, значит просто менять варистор? и подойдет ли 20к 431 fnr, у обуглившегося цифры не читаются.

Стандартно. Так же меняю на другого производителя с минимумом переделки.

Спасибо Игорю (МММ) из Украины! Он данную переделку в своё время замудрил. А далее уже развили тему.

Стандартно. Так же меняю на другого производителя с минимумом переделки.

Спасибо Игорю (МММ) из Украины! Он данную переделку в своё время замудрил. А далее уже развили тему.

Это ужасно делать так аппараты, когда они в любой момент могут не включиться даже если лежали на полке. Но и я говорю СПАСИБО, что есть такие грамотные профессионалы.

валера1963 , Мне они милей, чем торус. А объяснить не могу. Хоть и не варил ни тем и ни этим.

Этим не варил. ТОРус нормально врит. Но и это исполнение и у ТОРуса -

Одни на велосипедных спицах, вторые на веревочках. Весело. И до сих пор мне не понятно, почему нужно такое городить? Что в них реализовано, какая особенность по сравнению с тем же китайскими БАРСАМИ АВРОРАМИ и т.п. Почему на наши смотреть смешно, а китайские что было и что стало - как палка копалка и трактор в сравнении?! Сейчас китай все лучше и лучше производит. А у наших до сих пор на том же уровне. Не знаю как ФОРСАЖ делает и кто, но остальные СМЕХ и СРАМ.

И вот пополняет . тут барабанная дробь . СВАРОГ ARC200

Выполнен достойно. Мне понравилось исполнение. НО. он действительно выдает около 190А на выход. При этом такие мааааааленькие клеммы и маааааленькие болтики. Руки стандартные, не как у медведя. Поэтому можно оценить тонкие болты и провода силовые.

Что такое варистор, основные технические параметры, для чего используется

Каждый электронный прибор, который включен в сеть нуждается в защите от превышения пороговых значений тока или напряжения. Для защиты по току применяют различные плавкие предохранители и автоматические выключатели, а вот для предохранения устройства от перенапряжения чаще всего применяют варисторы. В данной статье мы рассмотрим принцип работы варистора, его характеристики, достоинства и недостатки этого электронного компонента.

Что такое варистор, основные технические параметры, для чего используется

Что такое варистор и где применяется

Варистор – это выполненный из полупроводникового материала переменный резистор, который способен изменять свое электрическое сопротивление в зависимости от приложенного к нему напряжения.

Принцип действия у такого электронного компонента отличается от обычного резистора и потенциометра. Стандартный резистор имеет постоянное во величине сопротивление в любой промежуток времени вне зависимости от напряжения в цепи, потенциометр позволяет менять сопротивление вручную, поворачивая ручку управления. А вот варистор обладает нелинейной симметричной вольтамперной характеристикой и его сопротивление полностью зависит от напряжения в цепи.

Благодаря этому свойству, варисторы широко и эффективно применяют для защиты электрических сетей, машин и оборудования, а также радиоэлектронных компонентов, плат и микросхем вне зависимости от вида напряжения. Они имеют невысокую цену изготовления, надежны в использовании и способны выдерживать высокие нагрузки.

Что такое варистор, основные технические параметры, для чего используется

Варисторы применяются, как в высоковольтных установках до 20 кВ, так и в низковольтных от 3 до 200 В в качестве ограничителя напряжения. При этом они могут работать, как в сетях с переменным, так и с постоянным током. Их используют для регулировки и стабилизации тока и напряжения, а также в защитных устройствах от перенапряжения. Используются в конструкции сетевых фильтров, блоков питания, мобильных телефонов, УЗИП и других ОИН.

Виды и принцип работы

При работе в нормальных условиях варистор имеет огромное сопротивление, которое может снижаться при превышении напряжением порогового значения. То есть, если значительно повышается напряжение в цепи, то варистор переходит из изолирующего состояния в электропроводящее и за счет лавинного эффекта в полупроводнике стабилизирует напряжение с помощью пропускания через себя тока большой величины.

Варисторы могут работать с высоким и низким напряжением и, соответственно, подразделяются на две группы устройств, которые имеют одинаковый принцип работы:

  1. Высоковольтные: способные работать в цепях со значениями тока до 20 кВ (используются в защитных системах сетей и оборудования, в устройства защиты от импульсных перенапряжений).
  2. Низковольтные: номинальное напряжения для компонентов данного вида варьируется от 3 до 200 В (применяется для защиты электронных устройств и компонентов оборудования с током 0,1 – 1А и устанавливаются на входе или выходе источника питания).

Время срабатывания варистора при скачке напряжения составляет около 25 нс, что является отличным значением, но в некоторых случая недостаточным. Поэтому производители электронных компонентов разработали технологию изготовления smd-резистора, который имеет время срабатывания от 0,5 нс.

Что такое варистор, основные технические параметры, для чего используется

Варисторы всех типов изготавливают из карбида кремния или оксида цинка путем спекания данного материала со связующим веществом (смолы, глина, стекло) при высокой температуре. После получения полупроводникового элемента выполняется его металлизация с обеих сторон с припайкой металлических выводов для подключения.

Маркировка, основные характеристики и параметры

Каждый производитель варисторов маркирует свой продукт определенным образом, поэтому существует достаточно большое количество вариантов обозначений и их расшифровок. Наиболее распространенным российским варистором является К275, а популярными компонентами иностранного производства являются 7n471k, kl472m и другие.

Расшифровать обозначение варистора CNR-10d751k можно следующим образом: CNR – металлооксидный варистор; d – означает, что компонент в форме диска; 10 – это диаметр диска; 751 –напряжение срабатывания для данного устройства (расчёт происходит путём умножения первых двух цифр на 10 в степени равной третьей цифре, то есть 75 умножаем на 10 в первой степени получатся 750 В); k – допустимое отклонение номинального напряжения, которое равно 10 % в любую сторону (l – 15%, M – 20%, P – 25 %).

Основными характеристиками варисторов являются следующие параметры:

Классификационное напряжение – напряжение при определенных значениях тока, протекающего через варистор (обычно данное значение составляет 1 мА). Этот параметр является условным и не влияет на выбор устройства;

Максимально допустимое напряжение – диапазон напряжения (среднеквадратичное или действующее значение), при котором варистор начинает понижать свое сопротивление;

Максимальная энергия поглощения – характеристика, показывающая значение энергии, которую варистор рассеивает и не выходит из строя при воздействии одиночного импульса (измеряется в Джоулях);

Максимальный импульсный ток – нормирует время нарастания и длительность действия импульса тока (измеряется в Амперах);

Ёмкость – очень важный параметр, который измеряется при закрытом состоянии и заданной частоте (падает до нуля, если к варистору приложен большой ток);

Допустимое отклонение – отклонение от номинальной разности потенциалов в обе стороны (указывается в процентах).

Время срабатывания – промежуток времени, за который варистор переходит из закрытого состояния в открытое (обычно несколько десятков наносекунд).

Преимущества и недостатки варисторов

Важными преимуществами нелинейного резистора (варистора) является его стабильная и надежная работа с высокими частотами и большими нагрузками. Он применяется во многих устройствах, работающих с напряжениями от 3 В до 20 кВ, относительно прост и дешёв в производстве и эффективен в эксплуатации. Дополнительными важными преимуществами являются:

  • высокая скорость срабатывания (наносекунды);
  • длительный срок службы;
  • возможность отслеживания перепадов напряжения (безынерционный метод).

Что такое варистор, основные технические параметры, для чего используется

Несмотря на то, что данный электронный компонент имеет достаточно много преимуществ, он имеет и недостатки, которые влияют на его применение в различных системах. К ним можно отнести:

Варистор

Варистор – это электрический элемент, сопротивление которого может изменяться в зависимости от того, какое напряжение на него поступает.

Принцип работы варистора

Сопротивление варистора зависит от того, какое напряжение на него поступает. Как правило, до порогового значения, сопротивление варистора велико (более 1-2 мегаОм). При переходе порогового значения напряжение, сопротивление варистора стремительно снижается. Эта особенность варистора отлично помогает в защите электроники от импульсных скачков высокого напряжения. Ведь ток импульса в таком случае идет через варистор и рассеивается в виде тепла.
Однако, если пороговое значение напряжения поддерживается длительное время, то варистор перегревается и “сгорает”.

“Сгорает” в кавычках, так как варистор зачастую взрывается. Или его коротит, и тогда может произойти воспламенение. Для этого и ставят предохранитель перед варистором.

Как работает варистор

Кстати, при замене плавкого предохранителя, советуем заодно проверить и варистор. Очень часто, что выходом из строя предохранителя бывает умерший варистор. Если этого не сделать, при следующем же скачке напряжения вы рискуете большим, чем варистор и предохранитель.

Для избежания случаев возгорания в варисторы начали впаивать термисторы. Термистор поглощает излишнюю тепловую энергию, что дополнительно предохраняет вашу технику от сгорания. Такие варисторы продаются сразу в сборе.

Изготовление варистора

Объясняется все это устройством варистора. Состоит варистор из полупроводника и различных материалов для связывания. Распространена такая связка – карбид кремния и эпоксидная смола. Их сплавляют при высоких температурах. Затем, поверхность варистора покрывается металлом и припаиваются выходы.

Из чего состоит варистор

Способность проводить большое напряжение через себя варистором обеспечивается материалом – кремнием. При нагревании кристаллы карбида кремния значительно уменьшают свое сопротивление. И ток может спокойно проходить по ним.

Однако, все большее распространение получают варисторы из оксида цинка. Они проще в изготовление и могут пропускать через себя более высоковольтные импульсы. Техника их производства схожа с производством керамических варисторов.

Много варисторов

Применение варистора

Варисторы применяются в большинстве бытовой электроники по всему миру. Их можно встретить практически в любой электронике. Они есть и в автомобильной электронике, в сотовой технике и бытовой, сетевых фильтрах и компьютерном железе.
Кстати говоря, хороший блок питания, от китайского отличается наличием варистора у первого. Поэтому, хороший блок питания куда более живуч и ремонтопригоден.

Варистор в блоке питания

Умельцы, при сборе своих подделок из светодиодных ламп также используют варисторы. А особые умельцы умудряются размещать их в розетках и вилках. Что только не придумаешь для обеспечения защиты своей электроники, если в доме проблема со скачками напряжения.
Сфера их применения обширна. Это могут быть и установки с напряжением 20кВ и с напряжением в 3В. Это может быть сеть с переменным током, а может быть и с постоянным. Воистину, варисторы можно встретить практически везде.

Так какие же варистор характеристики имеет?

Характеристика варистора

Как правило, для описания варистора используют вот такие параметры:

Емкость варистора в закрытом состоянии. Во время работы её значение может меняться. При особенно большом токе – уменьшается практически до нуля. Обозначается как Со.

Максимальная энергия в Джоулях, которую может поглотить варистор за один импульс. Обозначается W.
Максимальное значение импульсного тока, при 8/20мс. Обозначается как Iрр.
Среднее квадратичное значение переменного напряжения в цепи. Обозначается как Um.
Предельное напряжение при постоянном токе. Обозначается как Um=.
Для приблизительных расчетов рабочего напряжения советуем использовать значение Un не больше 0,6 с переменным током и 0,8 с постоянным.

В сетях 220В используют варисторы с минимальным классификационным напряжением (Un) от 380 до 430 В.
Не следует забывать и о емкости варистора при подборе. Как правило, она зависит от размера варистора. Так, варистор TVR 20 431 имеет емкость 900пФ, а TVR 05 431 – 80 пФ. Эти величины всегда можно подглядеть в справочном материале.

На схемах варистор обозначается следующим образом

RU – это обозначение самого варистора. Цифра рядом с RU – номер по порядку. То есть, какое это по счету варистор в цепи. Буква U снизу слева у косой, проходящей через варистор, означает, что данный элемент имеет способность менять напряжение. Также, зачастую на схемах указывается маркировка варистора. О маркировке и её расшифровке мы поговорим ниже.

Как обозначают варистор на схемах

Защита варистором техники

Варисторная защита применяется в бытовых приборах. Они могут быть припаянными в саму плату, или же выведены и закреплены отдельными проводами. Варисторы необходимо подключать параллельно. Подключать их последовательно просто не имеет смысла. Ток по цепи в таком случае проходить просто не будет.

Как работает варисторная защита?

Например, рядом с вашим домом ударила молния. Или она могла попасть в ЛЭП. В сети происходит скачек напряжения. Варистор его поглощает и, если импульс слишком сильный/продолжительный – варистор умирает.
То есть, варистор гарантия того, что ваша чувствительная электроника не сгорит от скачка напряжения. Однако, следует помнить, что варистор может стать точкой короткого замыкания, во время длительной работы при максимальном напряжении.

Варисторная защита

Выше мы описали несколько способов как этого избежать. Брать варисторы с термисторами или же включать в цепь предохранители.
Если все максимально упростить: при низком напряжении варистор – блокирующее устройство, при высоком – проводящее.

Выбор варистора

Чтобы эффективно и гарантированно защитить вашу технику, к выбору варистора необходимо подойти с умом.
Как правило, для защиты бытовой техники используют варисторы с пороговым значением напряжения от 275 до 430 В. Особо углубляться в подбор варисторов с учетом других значений (емкость и т.п) мы вдаваться не будем. Тут есть множество нюансов, которые в формате этой статьи просто не удастся рассмотреть. Для более точного подбора варистора можем посоветовать использование справочников по варисторам. В них указаны все характеристики, которыми обладает тот или иной варистор. Что позволит вам выбрать наиболее подходящий для ваших целей и задач.

Еще одним важным параметром при выборе варистора является скорость срабатывания. Как правило, у большинства варисторов она составляет около 25 нс. Но не всегда этого хватает.

Выбор варистора

Тогда вам подойдут варисторы с меньшим временем срабатывания. Недостижимым идеалом по скорости срабатывания являются варисторы, изготовленные по технологии многослойной структуры SIOV-CN. Их скорость срабатывания может составлять менее 1 не.

Такие варисторы необходимы для защиты от статического электричества. В бытовой технике, такие варисторы практически не применяются.

Гарантом жизни вашей техники при любых скачках напряжения, может послужить варистор, установленный на нуле. Естественно, с учетом того, что он установлен и на фазе тоже.

Слышали, наверно, про случаи, когда сразу у множества людей сгорала электроника? Это происходит как раз из-за того, что по проводам идет только фаза. Варистор предохраняет и от этого.

Плюсы использования варистора

Варистор – он как автомат калашникова. Прост, надежен, дешев. И распространен повсеместно. Он всегда сработает и не подведет. Область его применения огромна. Как мы выше писали от 20кВ до 3В. Ну и про время срабатывания забывать не стоит. 25нс у среднего варистора – весьма неплохо. А есть экземпляры, со скоростью срабатывания ниже 0,5 не.

Плюсы варистора

Но, как и у всего в этом мире, у варистора есть и недостатки.
К таковым относится низкочастотных шум во время работы, большая емкость варистора (от 70 до 3000 пФ) и склонность материалов варистора к устареванию.
Плюсы варистора превалируют над минусами. Именно поэтому он получил столь широкое распространение. Как и автомат калашникова.

Как проверить варистор?

Вот 3 способа, доступных практически каждому:

  1. Осмотр
  2. Проверить варистор мультиметром
  3. Прозвонить цепь.

Начнем с самого простого способа – посмотреть на варистор

Для доступа к нему придется разобрать бытовой прибор и очистить его от пыли. Тут вам понадобится отвертка и щеточка. Запыленность – основная проблема блоков питания.
Поврежденный варистор можно обнаружить по трещинам на корпусе, вздутиям, явным признакам воздействия высоких температур. (Как минимум немного оплавленный корпус, как максимум – следы короткого замыкания).

Глаза и варистор


Варистор покрыт снаружи, как правило, керамикой или эпоксидным покрытием. При перегревании варистора – покрытие трескается.

Мультиметр

Проверить варистор мультиметром довольно просто. Выставляем на мультиметре предел измерения. Выкручиваем его на максимум, как правило это 2 мегаОма (2МОм, 2М, реже 2000К). При измерении, мультиметр должен показывать сопротивление ближе к бесконечности. Зачастую, он показывает 1-2 мегаома.

Мультиметр

Касаться варистора руками при измерении нельзя! В таком случае мультиметр покажет вам сопротивление вашего тела, а не варистора.

Прозвон

При прозвоне придется отпаять одну из ножек варистора из цепи. Прозвон, следует осуществлять с разных направлений. Рабочий варистор не прозванивается, что понятно. Ток через него не идет. Сопротивление не позволяет.

Маркировка варистора

Если же ваш варистор вышел из строя, то для его замены нам здорово поможет знание маркировки варистора. Сама маркировка располагается на корпусе и представляет собой набор латинских букв и цифр. Несмотря на разных производителей, в большинстве своем, маркировка на варисторах не сильно отличается и её вполне возможно прочитать.

Маркировка варисторов

В качестве примера, приведем 2 разных варистора от разных производителей:

Первая цифра 12 – обозначает диаметр варистора в миллиметрах. Вторая цифра – 182К напряжение открытия. 18 – напряжение, 2- коэффициент. CNR же – обозначение материала варистора. В данном конкретном примере, варистор изготовлен из оксидов металлов.

K – используется для обозначения класса точности. То есть, если написано на корпусе варистора – 275К, то К – точность 10%, а 275 – напряжение открытия. И напряжение открытия рассчитывается так – 275 +- 27,5.
То есть, например, наш варистор 20D471K можно заменить варистором TVR20471. Или любым другим аналогом варистора. Например – SAS471D20. Нужно лишь знать основные принципы маркировки.

Правда, с отечественными варисторами так не получится. Придется воспользоваться справочными материалами. Наши варисторы обозначаются так – СН2-1, ВР-1 и СН2-2. Например: CН-2 – оксидо цинковые варисторы. Но узнать это можно только из справочных материалов.

Несмотря на вышеописанные принципы маркировки, настоятельно рекомендуем пользоваться справочной литературой при выборе варистора. В ней указываются все необходимые характеристики варистора, в том числе и те, которые не узнать по маркировке.

Что делать, если у вашего варистора стерта маркировка?

Узнать, на какое напряжение рассчитан ваш варистор вам поможет мегомметр. Чтобы проверить варистор, надо подключить его к мегомметру и прогонять его по пределам. То есть, если варистор на 470В, то проверять его стоит на 500В.

Есть способ, с использованием блока питания. Правда, для этого нужен блок питания, с регулируемым напряжением и максимальной силой тока. Силу тока нужна выставить такую, чтобы варистор не сгорел. А как мы писали выше, они имеют тенденцию взрываться.

Варистор без маркировки

Соответственно, перед подключением его следует визуально осмотреть. Если на корпусе варистора имеются трещины, вздутия, визуально видно, что он плавился – то такой варистор точно не рабочий. Но зачастую – это трещины. Материал варисторов склонен к старению, об этом всегда следует помнить. Варисторы, с такими повреждениями, можно не проверять. Они не рабочие.

14D151k зачем стоит на выходе сварочного

От перепадов напряжения не застрахована ни одна электросеть, есть множество причин вызывающих это явление, начиная от перегрузки и заканчивая перекосом фаз. Такие броски способны вывести из строя бытовую технику, поэтому практически все современные электронные устройства имеют защиту. Если после очередного перепада в БП какого-нибудь прибора сгорел предохранитель, произведя его замену, не спешите включать технику. На всякий случай проверьте варистор на исправность тестером или мультиметром.

Прежде, чем перейти к тестированию, рекомендуем ознакомиться с кратким описанием варистора, особенностями его работы и характеристиками. Эта информация может быть полезной при поиске аналога, взамен вышедшего из строя элемента.


Рис. 2. Типичные вольт-амперные характеристики: А – варистора, В – обычного резистора

Как видно из графика, когда напряжение на полупроводнике достигает порогового значения, резко увеличивается сила тока, что вызвано понижением сопротивления. Эта характеристика позволяет использовать варистор в качестве защиты от кратковременных скачков напряжения.

Принцип действия, обозначение на схеме, варианты применения

Внешне варистор очень похож на конденсатор, но его внутреннее устройство, как видно из рисунка 3, совершенное иное.


Рисунок 3. Конструкция варистора (1) и его обозначение на схемах (2)

Обозначения:

  • А – два металлических электрода в форме диска;
  • В – вкрапления оксида цинка (размер кристаллов не соблюден);
  • С – оболочка полупроводника, сделанная на основе синтетических отвердителей (эпоксидов);
  • D – керамический изолятор;
  • Е – выводы.

Помимо конструкции, на рисунке 3 показано обозначение элемента на принципиальных схемах (2).

Содержание оксида цинка в керамическом изоляционном слое определяет порог срабатывания варистора, как только напряжение станет выше допустимого, сопротивление резко снижается и проходящий через полупроводник ток увеличивается. Вырабатывающаяся в результате этого процесса тепловая энергия рассеивается в воздухе.

Такой принцип действия позволяет не допустить выход из строя электронных устройств при краткосрочном перепаде напряжения. Длительный импульс вызовет перегрев и разрушение варистора, но на этот процесс требуется время. Хоть оно исчисляется долями секунды, в большинстве случаев, этого достаточно для срабатывания плавкого предохранителя.

Именно поэтому после замены предохранителя необходимо проверять варистор (внешний осмотр и тестирование мультиметром). В противном случае, следующий перепад напряжения, с большой долей вероятности, приведет к разрушению компонентов электронного устройства.

Пример реализации защиты

На рисунке 4 показан фрагмент принципиальной схемы БП компьютера, на котором наглядно показано типовое подключение варистора (выделено красным).


Рисунок 4. Варистор в блоке питания АТХ

Судя по рисунку, в схеме используется элемент TVR 10471К, используем его в качестве примера расшифровки маркировки:

  • первые три буквы обозначают тип, в нашем случае это серия TVR;
  • последующие две цифры указывают диаметр корпуса в миллиметрах, соответственно, у нашей детали диаметр 10 мм;
  • далее идут три цифры, которые указывают действующее напряжение для данного элемента. Расшифровывается следующим образом: XXY = XX*10 y , в нашем случае это 47*10 1 , то есть 470 вольт;
  • последняя буква указывает класс точности, «К» соответствует 10%.

Можно встретить и более простую маркировку, например, К275, в этом случае К – это класс точности (10%), последующие три цифры обозначают величину действующего напряжения, то есть, 275 вольт.

Теперь, когда мы разобрались с основами, можно перейти к проверке варистора

Определяем работоспособность элемента (пошаговая инструкция)

Для данной операции нам потребуются следующие инструменты:

  • Отвертка (как правило, крестовая). Чтобы добраться до платы блока питания, потребуется разобрать корпус электронного устройства, тут без отвертки не обойтись.
  • Щетка, для очистки печатной платы. Как показывает практика, в БП накапливается много пыли. Особенно это характерно для устройств с принудительным охлаждением, типичный пример, – блок питания компьютера.
  • Паяльник. В силовой части БП на плате большие дорожки и нет мелких элементов, поэтому допустимо использовать устройства мощностью до 75 Вт.
  • Канифоль и припой.
  • Мультиметр или другой прибор, позволяющий измерить сопротивление.

Когда все инструменты готовы, можно приступать к процедуре. Действуем по следующему алгоритму:

  1. Разбираем корпус устройства. В данном случае дать детальную инструкцию как это сделать затруднительно, поскольку конструкции приборов существенно отличаются друг от друга. Эту информацию можно найти в инструкции к оборудованию или на сайте производителя, также поможет поиск на тематических форумах и блогах.
  2. Добравшись до печатной платы БП, следует очистить ее от пыли. Делать это нужно аккуратно, чтобы не повредить радиодетали. Бывали случаи, когда от чрезмерного усилия, в процессе чистки, щетка повреждала транзистор, тиристор или другой компанент.
  3. Когда пыль удалена, находим варистор, он имеет характерный вид, поэтому спутать его можно разве что с конденсатором, но последний отличается маркировкой. Варистор в силовой части БП
  4. Найдя элемент, тщательно осматриваем его на предмет повреждений. Это могут быть трещины, сколы и другие нарушения целостности корпуса. В большинстве случаев, определить неисправность можно на этом этапе. При обнаружении повреждений элемент выпаиваем и меняем на такой же или аналог. Подобрать его можно самостоятельно (расшифровка маркировки приводилась выше) или посоветовавшись с продавцом радиодеталей. Варистор со следами повреждений
  5. Если визуальный осмотр не дал результатов, следует проверить варистор мультиметром, для этого выпаиваем деталь.
  6. Для проведения измерения подключаем щупы к мультиметру (на рисунке 7 гнезда показаны зеленым цветом) и переводим его в режим измерения максимального сопротивления (красный круг на рис. 7). Если у вас мультиметр другого типа, воспользуйтесь инструкцией к прибору. Рисунок 7. Установка режима отмечена красным, гнезда для щупов – зеленым
  7. Касаемся щупами выводов и измеряем сопротивление варистора. Оно должно быть бесконечно большим. Иное значение указывает на неисправность варистора, следовательно, его необходимо заменить.

Важный момент! Прежде, чем измерить сопротивление, убедитесь, что пальцы не касаются стальных наконечников щупов, в этом случае прибор покажет сопротивление кожного покрова.

  1. Произведя замену (если в этом есть необходимость), собираем устройство.

В предыдущей статье, посвящённой варисторам, мы рассказали как именно заменить варистор и маркировку варисторов.

Но очень часто нам задают вопрос, каким варистором заменить сгоревший, как подобрать аналог и у всех-ли варисторов одинаковая маркировка.

Подбирать варисторы для замены логичней не по фирме производителю и не по цвету, а по:

Диаметр соответствует способности варистора поглотить определённую мощность импульса, поэтому следует заменять на такой же, или больше.

Напряжение срабатывания можно узнать по маркировке – из таблицы и по нему подобрать аналог из имеющихся.

Если маркировка не сохранилась, то подобрать можно по:

  • функциональному назначению
  • по электронной схеме

К примеру, если он стоит на входе прибора работающего от переменной сети 220 В, то как правило, он рассчитан на классификационное напряжение – 470 В, 560 В реже 430 В.

Это соответствует среднеквадратичному значению переменного напряжения 300 В, 350 В и 275 В соответственно. В подавляющем большинстве случаев ставят на напряжение 470 В, тогда исключаются частые сгорания предохранителя и радиоэлементы платы защищены надёжней.

Параметры и маркировка варисторов разных производителей





Как измерить параметры варистора

Если у вас есть варистор со стёртой маркировкой или такой нет в таблице аналогов, то вполне возможно измерить напряжение срабатывания варистора.

Для этого достаточно подключить его к блоку питания, который может обеспечить необходимое напряжение и у которого можно ограничить максимальный ток, чтобы варистор не разрушился (полярность подключения не имеет значения)

У меня к сожалению такого под рукой не оказалось, поэтому я выбрал другой способ. Я подключил варистор к мегомметру, который измеряет сопротивление высоким напряжением, у данного прибора три предела 250 В, 500 В и 1000 В, что оказалось вполне достаточно.

Я проверял два варистора – на 470 В и на 680 В, первый на пределе 500 В, второй 1000 В.



Как видно на фото, параметры вполне укладываются в допуск 10%.

Перед измерением обязательно прочтите инструкцию к прибору и убедитесь, что данная операция не повредит его, а также соблюдайте все требования по технике безопасности при работе с высоким напряжением.

Пришел ко мне на ремонт очередной трупик, Blueweld prestige 164. Новенький такой, даже запах еще не выветрился. На форумах по ней идет плохая репутация, повальный брак ТГР. И так. Приступим к ремонту.

Пока что посмотрите на него снаружи и то что у него внутри. Фотки взяты с инета. Не фоткал особо сам аппарат.



Для начала надо бы разобраться с симптомами.

Подключаем сварку к проверочному стенду. У меня это лампочка, развязывающий трансформатор, кнопка ножная для безопасности и розетка. Все это добро развязывает гальванически сварочник от сети, предотвращает ток КЗ в случае если сварка ушла в короткое замыкание.

Подцепили, нажимаем кнопку. И видим что наш сварочник полностью коротит все сетевое напряжение. Ладно, вскрываем, смотрим.

Первым делом надо ликвидировать КЗ. И поэтому мы отпаиваем IGBT. Отпаяли, проверили транзисторы, и их оказывается тоже пробило. Вывода звонятся накоротко. Чтож. Надеемся что КЗ ушло и подцепляем к розетке.

И опять, лампочка горит в полный накал. КЗ не ушло. Снова вызваниваем всю силовую цепь. И находим пробитый диодный МОСТ. Отпаиваем.

И вуаля, КЗ ушла. Проверка сопротивления силовых линии после моста не выявила КЗ.

И так. Банальное КЗ устранили. Теперь же нужно запитать дежурку и глянуть на импульсы затворов с IGBT транзисторов осциллографом.

Тут дежурка сделана по хитрому. Она запитывается не как у обычных сварочников, отдельный импульсный блок питания на плату управления, а запитывается от силового трансформатора. Хитрое решение конечно. И удобное в плане диагностики. Щас просто подаду на линию питания дежурки напряжения и сниму осцилограммы.

Подаем, щуп кидаем на затвор а землю на крайний вывод IGBT.

Осцилограмму взял с форума ну суть ясна.


Сигнал искажен, и у сварочника полетели IGBT. А сигнал искажен по причине неисправности ТГР. Мотаем новый Трансформатор Гальванической Развязки. Я мотал на кольце из фильтра синфазных помех. Мотал витков 20. И смотрим что стало с сигналом.


Вот он. Нормальный меандр. Насчет всплесков не волнуйтесь. Емкостная нагрузка на затворах нету. IGBT то неисправные, впаял было резисторы на 220ом вот и всплески не поглощаются.

Запаиваем IGBT транзисторы, меняем сгоревший мост на новый. И подаем сетевое напряжение.

Так, сварка запустилась, лампочка еле еле накаляется, ток потребления холостого хода значит минимальный, отлично, смотрим появилась ли напряжение на выходе, смотрим.

а там 60в, ВООБЩЕ НИШТЯК.

Законно крепим новоиспеченный ТГР на плату. Так как кольцо вместе с его выводами невозможно крепко установить на плату решено было его залить в эпоксидку.

Игла как оказалось была не нужна. Что эпоксидка что отвердитель оказались жутко вязкими.



Ждем сутки и начинаем очищать плату от клея и формочки.


Дальше уже сборка в корпус и тест на электроде. IGBT были если честно сомнительного качества. Брал с али. Но как оказалось сварка и на таких IGBT транзисторах работает исправно. Спалили пару электродов при 100А. Все нормально работает.

P.S. У этих сварочных инверторов как я уже говорил идет повальный брак ТГР. У некоторых со временем портится сердечник ТГР у других из-за жестких условий эксплуатации(тупо перегрели).

А все почему? Потому то материал сердечника дерьмо. Чуть что не так так сразу падает индуктивность и сварка испускает белый дым.

Поэтому если у вас имеется такой аппарат то ОБЯЗАТЕЛЬНО ПОМЕНЯЙТЕ В НЕМ ЭТОТ ТГР(розовый квадратик)


Когда этот рыжий пи***юк потеряет индуктивность то вам ремонт встанет в круглую сумму (ну я в этом случае взял 1.5к, не знаю может я мало беру) а так если мастеру скажете что вот так, аппарат такой, надо перемотать, то ремонт обойдется вам намного дешевле.

Найдены возможные дубликаты

Сейчас инверторы на 200А продают размером с пачку сигарет. Одноразовые чтоль?

Купил себе пару лет назад Ресанту 160, на хознужды хватает. В активе беседка, забор в частном доме и куча прочих мелких поделок.

Запили пост про “Подключаем сварку к проверочному стенду. У меня это лампочка, развязывающий трансформатор, кнопка ножная для безопасности и розетка. Все это добро развязывает гальванически сварочник от сети, предотвращает ток КЗ в случае если сварка ушла в короткое замыкание.” Стенд проверочный интересует осенама насяльника

Короче покупал я себе индукционную печку для переделки на литьё алюминия, там родной китайский IGBT и мост полетели сразу. Точно такие же по параметрам фирменные детали служат по сей день.

Делал аналогичный ремонт такого же аппарата. С автором не соглашусь, проблема этого тгр не в плохом сердечнике а в заливке, которая набухает от нагрева (попробуйте паяльником нагреть и увидите что будет), раздвигая половинки Ш-образного сердечника, отчего и теряется индуктивность трансформатора в целом. Если неначем намотать новый трансформатор, то можно очистить старый от заливки, скрепить половинки сердечника любым доступным способом и впаять обтано. Из плюсов: не надо искать новый трансформатор и подставочку с выводами для него. Из минусов – придется долго и нудно отскабливать заливку – срезается не там уж сложно но в щелях вычищать сложно.

У меня такой же отработал 10 лет. В этом году только задымился и помер. Брал, кажется, за 9500 в Кувалде.

А изготовить тгр вы можете под заказ? Очень надо

Ну а вот на такие 164 престижи если? Ведь если уже мотали то тх их знаете? Я бы прикупил несколько штук

Мне экономически не выгодно тратить время на мотание, если купить готовое то можно, если нет то отдать без ремонта, пусть новую купят

не было еще такого. Обычно мосты редко сгорают. Даже если сгорают то для этого надо очень хорошо закоротить питание. А питание как мы знаем может либо игбт либо кондеры закоротить. И то с закороченным кондером не факт что мост унесет.

Купил я нерабочий сварочник Fangdawang (схема такая же как у Defort DWI 200N), продавец сказал только транзисторы поменять нужно.

Изначально обнаружил сломанную клему сетевого провода, потом сгоревший резистор на входе, транзисторы поменял, клему восстановил, резистор заменил (было 2 послед. по 47 Ом, поставил на 82 Ома 10W) – сварочник включается, но после сборки – не работает. Так я с ним трахался почти год то одно менял, то другое, в конце концов обнаружил причину проблемы – обмотка силового трансформатора при движениях пробивала на радиатор силовых диодов. Изолировал радиатор, собрал, всё работает, проверил электродом, сделал пару точек – варит.

Ремонтом занимался на работе в свободное время, принес домой, включил, проверяю, электрод не зажигается, добавил тока, электрод залип и выбило автоматы, после того как включил автоматы, сварочник задымился.

Вскрытие показало, что снова сгорел резистор мягкого пуска и 2 транзистора в разных плечах. Подумал, что проблема может быть в реле на входе, но вскытие показало норму (ничего почерневшего, срабатывает вольт от 12, хоть оно и на 18).

Теперь вот боюсь снова транзисторы впаивать, куда смотреть не знаю, в декабре будет 12 месяцев, как я его ремонтирую.

Осцилограф есть, но пользоваться им не умею и не очень представляю куда подавать питание для снятия осцилограмм.

Читайте также: