Укажите тип электродов применяемый при сварке элементов змеевиков выполненных из стали 1х2м1

Обновлено: 25.01.2025

Настоящий руководящий документ распространяется на змеевики сварные радиантные, конвективные и их элементы для трубчатых печей нефтеперерабатывающей, нефтехимической, химической, газовой отраслей промышленности, работающие при температуре стенки труб змеевика до 760°С и рабочем давлении до 16 МПа (160 кгс/см 2 ).

Руководящий документ не распространяется на змеевики сварные для сосудов и аппаратов стальных, работающих под давлением, и на радиантные змеевики реакционных печей.

1. ТИПЫ, ОСНОВНЫЕ ПАРАМЕТРЫ И РАЗМЕРЫ

1.1 Основные параметры и размеры должны соответствовать указанным в таблице 1.

Температура стенки труб рабочая, °С, не более

Давление рабочее, МПа, не более

Поверхность теплообмена*, м 2

Диаметр труб наружный, мм

Длина труб, м, не более

* поверхность теплообмена змеевиков рассчитывается по формуле 1

F = n ´ D ´ p ´ L + F1, (1)

n - количество труб, шт.;

F - поверхность теплообмена змеевиков, м 2 ;

D - наружный диаметр труб, м;

L - длина труб, м;

F 1 - поверхность калачей и отводов в случае их расположения в топке, м 2 .

1.2 Для змеевиков следует применять трубы с наружными диаметрами (мм):

В необходимых случаях применяются оребрённые трубы по СТП 442-2000 «Трубы оребрённые. Правила изготовления и приёмки» (ООО «Эскорт»).

Могут быть использованы трубы и трубопроводные детали производства других фирм, имеющих необходимую документацию и разрешение на применение.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1 ТРЕБОВАНИЯ К ПРОЕКТИРОВАНИЮ ЗМЕЕВИКОВ И ИХ ЭЛЕМЕНТОВ

2.1.1 Конструкция змеевиков должна быть технологичной при изготовлении, монтаже и эксплуатации.

2.1.2 При наличии технической возможности и по согласованию с заказчиком необходимо осуществлять проектирование габаритных печей и их габаритных блоков совместно с каркасом и футеровкой, т.е. в виде транспортабельных комплектных блоков, состоящих из змеевиков, собранных в узлах каркаса и имеющих футеровку.

При проектировании змеевиков независимо от каркаса также должна быть обеспечена его максимальная заводская готовность и блочность.

2.1.3 Деление змеевиков на поставочные блоки должно быть выполнено в рабочем проекте с указанием массы поставочных блоков и мест расположения монтажных стыков.

2.1.4 Максимальная масса поставочного блока печи или змеевика - 15 т.

При формировании поставочных блоков большей массы их масса должна быть согласована с заказчиком и монтажной организацией.

2.1.5 Строповые устройства поставочных блоков змеевиков предусматриваются в рабочем проекте. Строповые устройства или элементы, предназначенные для строповки, -должны быть рассчитаны на монтажную массу поставочного блока.

2.1.6 В техническом проекте змеевика следует предусматривать узлы уплотнения в местах прохода труб змеевика через стенки печи.

2.1.7 Расчёт на прочность труб и отводов змеевика следует проводить по РТМ 26-02-67-84. В техническом проекте должна быть указана величина расчетного давления, прибавки на коррозию из расчёта срока эксплуатации змеевика, а также расчётная температура стенки труб камер конвекции и радиации.

2.1.8 Элементы крепления змеевика (кронштейны, подвески, трубные решетки) могут быть запроектированы литыми или сварными. Форма и размеры элементов должны соответствовать чертежам технического проекта.

2.1.9 В техническом проекте должны быть отражены условия поставки змеевика в зависимости от конструкции печи. Змеевик может поставляться:

а) россыпью - отдельно трубы, отводы, решетки;

б) «костылями» - к трубе приварен отвод на 180°;

в) «шпильками» - две трубы, соединенные отводами на 180°;

г) секциями - несколько труб, соединенных отводами на 180° совместно с элементами крепления или без них;

д) конвективными пакетами (блоками) - пучок соединенных между собой труб, с трубными решетками.

2.2 МАТЕРИАЛЫ

2.2.1 При выборе материалов печных змеевиков должны учитываться: расчетное давление, максимальная расчетная температуры стенки, химический состав и характер среды, технологические свойства и коррозионная стойкость материалов.

2.2.2 Материал элементов крепления змеевика выбирается в зависимости от температуры элемента, состава газовой среды, способа изготовления элементов (литье или сварка).

2.2.3 Требования к материалам, виды их испытаний, пределы и условия применения должны удовлетворять данным таблиц 9 ¸ 13.

2.2.4 В технически обоснованных случаях допускается применение сварных соединений из сталей разных структурных классов при условии обязательного согласования со специализированной организацией (например, ОАО «ВНИИНЕФТЕМАШ»).

2.2.5 Качество и характеристика применяемых материалов должны быть подтверждены сертификатами организаций - поставщиков материалов. При отсутствии сертификатов испытания материалов производятся на предприятии-изготовителе змеевиков в соответствии с требованиями стандартов или технических условий на данный материал.

2.2.6 Применение материалов, предусмотренных в таблицах 9 ¸ 13, для работы в условиях, выходящих за установленные пределы, а также применение других материалов допускается при согласовании со специализированной организацией (например, ОАО «ВНИИНЕФТЕМАШ»).

2.2.7 Если в стандарте и технических условиях на материалы не указаны вид и требования испытаний, предусмотренные в таблицах 9 ¸ 13, то эти требования должны быть указаны в технической документации на змеевик.

2.2.8 Пуск, остановка и испытание змеевиков на герметичность в зимнее время следует проводить в соответствии с требованиями «Регламента проведения в зимнее время пуска, остановки и испытаний на герметичность змеевиков печей» (обязательное приложение А).

2.3 ТРУБЫ

2.3.1 Марки сталей для труб печных змеевиков должны применяться в соответствии с таблицей 9.

2.3.2 При заказе труб по ГОСТ 8731 и ГОСТ 8733 необходимо оговорить группу «В», требования по гидравлическому испытанию каждой трубы, испытанию на ударную вязкость и одному из технологических испытаний.

2.3.3 При заказе труб по ГОСТ 550 следует оговорить испытание на сплющивание, а для работы под давлением свыше 10 МПа (100 кгс/см 2 ) или при температуре стенки свыше 400°С - контроль макроструктуры (для труб толщиной стенки 12 мм и более) и дефектоскопию неразрушающим методом. Для труб из стали 10Г2 необходимо оговорить испытание на ударную вязкость при температуре минус 40°С. В сертификате должны быть сведения о режиме термообработки.

2.3.4 При заказе труб по ГОСТ 9940 и ГОСТ 9941 следует оговорить следующие требования:

- трубы предназначены для сварки;

- трубы по ГОСТ 9940 поставляют очищенными от окалины;

- трубы должны быть испытаны гидравлически;

- трубы должны быть испытаны на раздачу или сплющивание;

- трубы должны быть стойкими против МКК;

- трубы должны быть термически обработаны;

- партия должна состоять из труб одной плавки;

- трубы должны быть проконтролированы физическим методом;

- в сертификате должен быть приведён химический состав плавки и сведения о режиме термообработки.

2.3.5 Допускается не производить гидравлическое испытание труб в следующих случаях:

- если труба подвергается по всей поверхности контролю физическим методом;

- для труб при рабочем давлении 5,0 МПа и ниже, если предприятие изготовитель труб гарантирует положительные результаты гидравлических испытаний.

2.4 ЛИСТОВАЯ СТАЛЬ

2.4.1 Коррозионностойкая, жаростойкая и жаропрочная сталь по ГОСТ 7350 должна быть заказана горячекатанной, термически обработанной, с обрезной кромкой и качеством поверхности по группе М2б. При указании в техдокументации сталь должна быть испытана на стойкость к межкристаллитной коррозии.

2.5 ОТЛИВКИ

2.5.1 Качество поверхности стальных отливок должно соответствовать требованиям ГОСТ 977.

2.5.2 На поверхности отливок, подлежащих механической обработке, допускаются без исправления места, расчищенные от трещин, спаев, раковин, пористостей и других дефектов, если глубина залегания дефекта не превышает 2/3 припуска на механическую обработку.

2.5.3 Дефекты отливок, влияющие на прочность и ухудшающие их товарный вид, подлежат исправлению. Виды, количество, размеры и расположение дефектов, подлежащих исправлению, а также способы их исправления определяются соответствующими техническими условиями и чертежами заказчика на детали из отливок.

2.5.4 Отливки из легированных и коррозионностойких сталей подвергаются контролю макро- и микроструктуры при наличии требований в технических условиях или проектах. Исследование макро- и микроструктуры производится по инструкции организации-изготовителя.

2.5.5 Отливки из коррозионностойких сталей при наличии требований в проекте должны быть испытаны на стойкость к межкристаллитной коррозии по ГОСТ 6032 методом, указанным в проекте.

2.6 СВАРОЧНЫЕ МАТЕРИАЛЫ

2.6.1 Сварочные материалы для сварки труб в зависимости от условий применения выбираются по таблицам 12 ¸ 13. Сварочные материалы для автоматической сварки под флюсом принимаются согласно ОСТ 26-291-94.

Сварочные материалы для сварки элементов печей из листового металла, указанного в таблице 10, принимаются в соответствии с ОСТ 26-291-94.

Сварку литых элементов из сталей 10Х18Н9ТЛ, 40Х24Н12СЛ и 35Х23Н7СЛ с деталями каркаса печи из углеродистой стали следует производить электродами типа Э-11Х15Н25М6АГ2 ГОСТ 10052, а литых элементов из стали 45Х25Н20С2Л - электродами типа Э-08Х14Н65М15В4Г2 ГОСТ 10052.

Сварку элементов из углеродистой стали с элементами из стали марок 20Х23Н18 и 20Х23Н13 рекомендуется производить электродами типа Э-10Х25Н13Г2 ГОСТ 10052.

2.6.2 Сварочные материалы по химическому составу, включая химический состав металла шва или наплавленного металла, должны удовлетворять требованиям действующих стандартов и технических условий, что должно подтверждаться сертификатами. При отсутствии сертификатов сварочные материалы должны проверяться на соответствие требованиям стандартов или технических условий в организации-изготовителе змеевиков.

2.6.3 Сварочные материалы должны обеспечивать механические свойства металла шва или наплавленного металла, указанные в таблице 2.

Механические свойства наплавленного металла

Предел прочности кгс/см 2

Относительное удлинение, %, не менее

Ударная вязкость, кгс × с/см 2 , не менее

Не ниже нижнего предела прочности основного металла по стандарту или техническим условиям для данной марки стали

Низколегированные и хромомолибденовые

Среднелегированные, хромистые, хромомолибденовые, хромомолибденванадиевые и ванадиевовольфрамовые

Высоколегированные с особыми свойствами

По стандарту или техническим условиям на сварочный материал или не менее 18% при отсутствии в стандарте данной характеристики

1. В таблице приведены нормы механических свойств металла шва или наплавленного металла при нормальной температуре (+20°С).

2. Нормы механических свойств металла шва или наплавленного металла для низко и среднелегированных, хромистых, хромомолибденовых, хромованадиевовольфрамовых сталей указаны после термообработки.

3. Результаты испытаний металла шва или наплавленного металла определяются как среднее арифметическое значение показаний отдельных образцов (таблица 2). Допускается снижение предела прочности на одном из двух испытанных образцов не более чем на 10 %.

2.6.4 Механические испытания металла шва или наплавленного металла должны производиться на растяжение и на ударную вязкость на образцах по ГОСТ 6996.

2.6.5 В наплавленном металле, предназначенном для сварки стали аустенитного класса, содержание ферритной фазы должно соответствовать требованиям ГОСТ 10052 или чертежа на змеевик.

2.6.6 При получении неудовлетворительных результатов по какому-либо виду испытаний разрешается проведение повторных испытаний на удвоенном количестве образцов по виду испытаний, давшему неудовлетворительные результаты. При получении неудовлетворительных результатов повторных испытаний сварочные материалы бракуются.

2.6.7 В паспорт изделия должны быть занесены номера партий и плавок электродов и сварочной проволоки, применяемых для данного изделия.

Сертификаты и результаты испытаний сварочных материалов, если такие проводились, должны храниться на предприятии - изготовителе не менее срока службы змеевика.

2.6.8 Сварочные материалы, предназначенные для выполнения сварных соединений, к которым предъявляются требования по стойкости к межкристаллитной коррозии (МКК), перед использованием должны подвергаться испытаниям на склонность к МКК по ГОСТ 6032. Испытание сварочных материалов на склонность к МКК допускается совмещать с испытанием на склонность к МКК сварных соединений, для сварки которых они предназначены.

3 ТРЕБОВАНИЯ К ИЗГОТОВЛЕНИЮ

3.1 ОБЩИЕ ТРЕБОВАНИЯ К ИЗГОТОВЛЕНИЮ

3.1.1 Змеевики трубчатых печей и их элементы должны изготавливаться в соответствии с требованиями настоящего руководящего документа и технической документации, утвержденной в установленном порядке.

3.1.2 Организация-изготовитель змеевиков трубчатых печей должна иметь разрешение на применение данного вида оборудования, оформленного в установленном порядке.

Перед запуском в производство проверяется соответствие материалов требованиям чертежа, настоящего руководящего документа, стандартов или технических условий на них.

3.1.3 Предельные отклонения размеров механически обрабатываемых деталей не должны превышать: для отверстий - Н14, валов - h 14, прочих - ± IT 14/2, если в чертежах или нормативно - технической документации не указан иной класс точности. Оси резьбовых отверстий деталей должны быть перпендикулярны к опорным поверхностям. Неперпендикулярность не должна быть более 0,8 мм на 100 мм, если не оговорены иные требования.

3.1.4 На рабочей поверхности труб, отводов, тройников не допускаются риски, забоины, царапины и другие дефекты, превышающие минусовые предельные отклонения, предусмотренные настоящим руководящим документом или техническими условиями.

3.1.5 Подготовку кромок частей трубных элементов под сварку необходимо выполнять механическим способом в соответствии с чертежами.

Огневая подготовка кромок допускается только при отсутствии возможности механической обработки кромок обычными средствами. Огневая резка труб из хромомолибденовых и хромованадиевовольфрамовых сталей должна производиться с предварительным подогревом и последующим замедленным охлаждением. После огневой обработки кромки должны быть зачищены абразивным инструментом на глубину 1 ¸ 2 мм из расчета от самой глубокой впадины поверхности реза. В соответствии с требованиями ГОСТ 16037 шероховатость поверхности подготовленных кромок должна быть не более Rz 80 по ГОСТ 2789 при наличии требований контроля цветной дефектоскопией подготовленных под сварку кромок.

3.1.6 Кромки подготовленных под сварку трубных элементов должны быть зачищены и обезжирены внутри и снаружи на ширину не менее 20 мм и не должны иметь следов ржавчины, масла и прочих загрязнений.

3.1.7 На поверхности деталей не допускаются брызги металла в результате огневой резки и сварки.

3.1.8 Для крепления приспособлений при гидроиспытании допускается приварка технологических платиков на концах труб поставочных блоков и секций.

3.1.9 Форма подготовки кромок и зазор между стыкуемыми кромками деталей, подлежащих сварке, должны соответствовать требованиям чертежей, действующих стандартов и инструкций на сварку.

3.1.10 Методы сборки элементов под сварку должны обеспечивать правильное взаимное расположение сопрягаемых элементов и свободный доступ к выполнению сварочных работ и контролю в последовательности, предусмотренной технологическим процессом на сварку.

3.1.11 При сборке допускается подгонка, если собираемые детали находятся в пределах допусков, установленных настоящим руководящим документом. Методы подгонки должны исключать повреждение металла.

3.1.12 При устранении зазоров, превышающих допустимые нормы, между торцами труб не допускается применение нагрева, натяжения или ударных нагрузок.

3.1.13 Стыковые соединения змеевиков трубчатых печей выполняются без остающихся подкладных колец. Как исключение, стыковые соединения могут быть выполнены с остающимися подкладными кольцами при условии согласования с Заказчиком и автором проекта.

3.1.14 Подготовка под сварку кромок стыкуемых элементов поставочных блоков должна производиться в организации-изготовителе.

3.1.15 В рабочих чертежах деталей и узлов должны быть указаны шифры, место и метод маркировки данных узлов и деталей.

3.1.16 Сварщик может приступить к сварке после установления контролером ОТК правильности сборки и зачистки всех поверхностей деталей, подлежащих сварке.

3.1.17 Контрольная сборка змеевика в целом или его поставочных блоков с последующей маркировкой должна выполняться в организации-изготовителе в соответствии с технической документацией. При технической невозможности выполнения контрольной сборки в организации-изготовителе и по согласованию с проектной организацией контрольная сборка не выполняется.

3.1.18 Неперпендикулярность торца трубы относительно оси трубы диаметром до 100 мм не должна превышать 0,6 мм. Для труб диаметром более 100 мм величина допустимой неперпендикулярности торцов труб принимается по нормам организации-изготовителя.

3.1.19 Детали с одинаковым условным диаметром перед сборкой должны быть подобраны по размерам внутренних диаметров. Разность между внутренними диаметрами двух стыкуемых труб не должна превышать 1,0 мм.

При большем различии между внутренними диаметрами концы частей с меньшим внутренним диаметром должны быть проточены по внутренней поверхности согласно рисунка 1а - при сборке без подкладного кольца и рисунка 1б - при сборке на подкладном кольце или при выполнении корневого шва сваркой в защитном газе.



где: L = 10 ± 1 мм - при сварке корня шва в защитном газе,

L = 2 S (но не менее 20 мм) - при сварке корня шва на остающемся подкладном кольце,

S - толщина стенки трубы,

Dk - внутренний диаметр трубы или откалиброванный путем конической, рисунок 2а или цилиндрической раздачи, рисунок 2б.



Толщина стенки частей после проточки не должна быть меньше расчетной плюс прибавка на коррозию.

После калибровки внутренний диаметр детали и толщина стенки должны соответствовать требованиям чертежа. Допуск на внутренний диаметр калиброванного конца должен обеспечивать качественную сборку. Подготовка кромок под сварку в соответствии с требованиями техпроцесса может выполняться до или после операции калибровки.

Области применения калибровки и допустимое значение раздачи труб приведены в таблице 3.

ОБЩИЕ ПОЛОЖЕНИЯ. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ РД

Настоящий руководящий документ распространяется на змеевики сварные радиантные, конвективные и их элементы для трубчатых печей нефтеперерабатывающей, нефтехимической, химической, газовой отраслей промышленности, работающие при температуре стенки труб змеевика до 760 °С и рабочем давлении до 20 МПа (200 кгс/см 2 ) изб.

(Измененная редакция. Изм. № 1)

Давление рабочее, МПа (изб.), не более

Поверхность теплообмена * , м 2

* поверхность теплообмена змеевиков рассчитывается по формуле 1.

F = n × D × p × L + F1,

n - количество труб, шт.;

F - поверхность теплообмена змеевиков, м 2 ;

D - наружный диаметр труб, м;

L - длина труб, м;

F1 - поверхность калачей и отводов в случае их расположения в топке, м 2 .

2.1.5 Строповые устройства поставочных блоков змеевиков предусматриваются в рабочем проекте. Строповые устройства или элементы, предназначенные для строповки, должны быть рассчитаны на монтажную массу поставочного блока.

2.2.3 Требования к материалам, виды их испытаний, пределы и условия применения должны удовлетворять данным таблиц 9 - 13.

2.2.6 Применение материалов, предусмотренных в таблицах 9 - 13, для работы в условиях, выходящих за установленные пределы, а также применение других материалов допускается при согласовании со специализированной организацией (например, ОАО «ВНИИНЕФТЕМАШ»).

2.2.7 Если в стандарте и технических условиях на материалы не указаны вид и требования испытаний, предусмотренные в таблицах 9 - 13, то эти требования должны быть указаны в технической документации на змеевик.

2.2.8 Пуск, остановка и испытание змеевиков на герметичность в зимнее время следует проводить в соответствии с требованиями «Регламента проведения в зимнее время пуска, остановки и испытаний на герметичность змеевиков печей» (обязательное приложение А ).

2.3.2 При заказе труб по ГОСТ 8731 и ГОСТ 8733 необходимо оговорить группу «В», требования по гидравлическому испытанию каждой трубы, испытанию на ударную вязкость и одному из технологических испытаний.

2.3.3 При заказе труб по ГОСТ 550 следует оговорить испытание на сплющивание, а для работы под давлением свыше 10 МПа (100 кгс/см 2 ) или при температуре стенки свыше 400 °С - контроль макроструктуры (для труб толщиной стенки 12 мм и более) и дефектоскопию неразрушающим методом. Для труб из стали 10Г2 необходимо оговорить испытание на ударную вязкость при температуре минус 40 °С. В сертификате должны быть сведения о режиме термообработки.

2.3.4 При заказе труб по ГОСТ 9940 и ГОСТ 9941 следует оговорить следующие требования:

2.6.1 Сварочные материалы для сварки труб в зависимости от условий применения выбираются по таблицам 12 ÷ 13. Сварочные материалы для автоматической сварки под флюсом принимаются согласно ОСТ 26-291-94.

Сертификаты и результаты испытаний сварочных материалов, если такие проводились, должны храниться на предприятии-изготовителе не менее срока службы змеевика.

Механические свойства наплавленного металла

Ударная вязкость, кгс·м/см 2 , не менее

По стандарту или техническим условиям на сварочный материал или не менее 18 % при отсутствии в стандарте данной характеристики

1. В таблице приведены нормы механических свойств металла шва или наплавленного металла при нормальной температуре (+ 20 °С).

2. Нормы механических свойств металла шва или наплавленного металла для низко и среднелегированных, хромистых, хромомолибденовых, хромованадиево-вольфрамовых сталей указаны после термообработки.

3.1.3 Предельные отклонения размеров механически обрабатываемых деталей не должны превышать: для отверстий - Н14, валов - h14, прочих - ± IT14/2, если в чертежах или нормативно-технической документации не указан иной класс точности. Оси резьбовых отверстий деталей должны быть перпендикулярны к опорным поверхностям. Неперпендикулярность не должна быть более 0,8 мм на 100 мм, если не оговорены иные требования.

При большом различии между внутренними диаметрами концы частей с меньшим внутренним диаметром должны быть проточены по внутренней поверхности согласно рисунка 1а - при сборке без подкладного кольца и рисунка 1б - при сборке на подкладном кольце или при выполнении корневого шва сваркой в защитном газе.


где: L = 10 ± 1 мм - при сварке корня шва в защитном газе,

L = 2S (но не менее 20 мм) - при сварке корня шва на остающемся подкладном кольце,

S - толщина стенки трубы,

D к - внутренний диаметр трубы или откалиброванный путем конической, рисунок 2а или цилиндрической раздачи, рисунок 2б.


Особенности диагностирования сварных соединений технологических трубопроводов и печных змеевиков из сталей типа 15Х5М, 12Х2М1, заваренных электродами аустенитного класса


В статье представлены результаты исследования сварных соединений технологических трубопроводов и печных змеевиков из сталей типа 15Х5М, 12Х2М1, заваренных электродами аустенитного класса.

Ключевые слова: экспертиза промышленной безопасности, техническое диагностирование, разнородное сварное соединение, хромомолибденовые стали, разрушение, эксплуатация, нефтехимия, нефтепереработка.

В настоящее время нефтеперерабатывающей, нефтехимической и химической промышленности наметились положительные тенденции на модернизацию производств (установок), с заменой устаревшего оборудования. Однако остается достаточно большой процент оборудования, которое отработало свой остаточный ресурс или близко к этому. Поэтому надежность работы данного оборудования выходит на первый план в вопросе промышленной безопасности предприятия. В данной статье хотели бы осветить подход к диагностированию сварных соединений технологических трубопроводов и печных змеевиков из хромомолибденовых теплоустойчивых сталей типа 15Х5М, 12Х2М1, заваренных электродами аустенитного класса.

Сварка технологических трубопроводов и печных змеевиков нефтеперерабатывающих и нефтехимических установок, изготовленных из хромомолибденовых теплоустойчивых сталей типа 15Х5М и 12Х2М1, электродами одинакового состава со сталью, встречает известные затруднения из-за склонности сварных соединений к образованию закалочных трещин. Исключить образование этих трещин удаётся только строгим соблюдением специальных термических условий: предварительным и сопутствующим подогревом и термической обработкой сварных соединений, выполняемой непосредственно после сварки на строго определённых режимах [2], [3].

В первые десятилетия применения сталей типа 15Х5М, 12Х2М1 в отечественном нефтеперерабатывающем оборудовании и трубопроводах (30–60–е годы прошлого века) на нефтеперерабатывающих и нефтехимических предприятиях практически отсутствовали нагревательные устройства для местного нагрева сварных соединений по режимам предварительного подогрева и термической обработки. Применение для этих целей (особенно для термообработки) газовых сварочных горелок и резаков, как правило, приводили к образованию трещин в указанных соединениях.

Поэтому уже в первые годы промышленного применения сталей типа 15Х5М, 12Х2М1 для трубных элементов нефтеперерабатывающего и нефтехимического оборудования вынуждены были использовать для монтажной и ремонтной сварки электроды аустенитного класса, что позволяло не только избежать закалочных трещин, но и исключить из технологии сварки операцию термической обработки [1], [3].

Технологии сварки трубных элементов из сталей типа 15Х5М, 12Х2М1 аустенитными электродами и состав применяемых электродов непрерывно совершенствовались и позволяли получать сварные стыки настолько стойкие против образования закалочных трещин, что на практике постепенно укоренилось мнение, что уже само применение аустенитных электродов обеспечивает требуемое качество сварных соединений даже без соблюдения таких элементов сварочной технологии, как зачистка свариваемых кромок, наплавка свариваемых кромок, защита места сварки от атмосферных осадков и т. д. При таком подходе достаточно часто стали выявляться трещины в сварных соединениях трубопроводов и печных змеевиков, выполненных аустенитными электродами, что породило мнение о малой надежности указанных сварных соединений. Широкое распространение на предприятиях отрасли нагревательных устройств для термической обработки сварных соединений трубных элементов позволило выполнять замену аустенитных швов перлитными, однородными по составу и структуре со свариваемой сталью.

Безусловно, сварные соединения из сталей типа 15Х5М, 12Х2М1, выполненные однородными электродами с термической обработкой при строгом соблюдении термических условий, обеспечивают более высокое качество и эксплуатационную надёжность [2], [3]. И, тем не менее, нельзя полностью отказаться от применения технологии сварки аустенитными электродами, как от дежурного, аварийного варианта, способного в технически сложной ремонтной ситуации исключить применение термической обработки. Поэтому большой практический интерес представляет выяснение причин снижение работоспособности разнородных сварных соединений из сталей типа 15Х5М, 12Х2М1 с аустенитными швами и поиск технологической возможности и конкретных решений по повышению эксплуатационной надёжности таких соединений. Этим вопросом посвящена предлагаемая работа.

По нашему мнению, основанному на анализе возможных причин появления сквозных дефектов на большом количестве рассматриваемых сварных соединений, полученных от предприятий, после продолжительной эксплуатации, главные причины снижения работоспособности сварных соединений основаны на концентрации эксплуатационных напряжений, которые неизбежно возникают в любом сварном соединении, а тем более — в разнородном. Изменение поля напряжений при переходе от одного участка сварного соединения к другому обусловлено изменением свойств этих участков металла и их способности к пластической деформации (при меньшем значении предела текучести (σт) металл деформируется раньше). Это ведёт к появлению напряжений различного уровня на соседних участках, т. е. возникает концентрация напряжений в локальных участках металла. Сварные соединения сталей типа 15Х5М, 12Х2М1 с аустенитным швом часто выполняются с дефектами, которые дополняют и видоизменяют концентраторы напряжений, что может приводить к снижению служебных характеристик этих соединений и к образованию в них сквозных дефектов [1].

Повышению концентрации эксплуатационных напряжений способствуют:

1. Нарушение технологии сварки.

2. Сложная методика ультразвукового и радиографического контроля внутренних дефектов сварных соединений, обусловленная различной структурой околошовной зоны (мартенситная, сорбитная, трооститная, перлитная или смешанная) и металла шва (аустенитная, причём от мелкозернистого аустенита до крупных дендритов литого металла, не претерпевших в процессе охлаждения структурных превращений).

Поэтому в каждом конкретном случае требуется индивидуальная методика, требуемая высокой квалификации дефектоскописта. Во многих случаях при ультразвуковом контроле сварных соединений с аустенитными швами на трубопроводах из сталей типа 15Х5М, 12Х2М1 различными монтажными организациями результаты контроля оставались сомнительными, что в ряде случаев приводило к образованию сквозных дефектов при эксплуатации. И только привлечение специалистов с большим опытом и высочайшей квалификацией, позволяло положительно проводить разбраковку разнородных сварных соединений. Положение усугубляется при контроле сварных стыков труб с фланцами, отводами, переходами, имеющих форму поверхности, отличную от цилиндрической и переменную толщину стенок.

Как показала практика, эксплуатация сварных соединений с недопустимыми по размерам шлаковыми включениями в корневых участках сварных соединений и в прилегающей зоне сплавления, а также с непроварами в корне шва, которые оставались в стыках вследствие сложной методики контроля, приводит к сокращению времени эксплуатации рассматриваемых сварных соединений до обнаружения сквозных дефектов на 10 лет и более (рис.1.).

Описание: Изображение 082

3. Применение электродов с малым содержанием никеля, недостаточным для исключения диффузионных процессов атомов углерода в зоне сплавления металла шва со сталью 15Х5М при высокотемпературной эксплуатации (рис.2), приводит к образованию и развитию трещин в этой зоне вплоть до сквозного разрушения.

Описание: сканирование0005

4. Сварка стыков на технологических трубопроводах, имеющих несогласованную с реальными температурными условиями эксплуатации компенсацию температурных напряжений, вследствие чего эксплуатационные напряжении возрастают, особенно в разнородных сварных соединениях с концентраторами напряжений. Следствием этого является образование околошовных трещин даже в сварных соединениях с полным проваром (рис.3), в том числе выполненных на подкладном кольце (рис.4).

Описание: Изображение 045

Описание: Изображение 038

5. Нарушение конструкций подвижных и неподвижных опор и подвесок технологических трубопроводов, что приводит к возникновению дополнительных эксплуатационных напряжений в сварных соединениях, следствием воздействия которых может быть образование трещин по типу представленных на рис.3 и рис.4.

6. Повышенная вибрация трубопроводов, при которой существенно возрастают рабочие напряжения в сварных соединениях с концентраторами напряжений.

7. Снижение жаропрочности разнородных сварных соединений в процессе эксплуатации при повышенных температурах.

Из проведённых данных следует, что с увеличением величины дефекта время до обнаружения сквозного дефекта сокращается (таблица 1).

Величина дефекта в корне шва

Время эксплуатации до выявления сквозного дефекта

Большая величина недопустимых дефектов изготовления в корневых участках шва (несплавление, смещение кромок, непровар, шлаковые включения)

Малая величина дефекта изготовления в корневых участках шва

Дефекты изготовления не выявлены

Из указанных данных следует, что сварные соединения, выполненные без дефектов изготовления, обнаруживают вполне приемлемую эксплуатационную надёжность.

В сварочных технологиях обычно не рассматриваются вопросы нарушения устройств и оптимальных условий эксплуатации технологических трубопроводов (3, 4, 5 из названых выше факторов), которые входят в компетенцию механиков-эксплуатационников. Поэтому экспертные организации, выполняющие работы по техническому диагностированию и экспертизе промышленной безопасности, должны хорошо знать, что нарушение п. п.3,4,5 резко снижает работоспособность сварных соединений. Снижается надёжность любых, даже однородных сварных соединений, ещё в большей степени — разнородных сварных соединений и в многократно большей степени — разнородных сварных соединений, имеющих концентраторы напряжений в корневых участках сварного соединения.

Следует отметить, что вопросы снижения эксплуатационных напряжений в сварных соединениях и в первую очередь в разнородных сварных соединениях, должны находить отражение в технологиях сварки в части регламентации требований по особенностям устройства технологических трубопроводов и их подготовке к эксплуатации (компенсация термических напряжений и т. д.).

Из изложенного становится понятно, что совершенствование технологи сварки трубных элементов из сталей типа 15Х5М, 12Х2М1 аустенитными электродами, направленное на повышение эксплутационной надёжности получаемых сварных соединений, должно быть связано в первую очередь с повышением надёжности корневых участков шва, заваренных на весу без подкладных колец и без подачи аргона во внутреннюю полость трубы.

Выводы и рекомендации:

При проведении технического освидетельствования (ревизии), техническом диагностировании и экспертизы промышленной безопасности, с определением срока дальнейшей безопасной эксплуатации технологических трубопроводов и печных змеевиков из хромомолибденовых теплоустойчивых сталей типа 15Х5М и 12Х2М1, заваренных электродами аустенитного класса без термической обработки сварных соединений, необходимо учитывать вышеизложенные эксплуатационные дефекты в разнородных сварных соединениях. Это позволит уже на стадии ознакомления с технической документацией, а также при проведении визуально-измерительного контроля сориентироваться и уточнить методы и объём дополнительного контроля основного металла и сварных соединений.

1. Земзин В. Н. Сварные соединения разнородных сталей. М.: Машиностроение, 1966. 290с.

2. В. Н. Земзин, Р. З. Шрон. Термическая обработка и свойства сварных соединений. Л., Машиностроение, 1978.

3. Л. С. Лившиц, А. Н. Хакимов. Металловедение сварки и термическая обработка сварных соединений. М, Машиностроение, 1989.

Основные термины (генерируются автоматически): соединение, сталь типа, термическая обработка, аустенитный класс, технология сварки, электрод, промышленная безопасность, сварное соединение, теплоустойчивая сталь типа, техническое диагностирование.

Ключевые слова

экспертиза промышленной безопасности, техническое диагностирование, разнородное сварное соединение, хромомолибденовые стали, разрушение, эксплуатация, нефтехимия, нефтепереработка.

Похожие статьи

Особенность коррозионной стойкости сварных соединений при.

Ключевые слова: промышленная безопасность, экспертиза промышленной безопасности, сварные соединения, разнородные стали, коррозионные разрушения, нефтехимия, нефтепереработка.

Подход к техническому диагностированию корпусного.

Сварные соединения стали 08Х13 до сих пор выполняются аустенитно-ферритными электродами типа Э-10Х25Н13Г2. Для выполнения указанного условия необходима специальная подготовка кромок стыка.

Способ повышения качества сварных соединений

Особенности диагностирования сварных соединений технологических трубопроводов и печных змеевиков из сталей типа 15Х5М, 12Х2М1, заваренных электродами аустенитного класса.

Изучение сварных соединений в швейном производстве

Рубрика: Технические науки.

Особенность коррозионной стойкости сварных соединений при проведении экспертизы промышленной безопасности технологического оборудования

Похожие статьи. Виды сварных соединений и их применение в швейном производстве.

Повышение качества отливок из стали 110Г13Л путем.

Применительно к высокомарганцевым сталям аустенитного класса, серьезной проблемой является получение гомогенной структуры, свободной от карбидов цементитного типа, так как стандартная термообработка по ГОСТ 977–88 не всегда приводит к их устранению.

Виды сварных соединений и их применение в швейном.

Рис. 1. Примеры сварных соединений: а, б — пластиковые упаковки; в — аппликация; г, д, е — выстёгивание ткани с утеплителем.

Ультразвуковую сварку осуществляют последовательным способом на машинах проходного типа и по всему контуру шва параллельным способом на.

Вибрационная обработка сварных конструкций | Статья.

Разработаны методы эффективной виброобработки сварных соединений, изготовленных из простых малоуглеродистых сталей. Приведено влияние вибро- и термообработки на критическую температуру хрупкости сварных соединений.

О неразрушающем контроле сварных швов газгольдеров

Чаще всего изготавливаются из высококачественной стали 09Г2С.

Сварное соединение готово к УЗК, при условии отсутствия в соединении наружных дефектов.

При механической обработке соединения, предусмотренной технологическим процессом на изготовление.

Читайте также: