Uc3845 схема включения в сварочном инверторе ресанта

Обновлено: 24.01.2025


На передней панели, попавшего в ремонт, сварочного инвертора Ресанта 220 ярко горел желтый светодиод, своим зловещим свечением предупреждая несчастного владельца аппарата о своей полной неготовности к проведению сварочных работ.

Выполнять свои прямые обязанности этот инвертор не желал.

Ремонт платы управления Ресанта 220 серии SH

По всем внешним признакам аппарат находился в глухой защите и выходить из нее без посторонней помощи не собирался.

Для начала измерим режим работы платы управления.


Таблица 1 Режим работы платы управления инвертора Ресанта серии SH.

Режимы сняты при питании инвертора от 220 В.

Получив данные измерений и сравнив с инструкцией по ремонту сварочных инверторов Ресанта серии SH, приходим к выводу, что дефект в самой ПУ. Управляющие импульсы на 2 ноге ПУ отсутствовали.

Выпаиваем ее. Как и чем выпаять ПУ можно посмотреть на видео здесь: Светящийся паяльник.

Вот так она выглядит.



Плата управления инвертора Ресанта серии SH


Для удобства работы и проведения измерений запаиваем ее с обратной стороны основной платы инвертора и попробуем включить аппарат.

Ничего не изменилось, аппарат как и прежде в защите, напряжения на выходе нет.

Снимаем режим работы микросхемы UC3845B.


Таблица 2 Режим работы микросхемы UC3845B платы управления инвертора Ресанта серии SH.

Режимы сняты при питании инвертора от 220 В.

Судя по измерениям питание на 7 ногу ШИМ не подается.

Теперь измерим режим работы микросхемы LM324N.


Таблица 3 Режим работы микросхемы LM324N платы управления инвертора Ресанта серии SH.

Режимы сняты при питании инвертора от 220 В.

Собрав всю информацию можно переходить к проверке деталей и в первую очередь нужно проверить цепочку которая идет к 7 ноге UC3845B это + питания микросхемы.

Проверка деталей выявила следующее - резистор R4 номиналом 4.7 кОм был в обрыве, в результате не срабатывал ключ на транзисторе Q01 и питание на ШИМ контроллер UC3845B не подавалось.



Заменим резистор, пока на скорую руку, и пробуем включить аппарат. Теперь все работает правильно, на 2 ноге ПУ появились управляющие импульсы.



Плату управления впаиваем как положено, и собираем аппарат. Теперь он полностью готов выполнять свои прямые обязанности - варить всегда, варить везде. ну и т.д. и т.п.

Внимание!
Отнеситесь с должным вниманием к ремонту системы управления сварочного инвертора, иначе можно окончательно угробить аппарат.

Ремонт сварочных инверторов Ресанта и других производителей.

Расскажите пользователям соцсетей, как работает этот сварочный инвертор. Отзывы о нем оставленные вами в комментариях помогут другим при покупке аппарата.

Uc3845 схема включения в сварочном инверторе ресанта


Сварочный инвертор Ресанта САИ 250 попал в ремонт с общим диагнозом - "все нормально включается, но не варит".

Ремонт платы управления сварочного инвертора Ресанта

Действительно включается, а почему не варит тоже понятно, в защите однако. Ну чтож, будем ремонтировать.

Для начала измерим режим на выводах ПУ. Включаем аппарат, как и положено в 220 вольт и после измерений получаем следующий результат.


Таблица 1 Режимы работы платы управления инвертора Ресанта.

А вот теперь, если вы ждете умных рассуждений по поводу этих режимов работы ПУ то зря, тут уж сами думайте. А вообще в таких случаях надо иметь заведомо исправную плату управления, подбросить ее в такой инвертор дело трех минут.

Как выпаять плату управления в инверторе Ресанта на этом видео.

Из видео, думаю, все понятно дефект именно в плате управления, остается его найти и обезвредить.

Это была подготовка, а вот теперь плавно переходим к ремонту платы управления сварочного инвертора Ресанта САИ 250.



Плата управления сварочного инвертора Ресанта (30501438 ENDU CONTROL V1.0)

Для ремонта нужно запустить ПУ от внешнего блока питания. Чтобы запустить ШИМ на выпаянной из сварочного инвертора ПУ собираем такую схемку.

Подаем +15в от БП на 15 вывод ПУ, а на вывод 2 подаем +8в.




Для несложного ремонта, когда нужно просто запустить ШИМ, этого вполне хватит. Втыкаем в это устройство рабочую и нерабочую ПУ по очереди и снимаем режимы.

Сначала режим работы микросхемы UC3845B.


Таблица 2 Режимы работы микросхемы UC3845B.

Режим снят на выпаянной из сварочного инвертора ПУ с питанием от внешнего БП.


Режимы явно не совпадают, да собственно на микросхему UC3845B даже питание не подается. Включением питания на ШИМ управляет другая микросхема MC33074DG. Измеряем режимы и на ней.


Таблица 3 Режимы работы микросхемы MC33074DG

Режим снят на выпаянной из сварочного инвертора ПУ с питанием от внешнего БП.

Ну а вот теперь скачивайте даташиты и сопоставляйте, анализируйте, вобщем думайте.

А проблема собственно заключалась в следующем.

Дефект был замечен намного раньше, но если сразу про него сказать было бы банально, слишком просто и неинтересно, а так и с режимами успели познакомиться.

Если внимательно присмотреться к фото дефект виден на третьей фотографии платы управления выше на странице.

Вот фото той же платы после промывки очистителем.




Дефектный участок был практически незаметен, даже тот отскочивший кусочек зеленого лака был на месте, он отскочил после того как плата была выпаяна. После промывки стало видно еще лучше.

А со стороны деталей дефекта практически не видно ни до ни после промывки.


Пистоны двустороннего монтажа окислились, а может они изначально такими были и контакт держался на честном слове, но в итоге он пропал совсем.

Если смотреть по схеме получилась примерно такая ситуация.





Втыкаем плату в проверочную приспособу проверяем режим. Убеждаемся, что он полностью соответствует режиму исправной ПУ.


Таблица 4 Режим работы платы управления инвертора Ресанта от внешнего БП

Режим снят на выпаянной из сварочного инвертора ПУ с питанием от внешнего БП.



Осциллограмма снята на выпаянной из сварочного инвертора ПУ с питанием от внешнего БП.

Как видим на этом видео, после ремонта, инвертор Ресанта прекрасно запускается, что не может не радовать.

Внимание!
Ремонт плат управления в сварочных инверторах требует знания элементной базы и принципов работы цифровой логики. Есть вероятность убить аппарат полностью. Если сомневаетесь лучше обратиться к специалисту.

Можете поделиться с другими пользователями интернета информацией про этот сварочный инвертор, а отзывы о нем оставьте в комментариях.


1. AndrewKolovrat (26.09.2014 23:07) Спасибо большое за статью. Очень помогла при ремонте. В моём случае сгорел компоратор и шим, а так же выгорела дорожка от 7 вывода (земля). Кстати я бы советовал lm317 менять на 7815 выкидывать резисторы из ее обвязки для большей стабилизации линии 15 вольт.


2. макс (06.10.2014 15:49) День добрый
вот загвоздка у меня, принесли этот саи 250. сгорел либо варистор либо кондер .элемент пришел в негодность его разорвало на части. стоит он возле слева от среднего ферритого кольца прям под варистором 14d511k справа от него релюшки 3 шт.у вас на видео он белый продолговатый типа как кондер. до меня его ремонтировали и установи вроде бы как термистор осталась надпись ntc на нем

3. diggerweb (11.10.2014 18:10) Описание несколько сумбурное но если "справа от него релюшки" то возможно вы имеете ввиду вот эту деталь.



Это резистор мягкого запуска 12 Вт 51 Ом.
Просто так он не сгорает, скорее всего проблемы с силовой частью.
Проверяйте всю силу - транзисторы, диоды, драйвер, ну и управление всем этим.


4. Batya (26.12.2014 23:32) Спасибо Вам за сайт.У меня в руках тихо умер чужой Штурм97122н и после поисков в инете-вышел на Ваш сайт.Нашел здесь схему и уже запустил аппарат,но пока без силы--еще не пришли по почте(они все выгорели).Спасибо еще раз,но вопрос как раз в другом:
Вы неоднократно подчеркиваете,что платы управления дело интимное,но почему-то не хотите развивать эту тему.Где нам черпнуть информацию о логике той или другой "управы" и как до этого доходите ВЫ?
Ведь не всегда внешний осмотр поможет,а аглицкие даташиты непонятные и кстати с Вашего сайта не все открываются.Как быть?А так хочется вникнуть в мир ИНТИМА инверторов!
Спасибо.Николай.


5. Vitalich (03.12.2015 02:46) Здравствуйте! У меня такая ситуация. Аппарат включается, защита не горит, холостой ход 80 вольт, как положено, импульсы нормальные, выходные диоды целые, ключи тоже. Но как начинаешь поджигать дугу, загорается желтый светодиод ошибки, электрод убираешь, светодиод тухнет. В чем может быть проблема?


6. kotyara (08.12.2015 21:31) Привет. Подскажите пожалуйста, плату проверил установил, а сварочник не работает.


7. diggerweb (09.12.2015 09:05) Vitalich, kotyara, причин может быть немало.
Читаем тут - Ремонт инверторов РЕСАНТА серий GP и SH

10. Fantsy (08.03.2016 17:18) Здравствуйте. Тыкните носом куда необходимо обратить внимание
Сварочный Искра мм-250 схема один в один с ресантой
Горит перегруз но при этом на выходе 50V
на плате управления мелочевка вроде целая

Плата управления Lm224
1. 3.03 9. 0.31 1. 13.59 8. 0.76
2. 6.37 10. 5.00 2. 2.05 9. 6.47
3. 6.58 11. 0 3. 3.15 10. 2.05
4. 13.07 12. 13.58 4. 15.04 11. 0
5. 0 13. 1.97 5. 2.05 12. 0
6. 0 14. 0.17 6. 13.05 13. 0.3
7. 0 15. 15.04 7. 0 14. 0.76
8. 14.38


11. diggerweb (08.03.2016 20:44) Тыкаю.
Конкретно номер неисправной детали подсказать не могу.
Почитать вот это: Ремонт инверторов РЕСАНТА серий GP и SH
Проверить оптрон TLP627 и обвязку вокруг него.
Выпаять плату управления, если есть заведомо рабочая подбросить ее.
Если нет проверять на ПУ все.
В последнюю очередь меняем микросхему.
А у вас что LM224 на ПУ стоит?
Если в ПУ дефект не нашли проверяем основную плату подробнее.


12. and-sarancev (05.07.2016 14:40) Добрый день. Подскажите пожалуйста где можно заказать плату управления саи 250 двенадцать ножек. Зарание спасибо.


13. diggerweb (05.07.2016 14:46) Заказать вряд-ли где можно аппараты старые, если только с разборок у кого завалялась.


14. darkmen (11.09.2016 22:34) Здравствуйте. на входе платы у меня 1:15.86; 2:6.68; 3:6.71; 4:13.54; 5:0; 6:0; 7:0; 8:0; 9:0; 10:4.97; 11:0; 12:14.22; 13:2.09; 14:0.14; 15:15.31 силовые транзисторы не стоят. И за чего на 1 воде может быть 15 вольт вместо 6?


16. Zeon (26.10.2016 09:09) Здравствуйте, сгорела схема endu control v1.0 30501438 , восстановить нет возможности (шибко плохо ей) подскажите возможно ли у вас приобрести?


18. airatos (03.12.2016 19:14) Подскажите пожалуйста, что на эмитторе, что на базе D5(PMBS3906) 15 вольт, на коллекторе 0. при замыкании эмиттор-коллектор перемычкой ШИМ заводится(80кГц). Транзистор менял, правда 2N3906(TO-92) Ну одно и тоже ведь. Если сможете что-то подсказать буду очень признателен!


19. diggerweb (03.12.2016 21:47) Неисправную детальку подсказать не могу.
У вас транзистор D5 закрыт, это он подает питание на UC3845.
Транзистор PNP, чтобы открылся на базе должен быть минус относительно эмиттера, а у вас на базе и эмиттере 15 вольт.
Проверяйте всю обвязку этого транзистора, там всего десяток деталек включая MC33074D.

21. diggerweb (19.12.2016 12:33) palach-


22. palach- (25.12.2016 22:22) Всю схему проверил, прозвонил силовую(не выпаивал), вроде как все целое, плату управления проверил осциллографом - импульсы есть и нужной формы. Аппарат включается, желтый не горит, на выходе 14 вольт. оптроны целые. Буду пробовать по статье которую скинули, спасибо.


24. diggerweb (11.11.2017 11:15) А поточнее? Что за аппарат, какая плата, где стоят? Если, все-таки, R07 R08 R09 то 33 кОМ. А вы его без схемы ремонтируете?


25. kononcik-s (26.11.2017 17:41) Спам Доброго времени суток. Товарищ попросил попробовать вылечить SOLARIS MMA-226 Опыта лечения подобной аппаратуры пока не имею ,но в целях саморазвития решил попробовать. Оказалось что проблем в нём предостаточно. Я так понял что все началось с одного из конденсаторов что 470мкф 400в. корпус был раздут и когда выпаял сбоку была дырка . дальнейший осмотр показал что 4 транзистора что на радиаторах под кандёрами выстрелили, так же заменил большой зелёный резистор на 22 ом . С другой стороны платы есть две группы смд элементов(по 4 диода и 4 резистора 10 ом и 1ком) в одной группе пришлось заменить все элементы, в другой остались живы диоды и килоомные резисторы. Почистил и востановил плату, заменил кндёр, все паленые транзисторы и всё остальное что нашёл по мелочи, Попробовал включить , вроде стрельбы нету , сразу запускаются кулера и на панели светятся обе лампочки (сеть и защита) на выходе 0,22 вольта.
попробовал выпаять пу и проверить как указано выше, напряжения на ногах микросхем на выпаяной плате практически соотвествуют рабочим полпжениям приведённых таблисц,но на 3 ноге платы у меня получается пила а не прямоугольные импульсы, может ли это быть проблемой что аппарат висит на защите, Плату пу впаял обратно, симптомы остались прежнимм, сигнал на 3 ноге пу остался пилой.Подскажите куда нюхать дальше и с платой пу разбираться дальше или форма сигнала не имеет большого значения?
Заранее благодарен за помощь. С уважением.

пилы там быть не должно.

Остальное в ЛС смотрите.


28. nako1308 (29.03.2018 09:53) Спам Доброго дня. В мене така проблема апарат включається варить електродом 3 мм. струмом до 110 А якщо накрутити більше дуга не запалюється електрод залипає, електродом 4мм. аналогічна ситуація, якщо навіть розпалиш дугу то вона іде ривками.
Ще один момент при запуску апарата вентилятор гудить ривками, таке враження що напруга дежурки плаває.
Наперед вдячний за відповідь.


29. diggerweb (29.03.2018 11:30) Возможно что и БП виноват. Вы лучше на форуме тему создайте, в комментариях обсуждать ремонт не очень удобно.


30. Xxxl-master (27.01.2020 08:58) Спам Подскажите, пожалуйста, как проверить плату 16pin?
Как подключить и какие значения должны быть.
Спасибо

СХЕМА СВАРОЧНОГО ИНВЕРТОРА И ОПИСАНИЕ ПРИНЦИПА РАБОТЫ

НА ПРИМЕРЕ СВАРОЧНОГО АППАРАТА РЕСАНТА САИ 140

Основных схем сварочного инвертора Ресанта САИ 140 удалось найти две. Управление у них очень похоже, а вот технологически они отличаются довольно сильно.

Первый вариант принципиальной схемы сварочного инвертора Ресанта 140 выполнен с использованием управляющего трансформатора, а второй - с использованием оптодрайверов для силовых транзисторов. Есть отличия и в питании управления. Первый с самозапитом, а второй использует отдельный источник питания. Поскольку первый похож на то, что есть у меня, т.е. используется управляющий трансформатор, то с него и начнем.

Принципиальная схема инвертора РЕСАНТА САИ 140

Принципиальная схема сварочного аппарата РЕСАНТА САИ 140

Итак, подаем питание и смотрим что будет происходить.
Напряжение 220 вольт проходит фильтр на С3 и L… Пардон, на схеме почему то ЭТО обозначено трансформатором Т1 и доходит конденсаторов С1 и С2. Емкость этих конденсаторов для частоты 50 Гц слишком мала, но вот статику они на корпус спускают отлично и именно по этой причине крайне желательно для трансформатора использовать с заземление, только с реальным, а не иметь розетку в которой есть ни куда не подключенная клемма заземления.

Вверху есть точка №1, как раз на левом выводе термистора РТС, а на правом выводе резистора R2 есть точка №2. Эти нумерные точки идут на контакты реле RL1, которое сейчас не включено – мы только что подали напряжение питания и пока что заряжаются конденсаторы С4 и С5 через термистор и R2, разумеется пройдя диодный мост.

Реле мягкого старта

По мере зарядки конденсаторов напряжение +300VDC начинает увеличиваться и начинает протекать ток через резистор R21 заряжая С18 и С19.
Тут следует обратить внимание на используемый операционный усилитель LM324 который уже начинает работать при напряжении питания +3 вольта, т.е. при достижении напряжения на верхнем выводе С19 трех вольт операционный усилитель уже начинает выполнять свои функции.
Теперь смотрим очень внимательно не забыв перевести мозг в состояние ВКЛ.

Схема блокировки инвертора

Сопротивление R21 меньше суммы сопротивлений R22 и R23 в 20 раз, а емкость С19 больше емкости С20 в 4700 раз, следовательно напряжение на верхнем выводе С20 будет больше напряжения на верхнем выводе на 0,6 вольта – напряжение падения на диоде D24. Это в свою очередь однозначно переведет компаратор на U2A в состояние, когда на его выходе будет напряжение близкое к напряжению питания, следовательно LED2 будет светится, а транзистор Q8 будет открыт и пока он открыт на выходе U2D будет напряжение близкое к нулю. Это в свою очередь имитирует превышение порога срабатывания компаратора контроллера U1A и если бы он работал, то на выходе у него был бы ноль. Но он не работает, поскольку подающий на него питание транзистор Q7 еще закрыт.
Тем временем конденсатор С19 продолжает заряжаться и напряжение на нем увеличивается. Как только оно превысит 5 вольт в дело вступает формирователь опорного напряжения на D25 – он не дает напряжению на выводе 2 U2A и выводе 5 U2B стать выше 4,7 вольта.
На выводе 3 U2A напряжение по прежнему больше, чем на выводе 2 и напряжение на выходе компаратора продолжает удерживаться близким к напряжению питания.
Напряжение на выводе 6 продолжает увеличиваться, поскольку этот вывод подключен к делителю напряжения на резисторах R49 и R50. И пока напряжение на 6-м выводе меньше опорного 4,7 вольта компаратор U2B держит на своем выходе напряжение близкое к напряжению питания, а это удерживает транзистор Q7 в закрытом состоянии.

Управление питанием комнтроллера

Как только напряжение на верхнем выводе С19 станет равным 12 вольтам на делителе сформируется напряжение равное 4,9 вольта, а это больше опорного напряжения 4,7 вольта и компаратор U2B сформирует на своем выходе напряжение близкое к нулю, транзистор Q7 открывается и подает питание на контроллер UC3845.
Контроллер начинает выдавать управляющие импульсы и силовые транзисторы начинают открываться. Но делают они это на очень короткий промежуток времени, поскольку на контроллере формируется имитация превышения выходного тока все еще открытым транзистором Q8.
На обмотке питания управления появляется напряжение и теперь все управление может потреблять гораздо больший ток. Это напряжение стабилизируется импульсным стабилизатором U1 и тут становится наглядной одна проблема – если первоначально напряжение с левого вывода R21 будет идти сразу на всю схему, то запуска у нас не произойдет никогда – вентилятор потребляет слишком много и напряжение не будет увеличиваться на верхнем выводе С19. Автор схемы учел этот момент и сделал на схеме поправку – только после начала работы стабилизатора напряжения для управления питание подается и на вентилятор и на реле софтстарта и на верхний вывод трансформатора управления. Что до отметки на подсветку LED1, то это исключено – напряжение там не появится пока не запуститься UC3845, а он не запустится, поскольку не будет на него питания.
Тем временем конденсатор С13 заряжается до напряжения, превышающее 5 вольт и стабилитрон D19 пропускает ток на базу Q6, тот открывается и включает реле RL1, которое своими контактами шунтирует токоограничивающий термистор и резистор R2.

Снятие блокировки при наличии выходного напряжения

Тем временем на выходе инвертора появляется напряжение и оно пройдя ограничитель тока засвечивает светодиод ISO1. Транзистор оптрона открывается и резко уменьшает напряжение на выводе 3 компаратора U2A. Поскольку напряжение на инвертирующем входе теперь больше, чем на не инвертирующем компаратор перекидывается в состояние когда на выходе у него ноль. Светодиод LED2 гаснет, а транзистор Q8 закрывается разблокируя усилитель регулирующего напряжения для контроллера UC3845 и контроллер уже формирует импульсы максимальной длительности, поскольку нагрузки еще нет и ток ограничивать не нужно.
При работе, т.е. при сварке регулировка тока производится путем сравнения напряжения с трансформатора тока с напряжением управления, которое формируется усилителем U2D. Подробно о принципе работы UC3845 есть отдельное видео и статья, ссылки в описании.

Поэтому рассмотрим лишь оставшиеся узлы.
Управление силовыми транзисторами происходит с помощью управляющего трансформатора, вторичные обмотки которого через диоды Шотки идут на затворы силовых транзисторов при наличии управляющего импульса. Как только импульс управления прекращается остаточная магнитная энергия сбрасывается D15…D17, а силовые транзисторы закрываются с помощью транзисторов Q3 и Q5, причем происходит это через конденсаторы С 9 и С 10. Эти конденсаторы позволяют получить больше энергии для закрытия транзисторов и это происходит именно в момент окончания управляющего импульса.
При наличии управляющего импульса оба транзистора сварочного инвертора открываются и через первичную обмотку протекает ток, который создает магнитное поле наводящее напряжение на вторичной обмотке. При исчезновении управляющего импульса транзисторы закрываются, а не израсходованная магнитная энергия сбрасывается на шины первичного питания через диоды D2 и D3, тем самым полностью размагничивая магнитопровод трансформатора и подготавливая его с следующему циклу передачи энергии во вторичную обмотку.

К сервису данного сварочного инвертора можно отнести защиту от перегрева и залипания электрода, выполненных на одном управляющем элементе – оптроне ISO1.
Пока светодиод данного оптрона светится открытый транзистор оптрона формирует почти ноль на выводе 3 U2A. Как только электрод касается свариваемой заготовки напряжение на светодиод еще какое то время поступает за счет накопленной в конденсаторе С34 энергии. Это время и есть время поджига дуги и если дуга не загорелась, т.е. электрод залип, то светодиод оптрона тухнет, тем самым закрывая транзистор оптрона. На выводе 3 компаратора U2A появляется практически напряжение питания и компаратор зажигает LED2 и открывает транзистор Q3, который душит на землю управляющее напряжение и контроллер выдает только очень короткие импульсы управления, которые не позволяют перегрузить силовой каскад – работа то идет практически на короткое замыкание и единственным сопротивление вторичного напряжения является реактивное сопротивление L1 индуктивность которого и выбрана таким образом, чтобы она оказывала влияние только на самые короткие импульсы.
Как только электрод отодрали от заготовки напряжение на выходе инвертора снова появляется и снова загорается светодиод оптрона. Компаратор U2A гасит светодиод LED2 и закрывает транзистор Q8, тем самым переводя контроллер UC3845 в штатный режим работы.
Если же происходит перегрев, то срабатывает самовосстанавливающийся термопредохранитель КТ, который разрывает цепь питания оптрона и светодиод гаснет и процессы повторяются – горит светодиод LED2, а на выходе сварочного инвертора очень короткие импульсы, не позволяющие производить сварочные работы и это состояние удерживается пока радиатор не остынет и термопредохранитель не включится.

Второй вариант принципиальной схемы все того же инвертора Ресанта 140 отличается не большими изменениями в самом управляющем блоке, ну например транзистор подающий питание на UC3845 открывается через стабилитрон. Питание управление организовано от отдельно блока питания, который выдает 4 напряжения:

Блок питания инвертора РЕСАНТА

15 вольт для питания управления, которые стабилизируются дополнительной КРЕНкой, вольт 12 для вентилятора и два напряжения для оптодрайверов силовых транзисторов. Величина должна быть порядка 25 вольт.

Управление силовыми транзисторами с помощью оптронов

Оптодрайверы управляют силовыми транзисторами через дополнительный формирователь отрицательного напряжения, выполненный на R6-D5 и R9-D6. Подача отрицательного напряжения на затворы силовых транзисторов значительно уменьшает время их закрытия, следовательно уменьшается нагрев транзисторов.
Софтстарт второго варианта сварочного инвертора тоже организован несколько иначе – пока горит светодиод оптрона транзистор Q3 будет закрыт, но нагреваясь термистор RV2, имеющий отрицательную зависимость сопротивления от температуру увеличивает свое сопротивление и светодиод тухнет, тем самым разблокируя базу Q3 и реле софтстарта включается.
Откровенно говоря и в первом варианте схемы инвертора и во втором включение реле происходит довольно медленно и не зависит от состояния схемы управления, что может приводить к подгоранию контактов реле.
На последок остается добавить, что я собираю информацию по используемым в сварочных инверторах компонентам и результаты поисков свожу в таблицу с краткими характеристиками. ПОСМОТРЕТЬ МОЖНО ЗДЕСЬ.

Выходное напряжение без нагрузки


Осциллограмма выходного напряжения без нагрузки.

Выходное напряжение с нагрузкой, ток 60 А



Осциллограмма выходного напряжения инвертора при нагрузке 60 А.

Выходное напряжение со сработанной защитой



Осциллограмма выходного напряжения инвертора Ресанта при сработанной защите.

Небольшая подборка принципиальных схем сварочных инверторов РЕСАНТА сложены в АРХИВ. Кроме принципиальных схем сварочных аппаратов приведены несколько пособий по ремонту, несколько фотографий внутренностей инверторов, несколько паспортов.


ИБП в инверторах Ресанта довольно часто выходят из строя. Этот инвертор не был исключением из общего правила, его принесли в ремонт с заявлением - "вообще не включается".

Ремонт сварочного инвертора РЕСАНТА САИ 250 GP



Двухватный резистор оборван и если внимательно присмотреться к SMD резисторам на некоторых видны темные точки - прогорели.

Резистор R011 22ом стоит в затворе транзистора Q02 4N90C, R013 1.2ом в истоке того же транзистора. А через резистор R010 22ом 2вт идет питание +300 вольт на первичную обмотку импульсного трансформатора. Прозваниваем подозрительные резисторы да, как говорится - предчувствия не обманули, все в обрыве. Транзистор Q02 4N90C и стабилитрон D012 18в - нормальные. Микросхему U1 UC3842 проверить не получится, но обвязку вокруг нее прозвонить стоит.

Теперь меняем все оборванные резисторы пока навесным монтажом.



Подаем напряжение с латра, обычно Ресанты включаются от 50-70 вольт, что в данном случае и произошло. Инвертор включился нормально - дыма, пламени и взрывов не последовало. Поднимаем напряжение до 220 вольт - аппарат вышел из защиты на выходе, как и положено 78 вольт.
Теперь надо детальки распаять покультурнее. Транзистор Q02 4N90C в этих аппаратах выходит из строя редко, а микросхема U1 UC3842 в этом инверторе оказалась рабочей, но на всякий случай можно ее заменить, вдруг это она периодически шизит. Впрочем это на ваше усмотрение.
Резистор R010 22ом 2вт пришлось собрать из двух 47ом 2вт. SMD резистор 22 ома меняем на такой же, а 1.2 ома собираем из двух 2.4 ома так надежнее. Впрочем 2.4 ома не оказалось в наличии пришлось поставить 2 по 2.2 ома.



Собираем и пробуем на сварку.

Внимание!
Приcтупая к самостоятельному ремонту сварочного инвертора вы принимаете весь риск на себя.

Сведения которые вы знаете про этот сварочный инвертор и отзывы о его работе будут полезны другим посетителям сайта.


1. diggerweb (29.06.2014 19:08) Проверяем R010, R011 в затворе, R013 в истоке, обвязку вокруг Q02 4N90C, сам 4N90C, обвязку вокруг U1 UC3842. Если все нормально меняем саму UC3842. Транзистор и ШИМ выходят из строя очень редко. Ну и остается сам ТПИ и вторички.


2. МитNICK (07.07.2014 21:18) Спасибо за ответ? R013 тоже был в обрыве.Апарат начал подавать признаки жизни мигают оба светодиода примерно несколько раз в секунду.И под них
толчками крутятся вентиляторы с той же частотой.Шим сменил тоже на
всякий случай.


3. mirek0150 (14.07.2014 20:54) У меня все было почти так же. просто не включался и все. В итоге сгорел один резистор R10. Замена привела к успеху))) деталь копеечная но видимо не я первый не я последний


4. diggerweb (15.07.2014 16:36) Конечно вы не первый, а если китайцы и дальше будут такие детали ставить, то точно не последний. Заметьте, я тут пишу, что R10 это двухваттный резистор, потому что по схеме он так обозначен, на самом деле ставят обычный одноваттный. Действительно иногда сгорает только он один. Ставите вместо него нормальный двухваттный и все будет работать. Хотя, думаю, здесь можно и ватта на 3 или 5 поставить. А вот вместо R013 1.2ом в истоке намного мощнее ставить не желательно, он там как своеобразный предохранитель работает.


6. Frizbi (06.09.2014 21:45) Здравствуйте, у меня вопрос. захотелось поменять термопасту на видеокарте(температура в работе стала выше нормы) при удалении засохшей термопасты по случайности(руки кривые) вырвал 2 резистора на гп, возможно ли их заменить и где узнать какие точно нужны? видео карта GTX 660.


8. slavdav (21.11.2014 21:36) Здравствуйте! Eurolux IWM 250 (GP72) Вышел из строя блок питания. В обрыве резистор софт-старта, R010, D011, R052, шим. На схеме нет резистора R052, а визуально не определяется. Буду признателен если поможите

9. diggerweb (24.11.2014 08:07) Посмотрите здесь, кусок платы от инвертора EUROLUX IWM220.


Может подойдет к вашему.


10. slavdav (24.11.2014 22:24) Плата точно такая же. Рассмотрел номинал R052 -22 Ом. Большое спасибо!


11. slavamal55 (15.04.2015 06:24) Доброго времени суток! Попался мне данный аппарат, вообще не включался. Заменил, r013, r011и начал подавать признаки жизни, но мигают индикаторы, раздаются щелчки ну и куллера дрыгаются)) дальше заменил LM317T, 4N90C и UC3842B все это проблему не исправило. Что может быть еще, и куда глядеть ?


12. diggerweb (16.04.2015 22:54) Что может быть еще?
А вот, что.
Один из ремонтов Ресанты - не включалась.
Резистор R010 22 Ома - оборван, базовый и эмиттерный целы.
Меняю резистор R010 22 Ома, включаю ничего не изменилось - по прежнему не включается.
И вот теперь, что было дальше:
стабилитрон D012 18 вольт - пробит
стабилизатор 7815 U3 - пробит насквозь
стабилитрон D016 4,7 вольт - пробит
резисторы R12 и R13 на плате управления в обвязке MC33074D - сгорели
микрохема MC33074D - дохлая
микрохема UC3845 - сдохла
стабилитрон D025 18 вольт в драйвере - оборван
оптроны A3120 G001 и G002 там же - оба убитые.
А начиналось все с резистора R010 которай иногда сам по себе сгорает, меняешь его и все нормально работает.
Но так бывает ДАЛЕКО НЕ ВСЕГДА!
Даже не знаю что Вам посоветовать, попробуйте для начала определить где дефект - первичка, вторички, запустите от внешнего БП. Вобщем надо не "куда-то глядеть ?", а ремонтировать.


13. lifeless74 (29.06.2015 11:12) Микросхема U1 UC3842 прозванивается очень просто. Тестер на прозвонку диодов, плюсовой щуп на пятую ногу, минусовой на все остальные по очереди, должно звониться как диод. Если между 5 и 6, 5 и 7 короткое - меняйте.


14. n_bar (14.07.2015 23:33) Доброго дня. Ковыряюсь с инвертером ergus b201. Начинка- такая же, как у Ресанты.
Причина ковыряний, такая же- не включается.
До платы питание приходит.на конденсаторах по 310 вольт есть.
Стал смотреть плату, оказалось R010 пробит(видно), при более детальном осмотре- оказалось, что пробиты ещё R011, R013. только маркировка не различима.
R013, начинается на 12- точность можно предположить, что там 1,2Ом. А вот R011- начинается на 47(кажется). Как это определить?


17. n_bar (15.07.2015 10:59) Большое человеское спасибо))
И что будет, если заменить всё сгоревшее, кроме стабилитронов?
Снова все сгорит, или просто не включится?


18. n_bar (15.07.2015 16:51) @diggerweb, куда Вам можно сбросить фото этого smd резистора?
Я еще раз посмотрел, тут 4-х значное число.
Вроде как 4720. Но средние 2 цифры плохо читаемы, из-за пробоя.
Схему к сожалению, не могу найти, вот и гадаю(
Даже если предположить, что там 4720 написано, то это получается 472 Ома.
Так чтоли?

19. diggerweb (15.07.2015 18:48) Там написано 47R0 - или по-русски 47 ом.


Если вы имеете ввиду 18 вольтовый стабилитрон в затворе 4N90C, то он стоить как защитный, должно работать и без него. Насколько долго не знаю. А со стабилитронами, что напряг?


20. n_bar (15.07.2015 23:33) Огромное спасибо, всё прояснилось.
Со стабилитронами проблем нет))
Обязательно поменяю.


21. n_bar (18.07.2015 11:41) Всем привет. Как шоворится, не говори "гоп", пока ее перепрыгнешь.
Заехал в магазин ЧиД, все купил. Но вот со стабилитронами на 18 вольт, у них проблема.
Предлагали разные- и стеклянные с ножками, и без ножек, и черные с 3 и 5 ножками.
А вот как надо- черные j3 у них нет. Что делать? Чем можно заменить?


24. Dante (28.09.2015 06:55) Спасибо за пояснение , но все оказалось проще, R013 был больше номиналом чем надо, заменил на другой и все заработало.. Глупый косяк))


25. Nemesis_c (24.02.2017 15:18) Здравствуйте. Подскажите как решить проблему. Сгорели сопротивления R10 R13 R11 R43, поменял всё заработало. После примерно месяца эксплуатации при включении начали моргать оба светодиода и пошел дымок. вскрыл - сгорел R04. Поменял его, включаю через лампочку - лампочка плавно гаснет, включаются кулеры и опять сгорает R04. Начинают моргать оба светодиода - кулеры дергаются. Проверил 4n90c рабочий, uc3842b - рабочий, прозвонил все вокруг 3842 - все исправно. Выпаял плату управления - проверил по Вашей статье - исправна. Сопротивление между 7 и 9 выводами трансформатора 1,5 ом. 40N60 - все исправны, конденсаторы исправны, диодные мосты исправны. Подскажите в чем загвоздка может быть.

26. diggerweb (26.02.2017 00:50) Nemesis_c

Управление тут точно ни при чем.

Посмотрите осциллографом что в затворе 4n90c.

Проверьте всю обвязку вокруг uc3842b, в первую очередь конденсаторы керамические, не просто в плате потыкать а выпаивать проверять и впаивать обратно.


27. naidienskii (14.03.2017 19:40) Может не в тему, но пригодится.
Принесли в ремонт Ресанту 220А GP19. Сразу звоню выход - 337 на прозвонке. Включаю - стартует, но горит перегрев. На выходе 0. Прозваниваю термодатчик - исправен. Проверяю оптопару на выходе - исправна. Прозваниваю все диоды и стабилитроны с обеих сторон оптопары - исправны. Прозваниваю транзистор Q3 и рядом ещё два - исправны.
Замеряю напряжения на 1-15 выводах ПУ согласно таблице по ремонту 250 ресанты - в норме.
Нифига не понимаю. Начинаю тупо прозванивать вообще все элементы, которые можно прозвонить - диоды, резисторы, стабилитроны, так как физических повреждений деталей нет нигде в аппарате.
Все детали в норме.
Выпаиваю все силовые диоды, звоню - все исправны. Впаиваю парочку в плечи, стартую - перегрев потух, по напруга на выходе + - 20 вольт. Многократно меняю местами диоды - безрезультатно, аппарат уверенно стартует, на кондёрах 310 вольт, на выходе аппарата - то 10, то 20, то 30, не выше. Напруга выходная при каждом старте разная.
Выпаиваю ключи с радиаторами. На соплях леплю по одному в плечо. Так же на соплях по одному в плечо диоды на выходе. Стартую - 30 вольт на выходе. Выпаиваю эту пару ключей и впаиваю другую, стартую - 45 вольт на выходе.
Чую нутром - ключи дохлые, хотя и прозваниваются тестером как положено.
Достаю из загашника 4 штуки IGW 50N60T, впаиваю на соплях, стартую - 55 вольт на выходе. Ставлю их на радиаторы. Также на радиаторы ставлю все 6 выходных диодов. Стартую - 60 вольт на выходе. Пробую варить тройкой на 100 амперах - варит прекрасно. Вот такая эпопея сегодня была.


28. naidienskii (15.03.2017 10:21) Сегодня собрал в кузов окончательно, включаю - на выходе 84 вольта! Ну прям чудеса!


30. JAWA350Premier (23.08.2018 19:58) Спам Доброго времени суток, у меня такая проблема с ресантой GP79, питание платы управления 11 в, хотя рабочее напряжение должно быть 18.5 в, для питания гальванической развязки и ПУ, LM 317 исправный, до него напряжение 12.4 после него 11, в, при этом транзистор 4n90 и трансформатор не греются, работают исправно, вентиляторы вращаются нормально, в чем может быть причина? Диод D03 отпаивал одну сторону напряжение 12,4в , как будто гдето просадка или скваженность маленькая. Кто сталкивался с такой проблемкой помогите , уже второй аппарат такой попадается)))

UC3845
ПРИНЦИП РАБОТЫ

Исходя из приведенной таблицы понятно, что UC3845 далеко не лучший вариант этой микросхемы, поскольку нижний предел по температуре у нее ограничен нулем градусов. Причина довольна проста - не каждый хранит сварочный аппарат в отапливаемом помещении и возможна ситуация, когда нужно что то подварить в межсезонье, а сварочник или не включается или банально взрывается. нет, не в клочья, даже куски силовых транзисторов врядли вылетят, но в любом сварки не будет, да еще и ремонт сварочнику нужен. Проскочив по Али я пришел к выводу, что проблема вполне решаема. Конечно же UC3845 популярней и их в продаже больше, но и UC2845 тоже есть в продаже:

У остальных производителей дела чуточки по другому:

Зависимость частоты RC у микросхемы UC3845 от Fairchild


Зависимость частоты от номиналов RC у микросхемы от Fairchild

Зависимость частоты RC у микросхемы UC3845 от STMicroelectronics


Зависимость частоты от номиналов RC у микросхемы от STMicroelectronics

Зависимость частоты RC у микросхемы UC3845 от UNISONIC TECHNOLOGIES CO


Зависимость частоты от номиналов RC у микросхемы от UNISONIC TECHNOLOGIES CO

С тактового генератора получаются довольно короткие импульсы в виде логической единицы. Эти импульсы разбигаются на три блока:
1. Все тот же финальный сумматор DD4
2. D-триггер DD2
3. RS-триггер на DD5
Триггер DD2 имеется только в микросхемах подсерии 44 и 45. Именно он не дает длительности управляющего импульса стать длинее 50% от периода, поскольку он с каждым приходящим фронтом логической единицы с тактового генератора меняет свое состояние на противоположное. Этим он делит частоту на два, формируя одинаковые по длительности нули и единицы.
Происходит это довольно примитивным образом - с каждым приходящим фронтом на тактовый вход С триггер записывает в себя информацию, находящуюся на информационном входе D, а вход D соединен с инверсным выходом микросхемы. За счет внутренней задержки и происходит запись проинвертированной информации. Например на инвертируюющем выходе находится уровень логического нуля. С приходом фронта импульса на вход С триггер успевает записать этот ноль, до того как ноль появится на его прямом выходе. Ну а если ня прямом выходе у нас ноль, то на инверсном будет логическая единица. С приходом следующего фронта тактового импульса триггер уже записывает в себя логическую единицу, которая появится на выходе через какие то наносекунды. Запись логической единицы приводит к появлению логического нуля на инверсном выходе триггера и процесс начнет повторяться со следующего фронта тактового импульса.

Работа D триггера

Именно по этой причине у микросхем UC3844 и UC3845 выходная частота в 2 раза меньше, чем у UC3842 и UC3843 - ее делит триггер.
Попадая на вход установки единицы RS триггера DD5 первый же импуль переводит триггер в состояние, когда на его прямом выходе логическая единица, а на инверсном - ноль. И пока на входе R не появится единица триггер DD5 будет находится в этом состоянии.
Допустим у нас нет ни каких управляющих сигналов извне, тогда на выходе усилителя ошибки OP1 появится напряжение близкое к опорному напряжению - обратной связи нет, инвертирующий вход в воздухе, а на не инвертирующий подано опорное напряжение, равное 2,5 вольта.
Тут сразу оговорюсь - лично меня несколько смутил этот усилитель ошибки, но более внимательно изучив даташит и благодаря тыканьем носом подписчиков выяснилось, что выход у этого усилителя не совсем традиционный. В выходном каскаде OP1 всего один транзистор, соединяющий выход с общим проводом. Положительное напряжение формируется генератором тока, когда этот транзистор приоткрыт или закрыт полностью.
С выхода OP1 напряжение проходит своеобразный ограничитель и делитель напряжения 2R-R. Кроме этого эта же шина имеет ограничение по напряжению в 1 вольт, так что при любых условиях на инвертирующий вход OP2 больше одного вольта не попадает ни при каких условиях.
OP2 - по сути компаратор, сравнивающий напряжения на своих входах, но компаратор тоже хитроделанный - обычный операционный усилитель не может сравнивать столь низкие напряжения - от фактического нуля до одного вольта. Обычному ОУ нужно либо большее напряжение на входе, либо отрицательное плечо напряжения питания, т.е. двуполярное напряжение. Этот же компаратор довольно легко справляется с анализом этих напряжений, не исключено, что внутри какие то смещающие элементы, но до принципиальной схемы нам как бы особого дела нет.
В общем OP2 сравнивает напряжение приходящее с выхода усилителя ошибки, точнее те остатки напряжения, которые получаются после прохождения делителя с напряжением на третьем выводе микросхемы (корпус DIP-8 имеется ввиду).
Но в данный момент времени на третьем выводе у нас вообще ни чего нет, а на инвертирующий вход подано положительное напряжение. Естественно компаратор его проинвертирует и на своем выходе образует четкий логический ноль, что на состоянии RS-триггера DD5 ни как не отразится.
По итогам происходящего мы имеет на первом сверху вход DD4 логический ноль, поскольку питание у нас в норме, на втором входе у нас короткие импульсы с тактового генератора, на третьем входе у нас импульсы с D-триггера DD2, у которых одинаковая длительность нуля и единицы. На и на четвертом входе у нас логический ноль с RS-триггера DD5. В результате на выхоже логического элемента будут полностью повторяться импульсы, которые формирует D-триггер DD2. Следовательно как только на на прямом выходе DD4 будет появляться логическая единица будет открываться транзистор VT2. На инверсном выходе в это же время будет находится логический ноль и транзистор VT1 будет закрыт. Как только на выходе DD4 появится логический ноль VT2 закрывается, а инверсный выход DD4 откроет VT1, что и послужит поводом для открытия силового транзистора.
Ток, который выдерживают VT1 и VT2 равен одному амперу, следовательно данная микросхема с успехом может управлять сравнительно мощными MOSFET транзисторами без дополнительных драйверов.
Для того, чтобы понять как именно происходит регулировка происходящих в блоке питания процессов был собран самый простой бустер, поскольку он требует наименьшего количества моточных деталей. Было взято первое попавшееся под руки ЗЕЛЕНОЕ кольцо и на нем намотано 30 витков. Количество не вычислялось вообще, просто был намотан один слой обмотки и не более того. За потребление я не переживал - микросхема работает в широком диапазоне частот и если начинать с частот под 100 кГц, то этого уже будет вполне достаточно, чтобы не дать сердечнику войти в насыщение.

Все внешние элементы имеют приписку out, означающую, что это СНАРУЖИ микросхемы деталюшки.
Сразу распишу что на этой схеме и для чего.
VT1 - база по сути в воздухе, на плате запаяны торчки для одевания джамперов, т.е. база соединяется либо с землей, либо с пилой, вырабатываемой самой микросхемой. На плате нет резистора Rout 9 - я чет пропустил его необходимость.
Оптрон Uout 1 задействует усилитель ошибки OP1 для регулировки выходного напряжения, степень влияние регулируется резистором Rout 2. Оптрон Uout 2 контролирует выходное напряжения минуя усилитель ошибки, степень влияния регулируется резистором Rout 4. Rout 14 - токоизмерительный резистор, специально взят на 2 Ома, чтобы не ушатать силовой транзистор. Rout 13 - регулировка порога сработки ограничения по току. Ну и Rout 8 - регулировка тактовой частоты самого контроллера.

Силовой транзистор это что то выпаянное из ремонтируемого когда то автомобильного преобразователя - полыхнуло одно плечо, менял все транзисторы (почему ВСЕ ответ ТУТ), а это так сказать сдача. Так что я не знаю что это - надпись сильно потертая, в общем это что то ампер на 40-50.
Rout 15 типа нагрузка - 2 Вт на 150 Ом, но 2 Вт маловато оказалось. Нужно или сопротивление увеличить, либо мощность резистора - вонять начинает, если поработает минут 5-10.
VDout 1 - для исключения влияния основного питания на работу контроллера (HER104 кажется по руки попался), VDout 2 - HER308, ну это чтоб не сразу бахнуло, если что пойдет не так.
Необходимость резистора R9я понял, когда плата уже была запаяна. В принципе этот резистор нужно будет еще подобрать, но это уже чисто по желанию, кому ОЧЕНЬ хочется избавится от релейного способа стабилизации на холостом ходу. Об этому чуть позже, а пока влепил этот резистор со стороны дорожек:

Установка R9 на палту

Первое включение - движки ВСЕХ подстрочников соединены должны быть с землей, т.е не оказывают влияния на схему. Движок Rout 8 установлен так, чтобы сопротивление этого резистора составляло 2-3 кОм, поскольку конденсатор на 2,2 нФ, то частота должна получится порядка 300 с хвостиком кГц, следовательно на выходе UC3845 мы получим где то около 150 кГц.

Снимаем напряжение со светодиода Uout 2 и на всякий случай проверям наличие пилы на верхнем выводе R15 (желтый луч):

Напряжение на токовом резисторе

Амплитуда чуть больше вольта и этой амплитуды может не хватить, ведь на схеме имеются делители напряжения. На всякий случай выкручиваем движок подстроечного резистора R13 в верхнее положение и контролируем, что у нас происходит на третьем выводе микросхемы. В принципе надежды полностью оправдались - амплитуды не хватает для начала ограничения тока (желтый лучик):

Отличительной чертой UC3845 является то, что протекающий через силовой транзистор он контролирует практически на каждом такте работы, а не среднее значение, как например это делает TL494 и если блок питания спроектирован правильно, то ушатать силовой транзистор не получится ни когда.
Теперь поднимаем частоту до тех пор, пока ограничение тока перестанет вносить свое влияние, впрочем сделаем запас - ставим ровно 100 кГц. Синий лучик у нас по прежнему показывает управляющие импульсы, а вот желтый ставим на светодиод оптрона Uout 1 и начинаем вращать регулятор подстроечного резистора. Некоторое время осциллограмма выглядит так же, как при первом опыте, однако появляется и отличие пройдя порог регулирования длительность импульсов начинает уменьшаться, т.е происходит реальная регулировка посредством широтно-импульсной модуляции. И это как раз один из финтов данной микросхемы - в качестве опорной пилы для сравнения она использует пилу, которая формируется на токоограничивающем резисторе R14 и таким образом создает стабилизированное напряжение на выходе:

Тоже самое происходит и при увеличении напряжения на отпроне Uout 2, правда в мое варианте не получилось получить такие же короткие импульсы, как в первый раз - не хватило яркости светодиода оптрона, а уменьшать резистор Rout 3 я поленился.
В любом случае стабилизация ШИМ происходит и вполне устойчиво, но только при наличии нагрузки, т.е. появление пилы, даже не большого значения, на выводе 3 контроллера. Без этой пилы стабилизация будет осуществляться в релейном режиме.
Теперь переключаем базу транзистора на вывод 4, тем самым принудительно подавая пилу на вывод 3. Тут не большая спотыкачка - для этого финта придется подобрать резистор Rout 9, поскольку амплитуда пыли и уровень постоянной составляющей у меня получился несколько великоват.

Принудительная пила на выводе 3

Однако сейчас больше интересен сам принцип работы, поэтому проверяем его, опустив движок подстроечника Rout 13 на землю начинаем вращать Rout 1.
Изменения в длительности управляющего импульса имеются, но они не такие значимые, как хотелось бы - сильно сказывается большая постоянная составляющая. При желании использовать такой вариант включения нужно более тщательно продумать как его правильней организовать. Ну а картинка на осциллографе получилась следующая:

При дальнейшем увеличении напряжения на светодиоде оптрона происходит срыв на релейный режим работы.
Теперь можно проверить нагрузочную способность бустера. Для этого вводим ограничение по напряжение на выходе, т.е. подаем не большое напряжение на светодиод Uout 1 и уменьшаем рабочую частоту. На социлограмме отчетливо видно, что желтый лучик не доходит до уровня одного вольта, т.е. ограничения по току нет. Ограничение дает только регулировка выходного напряжения.
Параллельно нагрузочному резистору Rour 15 устанавливаем еще один резистор на 100 Ом и на осциллограмме отчетливо видно увеличение длительности управляющего импульса, что ведет к увеличению времени накопления энергии в дросселе и с последующей отдачей ее в нагрузку:

Так же не трудно заметить, что увеличивая нагрузку увеличивается и амплитуда напряжения на выводе 3, поскольку возрастает протекающий через силовой транзистор ток.
Осталось посмотреть, что происходит на стоке в режиме стабилизации и при ее полном отсутствии. Становимся синим лучем на сток транзистора и убираем напряжение обратной связи со светодиода. Осциллограмма сильно не устойчивая, поскольку осциллограф не может определить по какому фронту ему синхронизироваться - после импульса довольно приличная "болтака" самоиндукции. В итоге получается следующая картинка.

Напряжение на нагрузочном резисторе тоже изменяется, но я не буду делать ГИФку - страница и так получилась довольно "тяжелой" по трафику, поэтому со всей ответственность заявляю - напряжение на нагрузке равно напряжению максимального значения на картинке выше минус 0,5 вольта.

ПОДВОДИМ ИТОГИ

На микросхеме довольно легко организовать стабилизатор тока, причем контроль протекающего тока контролируется на каждом такте, что полностью исключает перегрузку силового каскада при правильном выборе силового транзистора и токоограничивающего, точнее измерительного резистора, устанавливаемого на исток полевого транзистора. Именно этот факт сделал UC3845 наиболее популярной при проектировании бытовых сварочных аппаратов.
UC3845 имеет довольно серьезные "грабли" - изготовитель не рекомендует использовать микросхему при температурах ниже нуля, поэтому при изготовлении сварочных аппаратов будет логичней использование UC2845 или UC1845, но последние находятся в некотором дефиците. UC2845 несколько дороже, чем UC3845, не так катастрофически, как это обозначили отечественные продавцы (цены в рублях на 1-е марта 2017).

Цены в рублях

Частота у микросхем ХХ44 и ХХ45 в 2 раза меньше тактовой частоты, а коф заполнение не может превышать 50%, то для преобразователей с трансформатором наиболее благоприятно. А вот микросхемы ХХ42 и ХХ43 наилучшим образом подходят для ШИМ стабилизаторов, поскольку длительность управляющего импульса может достигать 100%.

Теперь, поняв принцип работы данного ШИМ контроллера можно вернуться и к проектированию сварочного аппарата на его основе.

Читайте также: