Технология сварки решетчатых конструкций

Обновлено: 24.01.2025

Развитие металлургических основ электрической дуговой сварки. Технологическая схема изготовления конструкции. Выбор оборудования и инструментов. Контроль качества сварных соединений. Организация рабочего места. Источники питания постоянного тока.

Рубрика Строительство и архитектура
Вид реферат
Язык русский
Дата добавления 07.06.2015
Размер файла 21,4 K

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Организация рабочего места

Выбор материала конструкции и сварочных материалов

Выбор оборудования и инструментов

Технологическая схема изготовления конструкции

Подготовка металла к сварке, сборка конструкции

Режим сварки конструкции

Техника сварки конструкции

Деформации и напряжения при сварке

Контроль качества сварных соединений конструкции

Технологическая карта изготовления конструкции

Техника безопасности при изготовлении конструкции

Современный технический прогресс в промышленности неразрывно связан с совершенствованием сварочного производства. Сварка как высокопроизводительный процесс изготовления не разъемных соединений находит широкое применение при изготовлении металлургического, химического и энергетического оборудования, различных трубопроводов, в машиностроении, в производстве строительных и других конструкций.

Сварка - такой же необходимый технологический процесс, как и обработка металлов, резанием, литье, ковка, штамповка. Большие технологически возможности сварки обеспечили ее широкое применение при изготовлении и ремонте судов, автомобилей, самолетов, турбин, котлов, реакторов, мостов и других конструкций. конструкция сварка ток

О возможности применении «электрических искр» для плавление металлов еще в 1753 г. говорил академик Российской академии наук Г.Р. Рихман при исследовании атмосферного электричества. В 1802 г. профессор Санкт-Петербургской военно-хирургической академии В.В. Петров открыл явление электрической дуги и указал возможные области ее практического использования. Однако потребовались многие годы совместных усилий ученых и инженеров, направленных на создание источников энергии, необходимых для реализации процесса электрической сварки металлов. Важную роль в создание этих источников сыграли открытия и изобретения в области магнетизма и электричества.

В 1882 г. российский ученый-инженер Н.Н. Бенардос, работал над создание аккумуляторных батарей, открыл способ электродуговой сварки металлов не правящимся угольным электродом. Им был разработан способ дуговой сварки в защитном газе и дуговая резка металлов.

В 1888 г. российский инженер Н.Г. Славянов предложил проводить сварку плавящимся металлическим электродом. С его именем связана развитие металлургических основ электрической дуговой сварки, разработка флюсов для воздействие на состав металла шва, создание первого электрического генератора.

С 1935-1939 гг. начали применять толстопокрытные электроды, в которых стержни изготавливали из легированной стали, что обеспечило широкое использование сварки в промышленности и строительстве. В 1940-е гг. была разработана сварка под флюсом, которая позволила повысить производительность процесса и качество сварных соединений, механизировать производство сварных конструкций. В начале 1950-х гг. в Институте электросварки им. Е.О. Патона создают электрошлаковую сварку для изготовления крупногабаритных деталей из литых и кованых заготовок что снизило затраты при изготовлении оборудования тяжелого машиностроения.

Сварка потребовалась и в космосе. В 1969 г. наши космонавты В. Кубасов и Г. Шонин и в 1984 г. С. Совитская и В. Джанибеков провели в космосе сварку, резку и пайку различных металлов.

Труба 150мм - 12000мм. Марка стали - 25 Г2С

Труба профильная 80х80х4 - 50000мм. Марка стали - 25 Г2С

Труба профильная для ферм 40х40х3 - 35000мм. Марка стали - 25 Г2С

Труба профильная, прогонная 30х30х2 - 70000мм. Марка стали - 25 Г2С

Труба профильная, перемычки 30x30x2 - 59000мм. Марка стали - 25 Г2С

Марка электродов УОНИ 13/45: 3, по ГОСТ 9467 - 75

Площадка для сварки конструкции: должна быть с ровным полом, оборудована специальными защитными шторками, находиться под навесом или в цеху.

На нестационарных рабочих местах изделие при сварке неподвижно, а сварщик перемещается от шва ко шву по изделию, или перемещается от изделия к изделию. В этом случае как правило, свариваются крупногабаритные и тяжелые изделия.

В зависимости от типа рабочего места сварщика зависит и его организация, а также оснащенность его оборудованием и инструментом. Рабочие места сварщиков комплектуются:

а) стационарные рабочие места: сварочным оборудованием, устройствами для сварки и инструментом; приспособлениями для подачи и уборки деталей; приспособлениями для крепления или размещения деталей при сварке; устройствами для вентиляции, как правило, стационарными; кабиной сварщика;

б) нестационарные рабочие места; сварочным оборудованием, устройствами для сварки, инструментом; приспособлениями для крепления или размещения узлов или изделий при сварке; переносными устройствами для вентиляции зоны сварки; устройствами (переносными) для защиты зоны сварки от излучения дуги.

От правильной организации рабочего места сварщика, оснащенности его необходимым оборудованием, инструментом и приспособлениями, правильного размещения этого оборудования на рабочем месте зависит и эффективность его труда и производительность.

Основными элементами организации труда сварщиков на рабочих местах, от которых зависит наивысшая производительность труда и высокое качество, будут следующие:

а) своевременность получения задания;

б) наличие соответствующего оборудования, поддержание его в работоспособном состоянии и правильное его размещение;

в) своевременность доставки на рабочие места материалов, заготовок, деталей и др.;

г) высокая надежность оборудования и высокое качество материалов;

д) действенный контроль качества сварных соединений;

е) поддержание на рабочем месте надлежащего порядка.

Из изложенного следует, что организация рабочего места сварщика в каждом конкретном случае должна быть тщательно продумана и научно обоснована, так как от этого зависит эффективность его труда.

Источник питания переменного тока (сварочный трансформатор)

Навес над трансформатором.

Низкоуглеродистые стали, марка стали: 25 Г2С.

25Г2С: 0,25% - углерода, Г - марганец 2%, С - кремний 0,12 - 0,30%.

ВСт3Гпс. Химический состав.

Плотность стали - (7,7 - 7,9)*103 кг/м3.

Удельный вес стали - (7,7 - 7,9) г/см3.

Удельная теплостойкость стали при 200с - 0,11 кал/град.

Температура плавления стали - 1300 - 14000с.

Удельная теплостойкость, плавления стали 49 кал/град.

Коэффициент теплопроводности стали - 39 ккал/м*час*град.

Коэффициент линейного расширения стали: (при температуре около 200с) сталь 3 (марка 20) - 11,9 (1/град).

Предел прочности стали при растяжении: сталь для конструкций - 38 - 42 (кг/мм2), сталь кремнехромомарганцовистая - 155 (кГ/мм2), сталь машиноделочная (углеродистая) - 32 - 80 (кГ/мм2), сталь рельсовая - 70 - 80 (кГ/мм2).

Технологическая карта: изготовления решетчатых конструкций

Выбор оборудования и инструмента.

Сварочный выпрямитель: ВД - 306

Преобразует переменный ток промышленной частоты в постоянный напряжением и величиной, необходимыми для сварки. Конструктивно состоит из трансформатора и выпрямительного блока.

Выпрямитель сварочный является источником питания постоянного тока с падающими внешними характеристиками. Питание выпрямителя производится от трехфазной сети переменного тока.

Выпрямитель представляет собой передвижную установку в однокорпусном исполнении, состоящей из следующих основных узлов: силового трехфазного трансформатора, магнитного шунта, блока выпрямителей, вентилятора, автоматического выключателя и кожуха.

Трехфазный силовой трансформатор с магнитопроводом стержневого типа Т1 .Катушки первичной w1 и вторичной обмотки w11 неподвижны и выполнены из изолированного алюминиевого провода. Обмотки от сердечника магнитопровода изолированы стеклопластиком и пропитаны электротехническим лаком.

Сердечник трансформатора собран из листов электротехнической стали марки 2212, толщиной 0,5 мм.

Преобразование переменного напряжения в постоянное (сварочное) осуществляется с помощью полупроводникового блока выпрямителей V1.

Вентиляция выпрямителя - воздушнопринудительная.

Сварочный ток регулируется вращением рукоятки, находящейся на передней панели выпрямителя. При вращении рукоятки происходит смыкание или размыкание магнитного шунта, что приводит к изменению индуктивного рассеяния.

Для подключения выпрямителя и питающей сети имеется сетевой кабель Для подключения сварочного кабеля имеются гнезда разъемов обозначенных знаками «+» и «-».

Зажим для заземления выпрямителя расположен на основании выпрямителя.

1) Углошлифовальная машина УШМ - 90111: предназначена для резки и обработки металла.

2) ДУ750ЭР - Дрель ударная/ 750Вт/ ЭР - модель дрели: предназначена для сверления отверстий разных диаметров как в металле, древесине и т.д.

3) Рулетка, чертилка, линейка, уголок, щётка, плоскогубцы, молоток, мел, зажимы, уровень, штанген - циркуль, и т. д.

Рулетка, линейка - для измерения высоты, длины, ширины, диагонали.

Чертилка, мел - предназначены для, отметки данной длинны.

Уголок - для измерения точности углов и линий реза.

Щётка - для очистки деталей и сварных швов, от шлака, грязи, масла, ржавчина и т. д.

Плоскогубцы - для придерживания мелких деталей в процессе сварки.

Молоток - для выравнивания или гибки каких либо деталей.

Зажимы - предназначены для удержания каких либо деталей в пространственном положении.

Уровень - для точного измерения наклона какой либо детали в пространственном положении. Штанген - циркуль - предназначен для измерения как внешних так и внутренних диаметров, толщин стенок, каких либо деталей.

Правку проката производят, как правило, в холодном состоянии на правильных станках или вручную на правильных плитах.

Разметка представляет собой нанесение на металл конфигурации заготовки. Разметку осуществляют с припуском. Припуск это разность между размером заготовки и чистовым размером детали. Припуск снимают при последующей обработке. Для разметки применяют разметочные столы или плиты необходимых размеров.

Разметку осуществляют с помощью различных инструментов: стальной метр, стальная рулетка, металлическая линейка, чертилка, карнер, циркуль, штангенциркуль, угольник и др. Для получения более чёткого очертания заготовки поверхность металла предварительно закрашивают белой клеевой краской. При большом количестве заготовок или деталей разметку производят по плоским шаблонам с припуском на последующую обработку. Чертилкой обводят контур детали, а затем накернивают по всей длине линии обвода с шагом (50-100мм) между кернами.

Резка осуществляется кислородными резаками по намеченной линии контура детали вручную или газорезательными машинами специального назначения. Резка на механических станках более производительна и обладает высоким качеством реза. Для механической прямолинейной резки листового металла применяются пресс - ножницы для продольной и поперечной резки.

Подготовку кромок деталей из низкоуглеродистой стали большой толщины осуществляют кислородной резкой или обработкой на строгальных или фрезерных станках.

Для изготовления сварных конструкций требуется правильная сборка деталей свариваемого изделия, т.е. их правильная взаимная установка и закрепление. Сборка может осуществляться прихватками или в специальных сборочно - сварочных приспособлениях. Прихватки представляют собой короткие швы, расстояние прихватки 10мм расстояние между прихватками 20мм. Количество прихваток и их размер определяются технологическими условиями. Процесс сборки сварного изделия состоит из последовательных операций. Прежде всего необходимо подать детали к месту сборки. Затем необходимо установить эти детали в сборочном приспособлении в определённом положении. В этом положении детали должны быть закреплены, после чего их сваривают.

Узлы фермы сваривают последовательно от середины фермы к опорным узлам. Сначала выполняют стыковые, а затем угловые швы. Каждый элемент при сборке прихватывают швом длинной 20мм. Близко расположенные швы нельзя выполнять сразу. Вначале дают остыть тому участку основного металла, где будет накладываться близко расположенный шов. Это снизит перегрев металла и пластические деформации. Конец продольного шва выводят на торец привариваемого элемента на длину 20мм.

Режим сварки конструкции.

Параметры режима ручной дуговой сварки.

СВАРОЧНЫЙ ТОК устанавливают в зависимости от диаметра электрода а диаметр электрода выбирают в зависимости от толщины свариваемого изделия.

Ориентировочный расчет сварочного тока

НАПРЯЖЕНИЕ на дуге зависит от её длины. Оптимальная длинна дуги выбирается между минимальной и максимальной. Длинную дугу применять не рекомендуется.

СКОРОСТЬ СВАРКИ выбирается так, чтобы сварочная ванна заполнялась электродным металлом и возвышалась над поверхностью кромок с плавным переходом к основному металлу без подрезов и наплывов.

Способ зажигания сварочной дуги.

Дугу зажигают коротким прикосновением электрода к изделию (впритык) или чирканьем концом электрода о поверхность металла («спичкой»). Способ «спичкой» предпочтительнее, но он ре удобен в узких и труднодоступных мустах.

Положение электрода при сварке

Электроды перемещают в трёх основных направлениях:

ПОСТУПАТЕЛЬНОЕ - вдоль оси электрода. Обеспечивает подачу электрода, постоянство длины дуги и скорость плавления.

ПРЯМОЛИНЕЙНОЕ - вдоль оси шва. Обеспечивает необходимую скорость сварки и качественное формирование шва.

КОЛЕБАТЕЛЬНЫЕ - поперёк оси шва для прогрева кромок. Этим движением за один проход получают шов шириной до 4-х диаметров электрода, а без них 1,5 - диаметра. Поперечные движения можно исключить при сварке тонких листов или при прохождении первого(корневого) шва многослойной сварки.

Деформация и напряжение при сварке

Основные причины деформации.

Неравномерный нагрев металла

Рациональное конструирование сварных изделий:

В процессе конструирования необходимо: ограничивать количество наплавленного металла уменьшением катетов швов или угла скоса кромок; не допускать пересечения большого количества швов; не располагать сварные швы там, где действуют максимальные напряжения от внешних нагрузок, и размещать их симметрично.

Мероприятия, выполняемые в процессе сварки:

Рациональная последовательность наложения сварных швов. Сварные конструкции следует изготовлять так, чтобы замыкающие швы, создающие жесткий контур, заваривались в последнюю очередь. Сварку нужно вести от середины конструкции к её краям, как бы сгоняя при этом внутренние напряжение наружу. Каждый последующий шов при многослойной сварке рекомендуется накладывать в направлении, обратном направлению предыдущего шва.

Мероприятия, выполняемые после сварки:

В тех случаях, когда деформация все же произошла и величины их выходят за пределы допустимых, применяют правку сварных изделий различными способами.

В этом случае с помощью молотов, домкратов, винтовых процессов или других устройств создаётся ударная или статическая нагрузка, которую обычно прилагают со стороны наибольшего выгиба. Тонколистовой металл правят прокатом между валиками.

Заключается в местном нагреве небольших участков металла деформированной конструкции. Нагрев, как правило, производят сварочными горелками большой мощности. Ведут его быстро и только до пластического состояния верхних волокон на выпуклой стороне изделия. При охлаждении нагретых участков последние сжимаются и выпрямляют изделие.

Заключается в сочетании местного нагрева с приложением статической нагрузки, изгибающей исправляемый элемент конструкции в нужном направлении. Такой способ обычно применяют для правки жестких сварных узлов.

Для получения сварного шва хорошего качества необходимо осуществлять контроль, начиная с проверки качества подготовки шва и кончая проверкой полученного сварного соединения.

Сборку под сварку и разделку шва проверяют по стандартам и техническим условиям. Предварительно сварной шов очищают от шлака,

Внешним осмотром выявляют наружные дефекты шва: не провары, наплывы, прожиги, подрезы, наружные трещины, поры, смещение свариваемых кромок деталей и т. п Осмотр производят не вооруженным глазом или помощью лупы с десятикратным увеличением. Размеры сварочных швов проверяют и т.д.

Подобные документы

Описание конструкции, выбор способа сварки и сварочного оборудования. Обоснование выбора инструментов и приспособлений. Подготовка металла под сварку. Сборка конструкции. Режимы сварки и техника выполнения сварных швов. Контроль качества и охрана труда.

курсовая работа [743,4 K], добавлен 06.03.2013

Назначение, технические характеристики и условия эксплуатации ортотропной плиты. Выбор и обоснование основного металла и технологических процессов. Типы сварных соединений, расчет и выбор режима сварки. Управление качеством изделия. Патентная проработка.

дипломная работа [2,3 M], добавлен 31.12.2012

Общие сведения о внутреннем водопроводе. Схемы систем горячего водоснабжения, арматура и монтаж трубопроводов. Рассмотрение технологии дуговой сварки в среде защитных газов. Сварка неплавящимся и плавящимся электродами в инертном и углекислом газе.

дипломная работа [2,5 M], добавлен 18.08.2013

Главные преимущества сварочных операций, их широкое применение в народном хозяйстве. Технологический процесс выполнения сварки. Виды деформаций при сварке. Возможные дефекты сварных швов и методы их устранения. Контроль качества сварных швов изделия.

курсовая работа [1,2 M], добавлен 14.03.2011

Изучение основных методов и норм расчета сварных соединений. Выполнение расчета различных видов сварных соединений; конструирование узлов строительных металлических конструкций. Определение несущей способности, а также изгибающего момента стыкового шва.

курсовая работа [455,1 K], добавлен 02.12.2014

Характеристика и технологические особенности перил. Технология их изготовления. Преимущества и недостатки электродуговой сварки, ее применение для крепления поручня к металлическим стойкам. Процесс образования сварного соединения. Выбор электродов.

дипломная работа [491,0 K], добавлен 17.01.2015

Особенности технологии электродуговой сварки. Оборудования, инструменты и приспособления для ручной электродуговой сварки. Оборудование и инструменты для выполнения сборки и сварки арматурной сетки. Используемые материалы, технологический процесс.

Технология сборки и сварки решетчатых конструкций

Решетчатые конструкции состоят из элементов прокатного и составного профиля, соединяемых между собой в узлах. Основными элементами ферм являются пояса, а в мачтах и колоннах — опорные стойки, соединенные между собой стержнями решетки (раскосами, стойками, распорками и связями). Фермы бывают плоские, у которых составляющие ее стержни лежат в одной плоскости, и пространственные, составленные из нескольких плоских.

При заготовке элементов для сборки фермы в первую очередь определяют минусы раскосов и стоек в узлах фермы путем расчета или шаблонирования. Минусом называется та величина, на которую нужно уменьшить теоретическую длину элемента (расстояние между узловыми точками), чтобы получить его действительный размер. Зная величину минусов, заготовляют из соответствующего профиля элементы требуемой длины. На поясах намечают осевые линии и на них размечают узловые точки, а на концах элементов решетки намечают по осевым линиям риски.

Сборка и сварка плоских ферм производится преимущественно на стеллажах или на козлах, хорошо выверенных по уровню. Процесс сборки плоской фермы выполняется примерно в такой последовательности.

1. На стеллажах, пользуясь фиксаторами, ограничителями и закрепляющими устройствами, выкладывают согласно чертежу первые ветви верхнего и нижнего пояса фермы.

2. В узловых точках поясов устанавливают косынки, прижимают их струбцинами или скобками к ветвям поясов и прихватывают.

3. Проверяют правильность положения поясов и узловых точек, измеряя линейкой или струной по направлению стоек, раскосов и связей их теоретическую длину между взаимно противоположными точками и одновременно наносят на косынках риски по направлению элементов решетки.

4. Выкладывают первые ветви стоек и раскосов, выдерживая величину минуса в каждом узле и, ориентируясь по совпадению рисок на косынках и на концах стержней решетки, прижимают стержни к косынкам и ставят прихватки.

5. Кантуют собранную ветвь фермы на 180°, выкладывают согласно чертежу прокладки на поясах и элементах решетки, прижимают их и прихватывают.

6. Выкладывают вторые ветви поясов, стоек, раскосов и связей, ориентируясь по первой ветви каждого элемента, прижимают их и прихватывают к косынкам и прокладкам.

7. Производят сварку собранной фермы. Сварку узлов начинают от середины фермы и ведут симметрично к ее концам. В каждом узле сначала приваривают косынки к поясам, а затем стойки и раскосы к косынкам.

8. Кантуют второй раз ферму на 180° и производят в таком же порядке сварку узлов со стороны первых ветвей поясов, стоек и раскосов. Если после выполнения рабочих операций по сборке фермы, указанных в п. 4, произвести на первой ветви сварку узлов, как описано в п. 7, то вторая кантовка фермы станет излишней. При этом деформация фермы из ее плоскости после сварки узлов на первой ветви будет увеличена и возможно потребуется правка ее. После выполнения сварки узлов на второй ветви фермы (после ее кантовки) эта деформация станет значительно меньше.

9. После сварки всех швов ферма подвергается заключительным операциям, по окончании которых поступает в склад готовой продукции.

Помимо описанной в общих чертах сборки и сварки плоской фермы, в зависимости от наличия технологической оснастки и характера ее, ход сборочно-сварочных операций может быть изменен, однако порядок сварки узлов всегда следует вести от середины фермы к ее концам. При изготовлении пространственной решетчатой конструкции ее разбивают на плоские фермы, которые могут быть собраны и сварены описанным выше способом. Затем сваренные плоские фермы соединяются связями и свариваются. В процессе сварки пространственной решетчатой конструкции необходимо ее несколько раз кантовать для сварки узлов со всех сторон.

Если габаритные размеры решетчатой конструкции не слишком велики, то сборку и сварку целесообразно выполнять в специальном поворотном кантователе. Это облегчает доступ к наложению швов и уменьшает трудоемкость выполнения кантовки.

Изготовление решетчатых конструкций

Решетчатые конструкции — фермы, мачты, башни — изготовляют преимущественно из прокатных элементов; гнутые и сварные профили используют в меньшей степени. К решетчатым конструкциям относят также арматуру железобетона — сетки, плоские ипространственные каркасы.

При сборке ферм особое внимание уделяют правильному центрированию стержней в узлах во избежание появления изгибающих моментов, не учтенных расчетом. Разнообразие типов и размеров ферм иногда не позволяет использовать преимущества их сборки в инвентарных кондукторах. В этих случаях нередко применяют метод копирования. Первую собранную из уголков по разметке ферму (рисунок 93, а) закрепляют на стеллаже — она служит копиром. При сборке детали каждой очередной фермы 2 раскладывают и совмещают с деталями 1 копирной фермы (рисунок 93, б). После скрепления деталей 2 прихватками собранную ферму (пока с односторонними уголками) снимают с копира, укладывают на стеллаже отдельно и ставят на нее недостающие парные уголки 3 (рисунок 93, в). Когда сборка требуемого количества ферм закончена, копирную ферму также дособирают и отправляют на сварку.


Рисунок 93 – Схема сборки фермы по копиру

В установке, изображенной на рисунок 94, 95, из намотанных на барабаны 1 продольных проволок и выправленных и нарезанных поперечных проволок 9 контактной точечной сваркой изготовляется непрерывная сетка, разрезаемая на отрезки 8 заданной длины с помощью гильотинных ножниц 7. Продольные проволоки проходят через пятироликовые правильные устройства 2 и направляющие втулки 3. Поперечные проволоки (стержни) по одной захватываются специальным автоматическим механизмом из бункера-питателя и укладываются сверху на продольные проволоки перпендикулярно им. Штоки пневмоцилиндров 5 опускают верхние сварочные электроды, которые зажимают поперечную проволоку во всех ее пересечениях с продольными проволоками. Подвод сварочного тока односторонний к нижним неподвижным электродам. Поперечная проволока после сварки с продольными проволоками захватывается крюками каретки 6, которая посредством двух пневмоцилиндров 4 перемещает всю сваренную часть сетки на заданный шаг. При этом тяговое усилие цилиндров 4 обеспечивает протаскивание всех продольных проволок через правильные устройства 2 и разматывание катушек 1.


Рисунок 94 – Схема автоматической установки для изготовления арматурных сеток



Рисунок 95 – Машина многоточечной сварки сетки ММТС-3207 и схемы подвода сварочного тока

а – двухсторонний подвод тока в одноточечных машинах и клещах; б – односторонний подвод тока в кар-касосварочных машинах; в – односторонний подвод тока в многоточечных сеточных машинах; г – комбинированный подвод тока в машинах для сварки плоских каркасов

Решетчатый настил отличается от сетки тем, что имеет большую жесткость, определяемую набором вертикально расположенных полос, соединенных поперечными стержнями (рисунок 96).



Рисунок 96 – Элемент решетчатого настила и линия для сварки

2. 15. Сварка стальных строительных конструкций.

Первые металлические конструкции выполнялись с помощью клепки. Инженером Шуховым Б.Г в 1883 году в г. Баку был предложен первый цилиндрический резервуар для нефтепромыслов. Далее им были созданы перекрытия зданий Нижегородской выставки, ГУМа в Москве, мартеновских цехов, мостов и др.

Началом применения сварки в строительстве является 1920 год, когда в г. Владивостоке была сварена строительная ферма длиной 25 м.

В начале 30-х годов стали проводиться планомерные научно-исследовательские работы в области сварки строительных конструкций. Были разработаны конструкции сварных ферм, колонн, подкрановых балок и др. В 30…40-х годах были разработаны и построены сварные каркасы зданий мартеновских и конверторных цехов (Новокузнецкий ,Магнитогорский и Макеевский металлические комбинаты, завод «Азовсталь» и др.)

В 1930 г В Магнитогорске были сварены газопроводы горячего дутья и воздухонагреватели домны. В 1941 г. Шуховым В.Г. был построен первый 11-и км нефтепровод.

Первые стальные резервуары емкостью 300 м 3 были построены в 1929 г. тоже Шуховым В. Г. Начиная с 1938 г сварные резервуары более 5000 м 3 широко применяются в нефтяной промышленности. В 1950-х годах был разработан индустриальный метод изготовления резервуаров (на заводе сваривают и сворачивают в рулоны полотна днища и стенок резервуара. На строительной площадке рулон разворачивают и сваривают между собой. Кровля также может изготовляться на заводе в виде отдельных элементов.

В 1939 г. был построен первый арочный цельносварной железнодорожный мост через реку Исеть (140 м длиной). Однако конструктивно сварные мосты не были достаточно обоснованы по выбору основного и сварочного материала, по условиям внешнего воздействия. Поэтому часто применялись клепанные мосты. В 1946 г были разработаны серии пролетов мостов сварных автодорожных (21,6 м; 32,4 м; 42,5 м ) и клепано-сварных (52,5 м и 83,2 м) . Мосты конструировались из стали повышенной прочности и с предварительным напряжением.

С 1948 г были созданы цельносварные конструкции высотных зданий в Москве (Министерство иностранных дел, гостиница «Украина»).В 1936 г была построена первая стальная радиомачта из рельсов (200 м).

Стальные конструкции по условиям работы делятся на 4 группы :

1 - работающие в особо тяжелых условиях (подкрановые балки, эстакады, опоры транспортных средств,…);

2 - работающие при статических нагрузках (фермы, балки перекрытий, опоры,…);

3 - вспомогательные конструкции ( трапы, площадки, ограждения,…).

В зависимости от этих групп и климатических зон выбираются материалы (марки сталей, флюсы, электроды, …) и режимы наплавки.

Сварные конструкции изготовляют из проката. Его правят на вальцах, грунтуют, размечают и режут. На автоматических поточных линиях производится резка и сварка без предварительной разметки.

Сварку элементов конструкций проводят на стеллажах, стендах, кондукторах, вращателях и манипуляторах. В процессе сварки кроме широко распространенных кувалды и лома, используются струбцины, эксцентриковые зажимы, домкраты, винтовые распорки, клиновые стяжные приспособления и другая оснастка.

При сварке резервуаров эффективен метод рулонирования, но в трудно доступных местах проводят и полистовую их сборку.

Рулонные заготовки днищ и корпусов цилиндрических резервуаров сваривают из листового проката на 2-х ярусной установке механизировано сварочными тракторами под слоем флюса. На верхнем ярусе проваривают швы с другой стороны листа. На контрольной площадке проверяют качество швов и грунтуют полотнища. Далее наметывают его на шахтную лестницу резервуара или кольцевые каркасы и транспортируют на место установки. Листы днища укладываются от центра к краям и укрепляют сборочными приспособлениями. По окружности делают прямые (до объемов менее 5000 м 3 ) или сегментные ( при объемах более 5000 м 3 ) окрайки. Сварку выполняют ручной электродуговой сваркой в 2 слоя , или механически порошковой проволокой ПП-АН3 , или сварочными автоматами.

Сварка решетчатых конструкций (стропильные фермы, опоры линий электропередач, мачты,…) выполняется в среде защитных газов или применяется порошковая самозащитная проволока, во многих случаях используется электроконтактная сварка. Сборка элементов конструкций выполняется с помощью кондукторов , пневматических и винтовых прижимов и фиксаторов.

После прихватки ручной электродуговой сваркой соединений освобождают прижимы и переносят форму в кантователь для основной сварки конструкции.

Сварка при низких температурах . В зависимости от марки стали и толщины металла и вида металлоконструкции (табл. 2.4) устанавливается минимально допустимая температура сварки без нагрева. Углеродистые стали допускают более низкую температуру сварки, чем низколегированные. Чем тоньше металл, тем может быть допустима более низкая температура сварки.

Допустимые температуры окружающего воздуха при сварке металлоконструкций.

Технология сварки и изготовления решетчатых конструкций

Обоснование выбора марки стали конструкции. Методика контроля качества сварных швов. Выбор сварочного оборудования и режимов сварки стальной конструкции. Расчет численности основных рабочих, занятых непосредственно выполнением технологических операций.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 11.06.2016
Размер файла 974,6 K

К служащим относятся: агенты по снабжению, машинистки, секретари-машинистки, кассиры, делопроизводители, экспедиторы и др.

Руководители бывают линейные и функциональные. Линейные руководители это руководители, которые возглавляют коллективы производственных подразделений, предприятий, объединений, отраслей и их заместители; функциональные руководители, возглавляющие коллективы функциональных служб (отделов, управлений) и их заместители.

Известно, что основными факторами производства на предприятии являются: средства труда, предметы труда и кадры.

Основная роль принадлежит кадровому потенциалу на предприятии. Именно кадры играют первую скрипку в производственном процессе, именно от них зависит, насколько эффективно используются на предприятии фонды производства и насколько успешно работает предприятие в целом. Поэтому на каждом предприятии должна разрабатываться кадровая политика, которая должна быть направлена на достижение следующих целей: создание здорового и работоспособного коллектива; повышение уровня квалификации работников предприятия; создание трудового коллектива, оптимального по половой и возрастной структуре, а также по уровню квалификации; создание высокопрофессионального руководящего звена

Кадровая политика на предприятии включает в себя: отбор и продвижение кадров; подготовку кадров и их непрерывное обучение; найм работников в условиях неполной занятости; стимулирование труда; совершенствование организации труда; создание благоприятных условий труда для работников и др.

Расчет количества рабочих

Численность основных рабочих, занятых непосредственно выполнением технологических операций, определяется по формуле:

где Тгi - годовая трудоемкость на i-ой операции, н-ч; - годовой действительный фонд времени работы одного рабочего, ч;

Кв - коэффициент выполнения норм выработки (Кв =1,1-1,15).

При этом Тгiравна:

где tштi- норма времени на i-ой операции, мин; А - программа выпуска, шт.

Годовой фонд времени работы рабочего определяется по формуле:

где Дп, Дс - количество рабочих дней в году соответственно с полной продолжительностью и сокращенных;

Кнев - коэффициент невыходов по уважительным причинам (Кнев =0,88).

Количество основных рабочих рассчитываем по суммарной годовой трудоемкости.

Читайте также: