Устройство аппарата для сварки оптических волокон
Сварка оптики – это достаточно сложный и высокотехнологичный процесс, в ходе которого между собой свариваются оптические волокна с помощью высокой температуры. Сваривание оптических волокон осуществляется с помощью специальных устройств – сварочных аппаратов для сварки оптоволокна.
Сварочный аппарат для оптических волокон – один из самых сложных и дорогих инструментов монтажника ВОЛС. Данный прибор, позволяет в автоматическом режиме обеспечить процесс сведения (юстировки) и сварки волокон с последующей фиксацией сваренного волокна в гильзе КЗДС для предотвращения его поломки. От того, насколько качественно и быстро работает сварочный аппарат, какие дополнительные функции и опции имеет – напрямую зависит скорость сдачи ВОЛС в эксплуатацию.
Одним из самых эффективных и наиболее простых способов добиться высокого качества сварки и долгой жизни сварочного аппарата – это правильная эксплуатация, поддержание аппарата в чистоте, и главное, своевременное техническое обслуживание сварочного аппарата.
Для того, чтобы обеспечить бесперебойную работу, сварочный аппарат необходимо регулярно проверять и проводить регламентное техническое обслуживание не реже раза в полгода или каждые 1500 сварок.
В целом техническое обслуживание сварочного аппарата включает в себя несколько этапов:
- Комплексную диагностику технического состояния;
- Чистку аппарата и его компонентов снаружи и внутри;
- Настройку ключевых блоков и узлов сварочного аппарата;
- Регулировку большого количества параметров, обеспечивающих качественную и правильную работу сварочного аппарата;
- Настройку оптической системы;
- Замену электродов (при необходимости);
- Итоговую проверку на соответствие аппарата заявленным техническим характеристикам и соответствие качества сварки паспортным требованиям с помощью рефлектометра;
Рассмотрим каждый из этапов проведения технического обслуживания более подробно на примере одного из реальных случаев.
После того, как сварочный аппарат попадает на стол к инженеру, проводится детальный и подробный осмотр аппарата с целью определения текущего технического состояния оборудования. Так же осматриваются основные блоки устройства на предмет загрязнения.
Сразу же в ходе внешнего осмотра мы увидели, что оборудование имеет сильные внешние загрязнения, так же отсутствуют крышки кронштейна дисплея. Их отсутствие может вызвать случайное повреждение дисплейного шлейфа.
Закончив внешний осмотр переходим к осмотру внутренних узлов и компонентов устройства: обнаруживаем загрязнение механизма юстировки, V-образных канавок, оптической системы и зеркал.
После оценки внешнего и внутреннего состояния аппарата необходимо провести программную диагностику оптической системы на наличие пыли. Сварочный аппарат может диагностировать и анализировать текущее состояние оптической системы выделяя все посторонние объекты.
В нашем случае мы увидели, что на матрице Y-проекции имеется пыль. Это существенно сказывается на качестве сварки и достоверности оценки потерь на сварном шве. Если не проводить своевременную чистку и техническое обслуживание сварочного аппарата – линзы оптической системы могут прийти в полную негодность для нормальной эксплуатации и может потребоваться их замена. На фото пример загрязненной линзы.
Чтобы подобраться ко всем ключевым узлам сварочного аппарата и провести комплексную чистку, настройку необходимо разобрать аппарат: снимаем аккумуляторную батарею, кожух сварочного аппарата.
Для чистки оптической системы необходимо так же снять прижимные фиксаторы для оптоволокна и платформу для электродов.
Сняв данные компоненты, мы получаем полный доступ к оптической системе для чистки и приведения всех блоков к пригодному для эксплуатации состоянию.
Для начала мы удаляем всю пыль и грязь с помощью мощной направленной струи воздуха. После используя специализированные средства удаляем всю грязь из основной рабочей области. Наш аппарат приобретает совершенно иной вид.
Проводим диагностику состояния оптической системы с помощью микроскопа. Осматриваем линзы микроскопа на наличие повреждений и грязи. Проводим тонкую очистку поверхности оптических линз, зеркал и поверхности матриц X и Y проекций.
Как вы видите на фото – механизм юстировки и V-канавки имеют сильные загрязнения. В текущих условиях ни о каком качественном сведении волокна не может быть и речи. Переходим к чистке механических компонентов сварочного аппарата.
Чистим V-образные канавки.
После того как основные блоки сварочного аппарата вычищены – можно переходить к фокусировке оптической системы. Для этого необходимо обратно собрать сварочный аппарат и подготовить его к тонкой настройке.
Практически в каждый сварочный аппарат встроен анализатор, с помощью которого можно провести тонкую фокусировку используя диагностическую диаграмму. В данном случае, оптическая система на правой проекции расфокусирована и диаграмма имеет не правильную форму. Если фокусировка аппарата не соответствует требованиям - аппарат не сможет правильно свести волокна.
После фокусировки диагностическая диаграмма приобретает вид максимально приближенный к эталонной. На этом процесс фокусировки заканчивается. Переходим к процессу программной настройки. Для этого выбираем режим сварки Auto SM, т.к. для настройки используется волокно стандарта G652D.
Переходим к процессу калибровки дуги, в ходе которого настраиваются параметры: положение и ток.
После настройки параметров дуги проводится комплексная проверка сварочного аппарата и диагностика качества сварки. Далее при помощи рефлектометра проводятся измерения уровня затухания на сварном шве с использованием стенда.
После подробного анализа результатов ТО, аппарат проходит стадию тестирования, в ходе которой подтверждается исправность оборудования и его пригодность к работе в реальных условиях.
Все про современные автоматические сварочные аппараты
Аппараты для сварки оптических волокон – это высокотехнологичные устройства, задача которых заключается в автоматизации комплекса работ — от совмещения торцов волокна до защиты соединения. Сварочные аппараты для оптики прошли длинный путь от устройства с оптическим микроскопом, ручной юстировкой волокон, позволявшего сращивать волокна с большими потерями, до полностью автоматизированных аппаратов с практически нулевыми (0,01-0,02 дБ) потерями и малым отражением от сварного соединения (
Современный аппарат для сварки оптических волокон позволяет сращивать волокна всех известных типов:
- одномодовые (G.652 (G.652D), G.657 (G.657A));
- многомодовые (G.651);
- со смещенной областью дисперсии (G.653);
- со смещенной ненулевой дисперсией (G.655).
Сварочные аппараты оснащены цветным ЖК-дисплеем, который позволяет визуально контролировать все этапы сварки оптических волокон. Благодаря встроенным в аппарат видеокамерам оператор может наблюдать за процессом с помощью цветного экрана, и полностью контролировать процессы юстировки, стыковки и сварки оптических волокон. Применение в сварочных аппаратах видеосистемы позволяет перед началом сварки визуально контролировать результат центрирования, тип сердцевины, качество торцов и микрозагрязнения свариваемых оптических волокон, а по окончании сварки оценить качество свариваемых соединений. Кроме того, ряд сварочных аппаратов представляет в цифровом виде значение угла скола и сдвиге осей оболочек (сердцевины) волокон до и после сварки, а также расчетное значение потерь в месте сварки. Устройство имеет понятное и удобное меню. Такие аппараты для сварки оптоволокна содержат программы управления сварочным процессом как для основных типов выпускаемых ОВ, так и для оптических волокон специальных типов, а также предусматривают возможность установить дополнительно собственную индивидуальную программу сварки оптоволокна.
В автоматических сварочных аппаратах выравнивание волокон может выполняться по оболочке с их центрированием в V-образном пазу, а также по сердцевине: по профилю преломления волокна (Profile Alignment System, PAS) или максимизацией передаваемого через выравниваемые волокна сигнала (Local Injection and Detection, LID).
Юстировка по оболочке оптоволокна:
Является пассивным видом юстировки, осуществляемым с помощью V-образных направляющих, которые фиксируют концы сращиваемых ОВ. Данный вид юстировки используется преимущественно для сварки оптоволокна на городских/локальных сетях, где высоких требований к вносимым сварным соединением потерям не предъявляется.
Система LID:
LID-система (Local Injection and Detection). Принцип работы: оптический сигнал вводится через оболочку (за счет изгиба оптоволокна) одного из сращиваемых ОВ, а принимается – через оболочку другого сращиваемого ОВ. Затем происходит обработка оптического сигнала микропроцессором с последующей отработкой сигналов управления микропроцессора с помощью исполнительных устройств.
Для ввода и вывода сигналов используются изгибные ответвители. Недостаток такого подхода состоит в том, что метод LID допускает работу не со всеми типами одномодовых световодов, не позволяя применять автоматику к волокнам в буферном покрытии 0,9 мм, а использование изгибного ответвителя увеличивает риск возникновения скрытых дефектов в световоде. Однако этот метод позволяет решить проблему, связанную с тем, что силы поверхностного натяжения стремятся совместить оси оболочек, и, следовательно, развести (при наличии в волокнах эксцентриситета) оси сердцевины волокон. Как результат — дополнительные потери на шве. Поэтому при данном методе предусмотрена коррекция эксцентриситета. Оси волокон предварительно разводятся на такое расстояние, на которое согласно компьютерному расчету надо развести оси сердцевины волокон так, чтобы силы поверхностного натяжения совместили их при сварке.
Система PAS:
В большинстве аппаратов применяется система выравнивания волокон по изображению в параллельном пучке света PAS-система (Profile Alignment System). При таком методе юстировки волокна освещаются сбоку параллельным пучком света так, что из-за разницы показателей преломления оболочка и сердцевина фокусируют свет, действуя как цилиндрические линзы. При этом формируется изображение, на котором видны границы сердцевины и оболочки волокна, что позволяет определить эксцентриситет в каждом из волокон. Анализ изображения линии, выполняемый с помощью телекамеры и встроенного контроллера сварочного аппарата, позволяет осуществить юстировку световодов. Одновременно контроллер системы управления аппарата оценивает качество скола торцевой поверхности волокон и в случае выявления каких-либо дефектов прекращает процесс сварки. Она используется и для грубой юстировки, и для тонкой подстройки волокон.
Схема центрирования по внешнему излучению (PAS метод)
Для быстрого перехода от одного режима сварки к другому во всех автоматических сварочных аппаратах встроены программы сварки стандартных оптических волокон. Для задания иного режима предусмотрено запоминание установленных параметров, которые затем доступны при сварке аналогичных волокон, что естественно ускоряет проведение сварочных работ.
В современных сварочных аппаратах управление процессом сварки производится с учетом контролируемых параметров внешней среды (влажность, температура, атмосферное давление и др.).
Факторы, оказывающие влияние на процесс сварки:
Существует множество факторов влияющих на процесс сварки
самоцентрирование (влияние сил поверхностного натяжения расплава стекла)
эксцентриситет сердцевины оптоволокна; качество поверхности торцов ОВ; качество подготовки оптоволокна (наличие/отсутствие микротрещин);
чистота V-образных ложементов ОВ (отсутствие загрязнений);
термические характеристики оптоволокна; качество электродов.
В процессе изготовления оптических волокон имеют место некоторые отклонения от их номинальных размеров. Допускаемое отклонение составляет всего лишь тысячные доли миллиметра, но и такие отличия могут повлиять на потери сростка ОВ. В целом влияние на величину потерь, вносимых сростком оптоволокна, оказывают как отличия в геометрических характеристиках оптического волокна, так и погрешности его юстировки и монтажа.
Процесс сварки:
Сваривание оптоволокна представляет собой сложный процесс, состоящий из нескольких этапов:
разделка кабеля, при которой внешняя изоляция оптического кабеля снимается, после чего снимается изоляция и с отдельных модулей, в каждом из которых находится до 12 волокон;
волокна очищаются от гидрофобного материала, в качестве которого используется гель – бесцветный или слегка окрашенный;
на волокна одного из свариваемых кабелей надеваются гильзы КЗДС (комплект для защиты соединений), состоящие из термоусадочных трубок с силовым стержнем;
на 2-3 сантиметра по концам волокон снимается лак, они протираются спиртом;
после зачистки, волокно скалывается строго перпендикулярно оси, это выполняется прецизионным скалывателем с допуском отклонения не выше 1,5 градуса;
свариваемые волокна укладываются с V-канавки и зажимаются;
Перед сваркой гильзу КДЗС надевают на один из сращиваемых концов волокна. После сваривания ее надвигают на место стыка и нагревают в печке сварочного аппарата до температуры 100…120° С на протяжении 1–1,5 минуты.
после этого волокна располагаются в сплайс-пластине, в кассете оптической муфты или кросса.
Современные аппараты для сварки оптических волокон имеют компактные размеры, что необходимо при работе в «полевых» условиях.
Работать с аппаратом можно при различных погодных условиях, скорости ветра до 15-17 м/c, но температурный диапазон ограничен: стандартно это -20 — +40.
Использование аппарата для сварки оптических волокон при монтаже и эксплуатации ВОЛС дает гарантии того, что все места соединений оптических волокон имеют высокую механическую прочность и низкий показатель вносимого в линию затухания, что немаловажно в связи с распространением пассивных оптических сетей, технологий спектрального уплотнения (CWDM/DWDM) и растущими требованиями к оптическому бюджету ВОЛС.
В нашем магазине Вы сможете выбрать и купить автоматический сварочный аппарат как с выравниванием по сердцевине, так и по оболочке.
Хит продаж – сварочный аппарат типа KL-280G, KL-500 – легкий, недорогой, работает со всеми типами оптического волокна. Так же отличным предложение является сварочный аппарат типа Mini-6S, Mini-4S.
В разделе Аксессуары Вы сможете найти все необходимое для сварки оптического кабеля – салфетки безворсовые, спирт изопропиловый абсолютированный и изопропиловый ОСЧ, стриппер и т.д.
О принципах работы аппаратов для сварки волокон (часть I)
Думаю, что большинство связистов хоть раз в жизни пробовали сварить между собой два оптических волокна (ОВ) или, по крайней мере, видели, как это делается. Монтажники связи сталкиваются с задачей сварки ОВ практически каждый день, однако это еще не означает, что каждый делает это правильно (здесь имеется в виду не только соблюдение технологий, но и оптимальная последовательность всех выполняемых действий, сводящая к минимуму число совершаемых "телодвижений" и соответственно обеспечивающая высокую скорость работы с надлежащим качеством).
Действительно настоящих профессионалов по сварке ОВ не так уж много – еще меньше тех, кто знает, как работает сварочный аппарат: по каким алгоритмам действует, как распознает составляющие оптического волокна, как выравнивает ОВ и т.д. От того, какие технологии используются в конкретной модели сварочного аппарата, зависит очень многое. Например, качество сварного соединения во многом определяется используемой технологией юстировки ОВ. Поняв принцип работы сварочного аппарата, можно быстро разобраться, например, из-за чего аппарат выдает ошибку или вовсе не работает и быстро это устранить.
Пару слов о новой модели Fujikura
Сегодня на слуху уже более десятка фирм производителей сварочных аппаратов (разнообразие этого списка с недавнего времени стали активно пополнять китайцы и корейцы), однако по сей день вектор развития или, так сказать, моду на устройства задает тройка японских собратьев – Fujikura, Sumitomo и Furukawa (аппараты под маркой Fitel).
Среди данной тройки наибольшие заслуги имеет фирма Fujikura, образованная еще в 1885 году братьями Зенпачи и Томекичи Фуджикура. Они заработали свой первый капитал на производстве украшений для волос – шнурах и резинках, и затем переключились на производство изоляции электрических проводов, поскольку процесс изготовления был схож.
Последняя модель аппарата Фуджикуры FSM-80S очередной раз продемонстрировала нам новые тенденции развития сварочных аппаратов. Примечательно, что эта модель в России и Китае идет под названием FSM-80S, а в странах Европы – FSM-70S. Модель одна и та же, отличаются аппараты только цветом корпуса. Можно провести следующий любопытный эксперимент: зайти на официальный сайт Fujikura, в англоязычной форме сайта перейти в раздел сварочного оборудования. Вы увидите, что среди моделей аппаратов последней будет FSM-70S. Если переключиться на русскоязычную форму сайта – последней моделью будет FSM-80S. С чем это связано, трудно сказать, возможно, какой-то маркетинговый ход или защита от контрафактных поставок. Если сравнивать характеристики FSM-70S и FSM-80S, то они идентичны. Единственное, что в мануале 80-ки указывается возможность создания искусственного аттенюатора с затуханием до 15 дБ, а в мануале 70-ки этого пункта нет.
На рис. 1.1 изображены FSM-70S и FSM-80S, можно поиграть в игру "найдите 10 отличий". Как видно, для Европы модель идет в голубом корпусе.
а) аппарат для Европы
б) аппарат для России и Китая
Рис. 1.1 – Внешний вид аппаратов Fujikura FSM-70S и FSM-80S
О технологиях юстировки оптических волокон
В принципе, сплавить разрядом вольтовой дуги два оптических волокна большого труда не составляет. Температура электрической дуги в сварочном аппарате достигает 4800°С – температура размягчения кварцевого стекла 1400 °C, а температура плавления примерно 1665 °C. Сложность процесса сварки ОВ заключается именно в точном сведении ОВ во всех трех плоскостях (рис. 1.2а). Необходимо добиться того, чтобы они не просто совпали по оболочке, а чтобы совпали их сердцевины ("совпали их сердца") – "светонесущие жилы" (рис. 1.2а). Поскольку именно по сердцевине передается информационный сигнал и именно из-за расхождения сердцевин в месте соединения ОВ часть оптического излучения попадает в оболочку и далее либо затухает, либо уходит в окружающее пространство. В связи с этим в месте стыка ОВ образуются потери мощности информационного сигнала.
Рис. 1.2 – К пояснению задачи юстировки ОВ: а) фотография под микроскопом волокон подлежащих юстировке; б) схематичное изображение этого процесса.
Никогда не задумывались, почему одна модель сварочного аппарата одной и той же фирмы стоит значительно дороже другой модели? Например, у фирмы Fujikura FSM-60S стоит значительно дороже, чем FSM-18S. Нет, это не из-за того, что FSM-18 более старая модель, а 60-ка – более новая. Все дело в том, что в этих сварочных аппаратах используется разная технология юстировки ОВ. Именно сложность используемой в аппарате технологии выравнивания ОВ напрямую влияет на его стоимость.
На сегодняшний день разработаны 4 основных принципа выравнивания ОВ, также существуют различные их модификации. В разных источниках некоторые методы называются по-разному, но их принцип действия один и тот же. Стоит отметить, что на российском рынке встречаются аппараты, работающие только по двум технологиям: по методу выравнивания по V-образной канавке и по методу выравнивания по профилю показателя преломления (метод PAS).
Помимо этих двух методов существует также метод LID, основанный на вводе излучения в одно ОВ и его последующего детектирования во втором ОВ и метод юстировки по тепловизионным изображениям (RTC метод). Метод LID был разработан компанией Siemens в 1984 г. и после выкуплен фирмой Corning. Поэтому данный метод используется в американских сварочных аппаратах фирмы Corning, например, в Corning OSLID-0SM-T-H, в Corning OS1-0SM-T-H-BK (рис. 1.3). Существует также упрощенный вариант метода PAS, называемый L-PAS (Lens Profile Alignment System), применяемый в тех же аппаратах Corning для грубой юстировки ОВ.
Рис. 1.3 Американские сварочные аппараты
Метод юстировки по тепловизионным изображениям используется в малоизвестных аппаратах шведской компании Ericsson. На рис. 1.4 представлен аппарат данной фирмы Ericsson FSU 15. Также по данному методу работают несколько моделей компании Corning.
Рис. 1.4 – Сварочный аппарат Ericson FSU 15 FI
Также, следует вспомнить о методе DACAS (Digital Analysis Core Alignment System) – системе выравнивания ОВ по сердцевине с применением методов цифровой обработки. Этот метод упоминается в характеристиках аппаратов INNO. Однако описание данного метода нигде не встречается, даже нет краткого пояснения его принципа. Скорее всего, это тот же метод PAS только с применение каких-либо дополнительных программных алгоритмов обработки изображения.
Далее мы акцентируем наше внимание на двух методах выравнивания: по V-образной канавке и по профилю показателя преломления (PAS), поскольку модели сварочных аппаратов, представленные на российском рынке, работают именно по ним.
Метод выравнивания по оболочке в V-образной канавке
По легкости исполнения данный метод на голову выше всех остальных. Он был разработан еще в 1977 г. в компании Fujikura. Метод не требует множества шаговых двигателей, способных смещать ОВ вправо/влево, вверх/вниз, не требует сложной системы управления этими двигателями. Поэтому его часто называют пассивным методом выравнивания. Сварочные аппараты, использующие данный метод юстировки, давно уже заняли определенную нишу и отлично подходят для тех ситуаций, когда к сварному стыку не предъявляют высоких требований по вносимым потерям.
Суть метода следующая. Два волокна укладываются в точно выровненные друг относительно друга V-образные канавки и фиксируются специальными зажимами (рис. 1.5).
Рис. 1.5 К пояснению метода выравнивания по V-образной канавке
Поскольку канавки по высоте находятся на одном уровне, два волокна оказываются также на одном уровне. Остается только их сдвинуть поближе друг к другу и можно начинать процесс сплавления. Ничего проще, кажется, придумать нельзя. Однако по известному закону жизни за простоту нам приходится платить качеством. Во-первых, волокна не будут лежать ровно, если в V-образную канавку попадет, так скажем, пылинка или частичка чего-либо (остатки защитного покрытия волокна, гидрофоб, ворсинка и т.д.). Во-вторых, канавки выравнивают волокна, однако совпадение волокон по оболочке не гарантирует точного совпадения их сердцевин. Дело в том, что при производстве оптического волокна, как и любом другом производстве, существуют допуски на нормативные значения (таблица 1). Кроме того, несовпадение сердцевин происходит вследствие эксцентриситета и некруглости оболочки.
Таблица 1. Параметры одномодового волокна согласно рекомендации G.652.D
В связи с перечисленными факторами, потери на сварном соединении для стандартных одномодовых волокон при таком методе выравнивания в среднем составляют 0.05 дБ. Сварочные аппараты такого класса находят свое применение в тех случаях, когда к сварному стыку не предъявляют высоких требований по вносимым потерям, и покупка дорогого сварочного аппарата нецелесообразна. К таким случаям относятся сети операторов связи небольшой протяженности: сети доступа, локальные компьютерные сети, структурированные кабельные системы офисов и т.д. Аппараты данной серии: Fujikura FSM-11S, Fujikura FSM-18S, ILSINTECH Swift-F1 (F2,F3), Sumitomo Type 25 и др.
В следующей части мы рассмотрим метод PAS, позволяющий произвести выравнивания ОВ по сердцевине. В заключение приведены несколько интересных фотографий.
Какими были сварочники для оптики
Развитие технологий ведет к уменьшению размеров электронных устройств. То же самое касается и аппаратов для сварки оптических волокон. Некогда громоздкие махины теперь умещаются в небольшой пластиковый кейс, а работать с ними можно на непролазных чердаках и в сырых подвалах. Но вернемся же на долгие годы назад и взглянем на тех самых гигантов Мезозоя, стоявших у истоков эры волоконно-оптических сетей.
Потребность в разработке устройства, которое могло бы соединять оптические волокна, возникла в процессе развития волоконно-оптических передатчиков и приемников и, конечно же, самого волокна в 70-х годах прошлого столетия. Первый сварочник использовали для работы с многомодовыми оптическими волокнами с относительно большим диаметром сердцевины — 50 мкм. Однако уже с начала 1980-х годов потребовался сварочный аппарат для одномодовых волокон. Несмотря на огромные перспективы передачи данных с помощью света у производителей и ученых возникли огромные трудности с разработкой оборудования, которое могло бы соединять мелкие волокна.
Вот что сказал по этому поводу один из разработчиков того времени из компании Fujikura:
«Все корпорации, работающие в данном направлении, понимали, что на решении этой проблемы можно будет построить большой бизнес! Вот, что действительно изначально поддерживало и продвигало все исследования и разработки в области сварки волокон. Идея была интересной, но реализовать ее было не так-то просто. Мы начали исследовательскую деятельность группой всего из трех человек. Это был 1976 год. Развитие оптических волокон как таковых в то время еще находилось в стадии проб и ошибок и помимо проблем, связанных с неидеальной структурой волокон и его низкой прочностью, у нас не было даже аналитического подхода к измерению потерь света при передаче его по волокну. В процессе работы сначала последовала череда изнурительных экспериментов, была неопределенность в отношении будущего. Временами нам казалось, что мы никогда не добьемся прорыва. Конечно, это вызывало большое разочарование. Однако, в следующем, 1977, году мы наконец-то увидели проблеск надежды».
Тогда первые эксперименты по соединению волокон проводились с использованием двух подходов: сведение волокон и их склеивание в V-образной канавке; второй метод заключался в сплавлении волокон с помощью электрической дуги. По причине превосходных качеств и работоспособности, большее развитие вскоре получил второй метод. Таким образом, первая модель практического многомодового сварочного аппарата Fujikura была завершена в октябре 1977 года. Позже, в 1979 году, это оборудование было отправлено на выставку в Вашингтон, округ Колумбия, где аппарат стоял в неброском углу выставочного зала, однако собрал толпу желающих посмотреть на это чудо техники. Сохранилась только небольшая фотография этого аппарата.
Большого спроса на японскую новинку еще не было, но именно с созданием этого аппарата началась целая эпоха. Примечательно, что первоначально в Fujikura рассматривали применение для сварки волокон «фазово-контрастного микроскопа» или «поляризованного микроскопа», чтобы можно было увидеть сердцевину волокна за счет разницы в показателях преломления. Но оба варианта оказались несостоятельными, поскольку просто не подходили для внедрения в компактный сварочный аппарат.
Около года преданные своему делу исследователи проводили день и ночь в экспериментальной лаборатории, занимаясь совершенствованием и разработкой алгоритмов работы сварочного аппарата. Все дальнейшие разработки велись в условиях строжайшей секретности. В результате, в феврале 1985 года родился шедевр – успешно применили на практике сварочный аппарат для сварки одномодовых волокон Fujikura FSM-20.
Аппарат состоял из двух отдельных блоков, что не добавляло ему удобства и тем более какой-либо компактности. Главной задачей разработчиков в то время было объединение этих двух блоков в одно устройство. В то время Fujikura не единственная занималась разработкой сварочных аппаратов для оптики. Небезызвестная Siemens уже в 1984 году разработала собственный сварочный аппарат модели M7.
Стоит внимательно рассмотреть некоторые модели сварочных аппаратов именно этой компании, ведь на заре телекомов аппараты от Siemens можно было часто повстречать на российских просторах.
Siemens RXS Siecor S46-999-M7-A10
На этом видео можно увидеть, как работает аппарат, и как видно в объективе волокна:
Технология применения сварочного аппарата для оптоволокна
Сварочный аппарат для оптоволокна предназначается для осуществления соединения оптоволоконных кабелей. Развитие технологий телевещания и интернета способствовало развитию производства и практически повсеместному применению кабелей оптоволокна. Оптоволоконный кабель состоит из тонких нитей кварца, стекла или пластика. Нити оптического кабеля позволяют обеспечить сигналу, проходящему по ним, более высокий уровень чистоты по сравнению с сигналом, передающимся посредством радиоволн.
Схема оптического кабеля.
Протяженные коммуникации не могут состоять из непрерывающегося оптоволоконного кабеля. Монтаж и ремонт оптоволоконных сетей требует соединения проводящих нитей между собой. Для проведения такого рода работ используются специальные приборы, позволяющие соединять проводящие элементы оптического кабеля.
Технология проведения сварочных работ
Основным принципом объединения оптоволокна является разогрев краев проводящих нитей до температур плавки, при помощи воздействия на них электрической дугой.
Для объединения оптоволокна необходимо разогреть край проводящих нитей.
При проведении процесса объединения оптоволокна основной проблемой является осуществление тщательной подгонки соединяемых элементов. Дело заключается в том, что при некачественной подгонке волокон при их соединении кабель может утратить свою функциональность.
Процесс объединения оптических проводящих нитей заключается в первоначальном расплавлении световода и последующем его соединении, выполняемом при помощи использования электродуги. Для проведения сварных работ применяются специальные сварочные приборы, которые в процессе работы используют методы точного совмещения при объединении оптических нитей кабеля.
Приборы, выпускаемые промышленностью и предназначенные для соединения оптоволоконного кабеля, классифицируются по используемым методам выравнивания световодов. Помимо этого, применяется классификация приборов в зависимости от максимального количества одновременно объединяемых световодов. Контроль процесса объединения световодов проводится в современных сварочных приборах при помощи электронных блоков, которые при проведении сварки учитывают большое количество параметров среды, таких как температура воздуха, давление, влажность воздуха и многие другие. Современные сварочные приборы оснащаются несколькими программами для проведения процесса сварки. Выбор программ осуществляется в зависимости от вида используемого световода.
Сварка оптического световода включает несколько техэтапов:
Схема сварки оптоволокна.
- надевание на один из световодов защитной термоусадочной гильзы;
- подготовка торцевых поверхностей световодов;
- установка подготовленных световодов в направляющие системы сваривания;
- проведение юстировки световодов в двух плоскостях;
- выполнение сварки оптического волокна;
- предварительная оценка качества сваривания;
- защита места объединения при помощи термоусаживающей спецгильзы;
- проведение теста на качество.
Процесс оплавления проводится одновременно на обоих объединяемых световодах. Операцию совмещения и соединения в современных аппаратах проводят автоматически.
Устройство и составные части оборудования
Одним из основных элементов оборудования, предназначенного для проведения сваривания световодов оптических кабелей, является электронный блок управления процессом. В блок управления входят преобразователи электротока, материнская плата и многие другие электронные компоненты прибора, которые включают в себя разнообразные электронные датчики.
Схема сварочного аппарата для оптоволокна.
Следующим элементом конструкции является мехблок. В состав этого блока входят желоба, напоминающие латинскую букву V, которые служат для расположения в них соединяемых световодов, элементы нагрева, электроприводы системы выравнивания и совмещения волокна и некоторые другие механические компоненты.
Современные приборы для проведения процесса соединения оснащаются специальными жидкокристаллическими дисплеями, на которых отражается основная информация о параметрах процесса. Здесь же на дисплее проводится выбор требуемого рабочего режима сваривания.
Современные сварочные приборы, предназначенные для соединения световодов, имеют достаточно компактные размеры. Рабочее напряжение аппарата составляет от 100 до 300 вольт. На сегодняшний день созданы аппараты, позволяющие производить сварку световодов в местах, где отсутствует доступ к сетевой электроэнергии. Такие устройства являются портативными и работающими от аккумуляторной батареи.
Последовательность операций в рабочем цикле
Соединение оптического волокна осуществляется в определенной последовательности.
Сначала осуществляется удаление защитной оболочки, покрывающей кабель, и проводится очистка оптоволокна от гидрофобной пленочной оболочки. Очистка от оболочки проводится при помощи специального геля.
При сварке оптоволокна понадобятся защитные гильзы.
После проведения очистки на волокна кабеля надеваются защитные гильзы из комплекта деталей, предназначенных для защиты сварочных соединений. Особенностью этих гильз является сужение этих компонентов при воздействии на них высокой температуры.
Снятие защитных слоев осуществляется на волокнах на расстоянии трех миллиметров от краев. Очистка волокна проводится спиртом. Зачищенные концы волокон размещают в V-образные направляющие аппарата для сварки оптических волокон. Помещая волокна в сварочный прибор, проводят автоматическую стыковку световодов. После помещения волокон включается аппарат для сварки оптоволокна. В процессе нагрева световоды направляются друг к другу.
Аппарат для сварки оптики в автоматическом режиме проверяет качество сваривания. Проводится проверка проводимости световой волны. Используемая из КДЗС термоусадочная муфта смещается на место сваривания и сжимается, тем самым фиксируя его. После проведения сваривания волокна укладываются в спецмуфту, кассету или спайс-пластину.
Основные этапы эволюционирования приборов для соединения оптоволокна
Работа оборудования для сваривания оптоволокна может осуществляться в трех режимах: в ручном, автоматическом или полуавтоматическом. В настоящий момент оборудование, функционирующее в ручном и полуавтоматическом режиме, промышленностью уже не выпускается.
Работа с аппаратом ручной сварки требует высокого профессионализма и больших энегрозатрат.
В период развития оборудования для оптоволоконной передачи данных приборы для сваривания выпускались следующих типов:
- Прибор ручной сварки. Процесс сваривания таким аппаратом является энергоемким и требует наличия высокого профессионализма у специалиста, осуществляющего сваривание. Точность совмещения волокон контролируется при помощи микроскопа.
- Приборы полуавтоматической сварки. Совмещение, соединение и сваривание осуществляется в автоматическом режиме. Контролирование проводится при помощи дисплея, на который передают сигнал встроенные камеры. В ручном режиме проводится очистка и подготовительный этап.
- Автоматические приборы сварки. Современные аппараты, осуществляющие все операции в автоматическом режиме.
Наиболее удобными являются приборы, выполняющие весь комплекс операций в автоматическом режиме.
Дополнительное оборудование, используемое при проведении работ по свариванию оптоволокна
В процессе сваривания используется дополнительное оборудование. К таким дополнительным приборам относятся скалыватели и термострипперы – приспособления, предназначенные для проведения зачистки оптического волокна.
Производители достаточно часто выпускают современные комплекты оборудования, которое включает в свой перечень, помимо скалывателя и термостриппера, еще и печь, предназначенную для проведения термоусадки КДЗС и помпу для спирта.
Основными производителями оборудования для соединения оптоволоконного кабеля являются следующие ведущие фирмы: FUJIKURA, SUMITOMO, INNO, ILSINTECH и некоторые другие.
Выбор аппарата осуществляется в зависимости от функциональных характеристик оборудования и конкретных задач, для которых осуществляется приобретение прибора. Оборудование для проведения сваривания оптоволоконных кабелей является достаточно дорогим.
Читайте также: