Техника и технология сварки полимерных материалов

Обновлено: 24.01.2025

Сварка – это самая практичная и экономичная технология соединения пластмассовых элементов. Получаются соединения высокого качества, благодаря этому такая методика применяется на широкомасштабных производствах, а также в домашних условиях.

Технология сваривания пластмассовых деталей

Технологический процесс соединения пластмасс довольно сложный, занимает большое количество времени. Для разных материалов может использоваться разная методика сваривания отдельных элементов.

Общие действия при сваривании пластмассовых образцов

  • Предварительно перед выполнением сварочных работ осуществляется подготовка пластмассовых элементов. Свариваемые поверхности не должны иметь никаких погрешностей, иначе сварной шов будет иметь дефекты.
  • Следующий шаг – проверка соответствия параметров пластмассы установленному ГОСТу. Специалист подбирает температуру для сварки данного материала, производит соединение деталей.
  • После завершения соединительного процесса изделию необходимо дать полностью остыть.

Процесс термосварки пластиковых изделей

Если при выполнении сварочных работ были допущены некоторые ошибки, то они позднее проявятся как дефекты: подрезы, углубления, трещины и т. д. Исправлять подобные изъяны должны только специалисты. Методики для устранения дефектов могут использоваться разные, например, повторное нагревание изделия, замена некоторых составляющих, при помощи растяжения.

Необходимо также отметить обязательные условия для сварки образцов:

  • повышенная плотность контакта соединяемых поверхностей;
  • высокая температура;
  • выдержка соединения по времени под давлением, при охлаждении изделия.

Виды свариваемых пластмасс

Зависимо от формы полимера, параметров свариваемых деталей может использоваться различная техника соединения. Сварка применяется как для производства новых продуктов, так и для ремонта старых изделий.

Виды пластмасс, которые можно соединять сваркой:

  • поликарбонат;
  • полиэтилен;
  • полистирол;
  • поливинилацетат;
  • полипропилен;
  • нейлон;
  • поливинилхлорид.

Процесс соединения полиэтилена осуществляется посредством его нагревания до необходимой температуры, и последующего сжатия под давлением. Очень часто для этой цели используются ручные инструменты, подающие горячий воздух (в бытовых условиях обычно пользуются феном).

Поливинилхлорид используется для изготовления полотен натяжных потолков, покрытий для пола (линолеума).

Полистирол используется для производства бытовых предметов.

Полипропилен применяется для соединения трубопроводов электрическим сварочным оборудованием, мощность которого – 1500В, сварочная температура – 260°.

Соединение остальных подвидов пластмассы осуществляется аналогично, температура сваривания может достигать 360°.

Характеристики пластмасс:

  • обладают повышенной механической прочностью, благодаря чему используются в качестве сырья для изготовления различных предметов;
  • способны выдерживать разные температуры;
  • могут обладать диэлектрическими показателями.

Для обработки пластмассовых изделий используются различные сварочные методики. К примеру, обработка высокочастотным током, контактным нагревом, газом, трением, ультразвуком. Все эти технологии являются довольно эффективными, поэтому часто применяются для соединения пластмассовых элементов.

Сварка полипропиленовых труб

Для каждой отрасли применяются конкретные типы сварки:

  • с использованием высокочастотного электрического поля;
  • контактно-тепловое плавление;
  • применение газовых теплоносителей с дополнительными присадками, без них.

При сваривании пластмассовых изделий необходимо работать в защитной маске, так как материал при сильном нагревании выделяет вредные компоненты.

Методики сварки

Разные способы сваривания пластмассовых материалов отличаются последовательностью выполнения работ.

Сварка под давлением:

  • основания пластмассовых деталей прижимают между собой под давлением, далее активируют соединенные участки;
  • подвергнувшиеся активации поверхности свариваются;
  • контакт, активация осуществляются одновременно.

Процедуры сваривания пластмасс, происходящие в сварной зоне, напоминают соединение металлических изделий:

  • для разогрева соединяемых поверхностей подводится, преобразуется электроэнергия;
  • взаимодействие активированных поверхностей осуществляется при контакте;
  • формируется новая структура материала.

Сваривание пластмасс методом нагревания поверхностей:

  • в качестве теплоносителей для пластмассовых поверхностей используется присадка, горячий инструмент, газ;
  • осуществляется поглощение, преобразование высокочастотного механического (электрического) колебания либо механической (лучевой) энергии.

В независимости от варианта активации сущность процедуры сварки деталей заключается в передаче требуемой температуры свариваемым заготовкам. Материал в результате становится более пластичным, что способствует получению качественного прочного соединения.

Оборудование для сварки пластиковых деталей

Для сваривания изделий из пластика может использоваться самое разнообразное оборудование, дополнительные приспособления. Но, все они входят в одну из четырех групп:

  • ручные устройства горячего воздуха; ;
  • сварочная машина для листов;
  • сварочные аппараты автоматические.

Соединение ультразвуком

Одной из наиболее современных технологий является ультразвуковая сварка пластмасс. Методика базируется на взаимодействии молекул пластмассы с ультразвуковыми колебаниями. Для некоторых несвариваемых материалов это — единственно возможный вариант соединения.

Технология ультразвуковой сварки

  • соединяемые элементы помещаются в специализированное гнездо (к нему подведен волновод);
  • волновой генератор вырабатывает колебания до 50 кГц, которые специальным прибором преобразуются механические колебания, направляются к волноводу;
  • пневматический механизм прижимает волновод к заготовкам;
  • под воздействием смешанных волн связь молекул полимеров ослабляется;
  • волна ультразвуковая после соединения заготовок перестает вырабатываться генератором, но изделия некоторое время продолжают оставаться в сварочной зоне, происходит укрепление новых молекулярных связей.

Чаще всего соединение полимерных изделий осуществляется внахлест точечно или по всему периметру.

Преимущества сварки ультразвуком

  • Экологически безопасная процедура: дополнительные химические соединения отсутствуют, не происходит избыточное нагревание материалов, вредные газы в процессе сварки не выделяются.
  • Сварка полимеров по данной технологии отличается высоким качеством, надежностью. Неразрывные соединения имеют высокие прочностные характеристики. Не нарушая внешнего вида изделия можно достичь высокой герметичности соединения (сварной шов отсутствует).
  • Ультразвуковая сварка – это универсальный вариант, который предоставляет возможность соединять полимеры разной структуры.
  • Данная методика лучше всего подходит для автоматизированных производственных процессов, поэтому эффективно используется на многих сборочных цехах.

Вывод

Технология для сварки пластмассы предоставляет возможность выполнять качественные соединения конструкций из поликарбоната, полистирола, прочих ПВХ материалов.

Список тематических статей

Среди всех видов соединений деталей сварка является одним из самых экономичных и надежных методов. Для изделий из пластмасс это утверждение тоже применимо в полной мере. Сварка, как правило, дает изделия хорошего качества, прочные, долговечные. При этом сам процесс может проходить как в промышленных условиях, так и в условиях кустарного производства или частного домохозяйства.

Существует несколько различных типов сварки пластиков, однако все их объединяет общая суть. Тем или иным путем полимер разогревается, его макромолекулы приходят в движение и осуществляется диффузия полимерных компонентов друг в друга с последующим получением общего монолитного изделия.

Не все пластмассы, как и не все другие материалы, подходят для процесса сварки. Главным образом, она подходит для термопластов – полимеров, которые могут перерабатываться многократно путем нагрева, придания формы и охлаждения. Термопластичные материалы, в отличие от термореактивных пластмасс, имеют более подходящие для рассматриваемого процесса свойства. При повышенных температурах термопласты приходят в пластичное состояние и становятся пригодными для рассматриваемой технологии.

Сварка полимеров имеет ряд неоспоримых преимуществ перед прочими методами соединений деталей, например соединения крепежом, клеевые, и т.д. С ее помощью можно получить ровный, без дефектов сварной с ровным распределением внутренних напряжений.

Изображение контактной сварки встык

Рис. 1. Контактная сварка встык.

Виды сварки пластмасс

В современной индустрии используются следующие разновидности сварки полимерных материалов:

- сварка нагретым газом, в том числе присадочным материалом (обычно прутком);

- излучением (световым, инфракрасным или лазерным);

- ТВЧ (токи высокой частоты).

Вкратце рассмотрим каждый вид технологии по отдельности.

Сварка нагретым инструментом

Этот тип, который называется еще контактной, или термоконтактной сваркой, она является самым простым из всех видов соединений полимерных деталей. Подача тепла на соединяемые поверхности достигается за счет их контакта с нагретым инструментом. Контактный процесс очень часто применяют в трубопроводной технике, изготовлении сосудов и емкостей, прочих изделий и конструкций из пластика.

Чаще всего используют способ прямого нагрева, при котором проводят следующие этапы сварки:

- зачистка и нагрев свариваемых поверхностей прижатым к ним нагреваемым инструментом;

- удаление инструмента и сжатие поверхностей, выдержка в течение определенного технологией времени в сжатом состоянии.

Бытует мнение, что временной интервал от удаления инструмента до сжатия поверхностей между собой должен быть минимальным. Ибо иначе, прочность сварного соединения снижается ввиду быстрого охлаждения из-за контакта поверхностей со средой. Однако, на самом деле, процесс сварки пластиков гораздо сложнее и технологически правильно выдержать определенную паузу перед соединением деталей. За это время свариваемые области, неравномерно разогретые инструментом, приходят в состояние большей подготовленности к процессу диффузии. Технологическая пауза обычно составляет порядка нескольких секунд.

Помимо прямого нагрева, используют метод косвенного нагрева пластмассы и закладные нагреватели. Последний метод получил распространение для соединения труб, обычно большого диаметра, в полевых условиях. На концы труб помещается специальная муфта, в которую заранее помещается нагревательный элемент. Затем при пропускании электричества от полевого генератора внутренний слой муфты расплавляется и создает неразъемное трубное соединение.

Изображение соединения труб термосварной муфтой

Рис.2. Соединение труб термосварной муфтой

Наиболее распространенные виды термоконтактной сварки полимеров – это сварка «в стык» и «в раструб». Оборудование для процесса «в стык» проще и используется чаще.

Аппараты для спаивания в раструб разогревают у одной детали, например трубы, наружную поверхность, а у другой, например фитинга, внутреннюю. Затем свариваемые детали устанавливаются на нагретую оснастку. А уже после выдержки технологического времени на оснастке (дорне и муфте) детали извлекаются и происходит их соединение. Такая технология очень популярна для спаивания труб для холодного и горячего водоснабжения из рандом сополимера полипропилена.

Сварка горячим воздухом (нагретым газом)

Название процесса «сварка горячим газом» изначально происходит от того, что воздух в первых сварочных устройствах на заре переработки пластмасс грелся газовой горелкой. Однако, такой способ был опасным или нетехнологичным, поэтому позже аппараты для сварки стали изготавливать с электрическим нагревом. Современные устройства также электрические, позволяющие регулировать температуру процесса с высокой точностью, но слова про горячий газ в обозначении процесса остались.

Технология соединения нагретым газом подразделяется на два типа: с применением присадочного прутка и без применения присадочного материала.

Сварка горячим газом – непростой процесс. Он используется для соединения труб, плит из пластмассы, профилей и прочего подобного погонажа, при изготовлении различных изделий. При этом свариваемые детали и сварочная проволока нагреваются горячим воздухом до технологической температуры и соединяются под давлением. Нагретый воздух обычно поступает из фильеры сварочного агрегата.

Для технологии этого типа подходит большинство термопластов, но чаще всего она применяется для соединения полиэтилена, полипропилена, поливилихлорида разной твердости, АБС и ПММА (оргстекла). Как правило, за редкими исключениями, сварка разных полимеров невозможна. Соединение ПВХ и полиметиметакрилата теоретически получается, но сварной шов обычно непрочен.

Прочие виды сварки полимеров

Сварка экструзионная. При этом процессе сварочный материал, желательно тот же самый полимер, что и тот, из которого изготовлены свариваемые детали, подается в область сварки в расплавленном виде из ручного экструдера. В этот небольшой экструдер или обогреваемый пистолет непрерывно поступает из бухты присадочный материал в виде прутка.

Изображение работы ручным экструдером

Рис.3. Работа ручным экструдером

Сварка растворителями. Этот метод заключается в ряде технологических операций: смачивание, пауза для ожидания набухания полимера, контакт между поверхностями, выдержка под нагрузкой. Такая сварка применяется для полимеров, нестойких к действию растворителей, как правило аморфных термопластов.

Сварка трением. Метод, который позволяет почти моментально и без особых затрат получить прочное сварное соединение. Отлично подходит для тел вращения при соединении «в раструб». Обычно одно изделие жестко закрепляется, а второе надевается на оправку, которую приводят во вращение от любого привода. Затем второе изделие перемещают в осевом направлении и соединяют с закрепленным изделием в раструб. От возникшей энергии трения обе детали подплавляются, вращение останавливается и желаемое соединение формируется за считанные секунды.

Применение сварки

- Полипропилен: трубопроводы всех типов, уличная мебель, тара.

- Полиэтилен: трубопроводы, резервуары, емкости.

- Поливинилхлорид: облицовка, трубопроводы, водостоки.

- АБС: чемоданы, части бытовой техники.

Также сварка пластмассы применяется для производства рекламных и выставочных конструкций, в строительстве, индустриальной упаковке. В сельском хозяйстве и медицине широкое поле для такого соединения полимерных пленочных материалов. Сварку пластиков можно встретить в самых неожиданных местах и ситуациях.

Методы и технология сварки пластика

Сварка пластика — один из самых надежных способов соединения материалов на полимерной основе. Применяя различные способы в домашних условиях, можно добиться надежного скрепления многослойных конструкций, сделать шов на трубчатых деталях. Правда, переходить к практической работе лучше после того, как будут освоены сварочный пистолет и другие инструменты, найден подходящий пруток для пластмасс.



Особенности

Сварка пластика — процесс, при котором края деталей из пластмассы соединяются путем нагрева или в результате химического воздействия. Для этих процессов тоже существуют свои регламенты, в частности ГОСТ Р ИСО 17659-2009. Сварка пластика предусматривает формирование соединений неразъемного типа за счет активации диффузионных процессов. Молекулы соединяемых материалов смешиваются, проникают друг в друга под воздействием химической реакции или нагрева. Граница между материалами становится нераздельной.

Наиболее эффективно сварочные процессы в пластмассах протекают в условиях, когда сам полимер находится в текучем или размягченном состоянии.



Именно на достижение такого результата и направлены все методы воздействия. Если диффузионная сварка невозможна, пластик растворяется и приводится в нужное состояние химическим путем либо для его связывания применяются присадочные материалы с нужными характеристиками.

У пластмасс способность к свариванию не является однородным понятием. Все их виды делятся на основные подгруппы согласно своим характеристикам.

  1. Хорошо поддающиеся сварке. Сюда входят термопласты и полимеры, соединять которые можно плавлением или другими методами, позволяющими нагревать изделия до жидкого агрегатного состояния или сильно размягчать их.
  2. Плохо свариваемые. Это термопласты, имеющие узкий температурный коридор плавления (менее 50 градусов) и небольшую вязкость расплава. Чаще всего такими свойствами обладают фторопласты и полуфабрикаты различных материалов с термопластичными свойствами. Для соединения таких пластиков приходится тщательно подбирать оптимальный способ сварки.
  3. Не плавящиеся. Эта группа термопластов обладает характеристиками, не позволяющими приводить их в состояние вязкости и текучести. Соединение возможно только при помощи химических реагентов на границе раздела материалов. Процесс сваривания таких пластиков требует значительных затрат времени.
  4. Не поддающиеся диффузионному воздействию. Сюда входят реактопласты и вулканизирующие полимеры. Для них используют методы сварки, при которых сочетается сразу несколько видов воздействия, в том числе с использованием давления или дополнительных агентов, образующих шов на границе материалов.

Именно исходя из особенностей пластика и его принадлежности к конкретной группе веществ определяется метод воздействия.

Способы сварки

В зависимости от того, к какой группе полимеров относятся скрепляемые материалы, их можно соединять разными способами. Существует множество технологий, позволяющих выполнить сварку пластиков в промышленных условиях или на дому. Стоит рассмотреть самые популярные из них более подробно.



Горячая

Метод сварки нагретым воздухом с направленным воздействием на материал. При помощи потока газообразной среды, генерируемого тепловой пушкой, происходит размягчение соединяемых полимеров. Посредством этого способа осуществляется изготовление пластиковых емкостей для воды и химикатов, водопроводной арматуры, теплообменников. Метод подходит для работы с тканями и пленками, поскольку не требует применения присадочных компонентов. Процесс сварки протекает быстро, может быть непрерывным.



Термосваривание

Комбинированный метод сварки, предусматривающий сочетание термического воздействия и давления на материал.

Способ довольно широко распространен, но предъявляет строгие требования к адгезионным свойствам пластиков.

Они должны совпадать по составу не менее чем на 80%. Для проверки на совместимость сверяется маркировка, проводятся специальные тесты.



Экструзионная

Способ, хорошо работающий при создании длинных сварных швов в материале толщиной более 6 мм, используется при соединении слоев линолеума и других плоских покрытий. Сварочный стержень помещается в корпус ручного экструдера, подается в место соединения с одновременным нагревом поверхности строительным феном или другим источником тепла. Все компоненты сплавляются, образуя неразрывный шов.



Высокочастотная

Метод, подходящий для сваривания некоторых полимеров: ацетатов, полиамидов, поливинилхлорида. При воздействии электромагнитных волн в ВЧ-диапазоне происходит локальный нагрев места соединения. Пластмасса размягчается, происходит смешивание слоев материала. Метод известен и используется более 70 лет. Также может встречаться определение «радиочастотная сварка».

Индукционная

Способ, разработанный специально для сварки пластмасс, обладающих низкими показателями электропроводности. Предусматривает создание соединения с использованием дополнительных компонентов — волокон углерода, металлических прокладок. Индукционная катушка в сварочном аппарате взаимодействует с ними, вызывая нагрев и сплавление деталей. Этот метод распространен в авиакосмической отрасли.



Ультразвуковая

Способ сварки, предусматривающий создание колебаний при помощи УЗ-волн на высоких частотах (15-40 кГц) и с низкой амплитудой.

В результате такого воздействия полимерный материал размягчается, происходит его оплавление и спаивание в месте соединения.

Метод хорош тем, что позволяет скреплять практически все существующие полимеры без ограничений.



Лазерная

Метод, при котором одновременно используются давление на область соединительного шва и спаивание при помощи лазерного луча. В результате воздействия происходит нагрев скрепляемых элементов, пластмассы размягчаются и прилипают друг к другу. Технология предусматривает использование лазерных полупроводниковых диодов с различной длиной волны и мощностью, подходящие параметры определяются свойствами конкретного материала.

Трением

Способ, при котором на пластик производится круговое или амплитудное механическое воздействие. Части свариваемых полимеров колеблются с низкой частотой и высокой амплитудой до тех пор, пока не произойдет их достаточный разогрев. По своему действию этот способ похож на ультразвуковой, с той лишь разницей, что источник термической реакции не требует применения волновых источников тепла. При оплавлении контактные зоны провоцируют деформацию слоев, их проникновение друг в друга. После остывания на границе формируется сварной шов.

Растворением

Способ сварки пластиков с применением химических реагентов. Полимерный материал в месте нанесения состава становится податливым для соединения. Все химические реакции протекают без использования специальных тепловых режимов, при комнатной температуре.

Благодаря растворению полимерные частицы равномерно перемешиваются на границе шва, а после отвердения образуют прочную связь, монолитное соединение.

Таким способом скрепляют полотна ПВХ при изготовлении натяжных потолков, пластиковые трубы при сантехнических работах в быту.

Что понадобится?

Для успешной самостоятельной сварки пластиков в домашних условиях необходимо заранее приобрести набор необходимых инструментов и расходных материалов. Самое простое устройство — сварочный аппарат, выпускаемый в модификациях для труб и объемных деталей, стыковки в раструб или внахлест. Оборудование должно иметь регулятор нагрева в диапазоне до 260 градусов по Цельсию.

Сварочный пистолет или строительный фен со специальной подающей пруток насадкой предусматривают работу с присадочными материалами. К ним необходимо дополнительно приобретать стержни из материала, образующего шов. Вариант со строительным феном удобнее и практичнее, поскольку позволяет занимать при работе только одну руку. При выборе прибора важно обратить внимание на мощность — оптимальный диапазон варьируется от 1,5 до 2 кВт.



На таких инструментах тоже имеется терморегулятор.

Экструдер — аппарат, при помощи которого в зону сварки подается расплавленная пластмасса. Такое оборудование не самое дешевое, зато оно надежно, формирует ровный шов. Инструмент может быть контактного типа или бесконтактный, с дополнительным валиком для разравнивания нагретой массы. Первый вариант более безопасный в работе. В качестве соединительного материала чаще всего выступает все тот же присадочный пруток.

Технология

В домашних условиях сварка пластмассовых изделий может производиться несколькими способами. Для листов полимерных материалов с соединением встык применяется нагрев при помощи специальных инструментов. Чаще всего это термопистолет или фен с насадкой, в который вставляются прутки. Таблица разогрева веществ с разной температурой плавления обычно прилагается в инструкции к устройству. Температуру регулируют исходя из типа соединяемых поверхностей. Также можно применять обычный паяльник, если стыковка выполняется внахлест.

Метод экструзии позволяет вести работу бесконтактно — с использованием прижимного ролика, а также контактно – с касанием материала непосредственно наконечником. Таким способом можно соединять различные пластиковые детали, запаивать пустоты между слоями плоских материалов.

Сварочный аппарат может оказывать прямое или косвенное термическое воздействие. Этот инструмент ориентирован на монтаж неразрывных трубопроводов без винтовых соединений, в том числе с разным торцевым сечением деталей.

После разогрева места стыковки до температуры плавления шов остужается.

Не менее популярна для использования в домашних условиях и горячая сварка пластиков. Она подразумевает подачу разогретой газообразной среды на поверхность материала. Чаще всего это делается с применением строительного фена или газовой горелки. В зависимости от условий работы в качестве теплоносителя выступает обычный воздух или азот, аргон. При подборе среды следует учесть характеристики сплавляемых деталей.

При горячей сварке пластиков отсутствуют ограничения по форме и размеру изделий. Можно создавать соединения любой длины. Кроме того, горячим воздухом можно ремонтировать изделия из полимеров с тонкими стенками, различные емкости. Производить воздействие можно напрямую или при помощи специальных присадок (прутков, планок) по диаметру обрабатываемой детали.



Обязательным условием успешного соединения материалов является предварительное обезжиривание места соединения. При наплавлении прутка он может крепиться в зазор или поверх материалов. Излишки впоследствии срезаются. Важно избегать деформации краев изделия, тщательно следить за соблюдением температуры нагрева.

О том, как паять пластик, смотрите далее.

Сварка пластмасс

Сварка пластмасс – это технологический процесс получения неразъемного соединения элементов конструкции посредством диффузионно-реологического или химического взаимодействия макромолекул полимеров, в результате которого между соединяемыми поверхностями исчезает граница раздела и образуется структурный переход от одного полимера к другому.

Классификация способов сварки пластмасс

классификация способов сварки пластмасс

По механизму процесса сварку пластмасс можно разделить на диффузионную и химическую; по методам активирования процесса — на тепловую сварку, сварку растворителями и сварку комбинированием нагрева и действия растворителей (рис. 1).

Сварка пластмасс растворителями

При сварке с растворителями необходимая подвижность молекулярных цепей создается за счет набухания контактирующих поверхностей в растворителе или смеси растворителей. Подразделяется она на сварку чистым растворителем (или смесью растворителей), лаковой композицией (раствором полимера в растворителе) и полимеризующейся композицией (раствором полимера в мономере).

Тепловая сварка пластмасс

Тепловая сварка имеет наибольшее число разновидностей. Классифицировать ее можно по различным критериям:

  • способам передачи тепловой энергии;
  • степени механизации;
  • по области применения;
  • в зависимости от источника энергии.

Однако наиболее точно отражает современное состояние технологии сварки пластмасс классификация разновидностей тепловой сварки в зависимости от источника нагрева.

При этом выделяют две группы сварки: с использованием внешнего теплоносителя и с генерированием тепла внутри свариваемого материала за счет преобразования различных видов энергии.

Сварка пластмасс с использованием внешнего теплоносителя

Группа способов сварки пластмасс с использованием внешнего теплоносителя подразделяется на сварку нагретым газом, нагретым инструментом и расплавом.

Сварка нагретым газом

Сварка нагретым газом производится путем одновременного разогрева свариваемых изделий струей горячего газа-теплоносителя, нагреваемого в специальном устройстве. Сварку нагретым газом выполняют с применением присадочного материала и без него, вручную или с использованием специальных приспособлений для механизации процесса сварки. Применяется присадочный материал в виде прутков с различной формой сечения. При сварке по классической схеме нагревательное устройство совершает колебательные движения в плоскости, образованной направлением шва и осью присадочного прутка. Сварочный пруток прижимают и удерживают рукой, если он достаточно жесткий или при помощи ролика, если пруток мягкий. Применяя специальные насадки на нагревательное устройство, обеспечивают одновременный подогрев свариваемых кромок и прутка, при этом пруток втягивается в отверстие насадки при перемещении устройства вручную вдоль шва и прижимается к кромкам выступом на насадке. Сварка без присадочного материала может производиться с подводом тепла непосредственно к свариваемым поверхностям (прямой метод) или с подводом тепла к внешней поверхности деталей (косвенный метод).

Сварка нагретым инструментом

Сварка нагретым инструментом основана на оплавлении поверхностей сварки путем их прямого соприкосновения с нагреваемым инструментом. Подразделяется на сварку инструментом, удаляемым из зоны сварного шва (с подводом тепла как с внешней стороны деталей, так и непосредственно к соединяемым поверхностям), и сварку элементом, остающимся в сварном шве.

При сварке косвенным методом нагретый инструмент соприкасается с внешними поверхностями соединяемых деталей, а тепло передается к перекрывающим друг друга свариваемым поверхностям за счет теплопроводности свариваемого материала. В настоящее время нашли применение ленточная, роликовая, прессовая и термоимпульсная сварка. При ленточной сварке для нагрева свариваемых изделий и создания давления используется нагретый инструмент в виде ленты, а при роликовой – в виде ролика. При прессовой сварке для создания необходимого сварочного давления применяются сварочные прессы, позволяющие осуществить шаговую сварку. При термоимпульсной сварке используют малоинерционный нагреватель (лента или проволока), по которому периодически пропускают электрический ток; после отключения электроэнергии сварной шов быстро охлаждается.

Из применяемых способов сварки с подводом тепла к соединяемым поверхностям известны сварки:

  • стыковая;
  • раструбная(используется преимущественно для соединения труб);
  • сварка нахлесточных соединений (используется для соединения тонкостенных изделий и пленок);
  • сварка с одновременным формованием изделий(в паз или с изгибанием деталей).

При стыковой и раструбной сварке после оплавления свариваемых поверхностей изделия разводятся, инструмент убирается, а оплавляемые поверхности соединяются под небольшим давлением и свариваются. При стыковой сварке соединяются торцы изделий, а в качестве нагревательного инструмента применяется плоский или профилированный диск (кольцо).

При раструбной сварке соединяются внутренняя поверхность раструба и наружная поверхность трубы, а нагревательный инструмент имеет два рабочих элемента: гильзу для оплавления наружной поверхности конца трубы и дорн для оплавления внутренней поверхности раструба.

Сварку нахлесточных соединений можно осуществлять одновременным нагревом соединяемых поверхностей по всея длине, а также, перемещая инструмент или свариваемые изделия. Наибольшее распространение получил способ сварки с механизированной подачей свариваемых изделий и неподвижным нагревательным инструментом.

Из способов сварки элементом, остающимся в сварном шве, практическое применение нашли сварка электросопротивлением и индукционная сварка. Сварка электросопротивлением основана на применении закладных нагревательных элементов с высоким электрическим сопротивлением. Закладные элементы в виде сетки или спирали вводятся между соединяемыми поверхностями. При пропускании по закладному элементу электрического тока соединяемые поверхности оплавляются.

При индукционной сварке нагрев закладного элемента происходит в электромагнитном высокочастотном поле, а в качестве нагревательного элемента используются металлические вкладыши или порошки оксидов металлов.

Сварка пластмасс расплавом

Сварка расплавом основана на использовании тепла расплавленного присадочного материала, подаваемого между соединяемыми поверхностями и передающего часть своего тепла материалу соединяемых изделий, что ведет к его плавлению и получению неразъемного соединения. Подразделяется на сварку экструдируемой присадкой, расплавленным прутком и литьем под давлением, которые могут выполняться как с предварительным подогревом свариваемых поверхностей нагретым газом или теплоотдачей от мундштука сварочного устройства, так и без подогрева.

При сварке экструдируемой присадкой (экструзионной сварке) расплав получается с помощью экструдера, обеспечивающего непрерывную подачу расплава, а в качестве исходного сырья используется гранулированный материал. При сварке расплавленным прутком расплав получается из присадочного прутка путем его нагрева в устройствах прямоточного типа, откуда расплав выдавливается непрерывно поступающим еще не нагретым присадочным прутком, который сматывается с бухты и подается в нагревательный цилиндр с помощью специальных тянущих роликов. При сварке литьем под давлением для получения расплавленного присадочного материала применяются литьевые машины.

Сварка пластмасс с генерированием тепла внутри свариваемого материала

Группа способов сварки пластмасс с генерированием тепла внутри свариваемого материала путем преобразования различных видов энергии подразделяется на сварку трением, сварку ультразвуковую, сварку высокочастотную и сварку излучением.

Сварка пластмасс трением

Сварка трением основана на получении тепловой энергии для оплавления свариваемых поверхностей за счет трения. Очень низкая теплопроводность, характерная для термопластов, способствует сохранению тепла лишь в зоне трущихся поверхностей, в то время как температура всего изделия остается практически неизменной. Разделяется на сварку вращением (вращение соединяемых деталей; вращение промежуточных элементов) и вибротрением.

Ультразвуковая сварка пластмасс

Ультразвуковая сварка основывается на нагреве свариваемых поверхностей до температуры размягчения в результате превращения энергии колебаний ультразвуковой частоты в тепловую энергию, при этом механические колебания ультразвуковой частоты и давление действуют по одной линии, перпендикулярно к соединяемым поверхностям. В зависимости от взаимного перемещения инструмента и деталей подразделяется на прессовую сварку (точечная, прямошовная, контурная) и роликовую сварку (сварка непрерывным и прерывистым швом). Ультразвуковая сварка может классифицироваться также и по другим признакам: в зависимости от способа подведения энергии, наличия присадочного материала, а также в зависимости от способа дозирования энергии.

Высокочастотная сварка пластмасс

Высокочастотная сварка пластмасс основана на диэлектрическом нагреве материала в высокочастотном электромагнитном поле в результате преобразования электрической энергии в тепловую. В зависимости от схемы взаимного перемещения инструмента и свариваемых изделий высокочастотная сварка подразделяется на прессовую и роликовую. Может выполняться в основном поле и в поле рассеивания с нагревом соединяемого материала или материала прокладок, располагаемых как снаружи свариваемых деталей, так и между ними.

Сварка пластмасс излучением

Из разновидностей сварки излучением, отличающихся друг от друга источником и характером излучения, используется световая сварка с применением и без применения присадочного материала, сварка лазерная и сварка инфракрасном излучением с подводом тепла непосредственно к соединяемым поверхностям (прямой метод) или к внешней поверхности соединяемых изделий (косвенный метод). Более широко применяется сварка инфракрасным излучением, которая основывается на свойстве термопластичных материалов поглощать падающие на них инфракрасные лучи и превращать электромагнитную энергию в тепловую.

Список литературы:
Зайцев К.И., Мацюк Л.Н. Сварка пластмасс.- М.: Машиностроение,1978.-222с.
Комаров Г.В. Способы соединения деталей из пластических масс.- М.: Химия,1979.-288с.
Шестопал А.Н., Шишкин В.А., Новиков В.А Способы соединения элементов конструкций из листовых полимерных материалов.- К.: О-во «Знание» УССР,1982.-31с.
Автор: Шестопал А.Н., Васильев Ю.С., Минеев Э.А. и др
Источник: Справочник по сварке и склеиванию пластмасс
Дата в источнике: 1986 год

Сварка пластмасс нагретым газом

Отличительной характеристикой способа сварки пластмасс нагретым газом является подвод тепла непосредственно к соединяемым поверхностям и последовательно от одного участка шва к другому. Наряду с последовательной сваркой возможна также сварка по всей поверхности шва за один прием. Сварку с помощью нагретого газа можно осуществлять с применением присадочного материала (прутка) и без присадочного материала.

сварка пластмасс нагретым газом

Данным методом сварки можно соединять детали практически любых размеров и конфигураций , из поливинилхлорида, полиолефинов, полиметилметакрилата, полистирола, полиамидов, пентапласта, полиформальдегида в любых условиях сварочного производства. В применяемых при сварке нагревательных устройствах (нагревателях) газ-теплоноситель нагревают при помощи электроэнергии или газового пламени. В качестве газа-теплоносителя чаще всего служит воздух,а при сварке термопластов, которые подвержены сильной термоокислительной деструкции – инертные газы, главным образом, азот.

Недостатки способа сварки пластмасс нагретым газом:

  • низкая производительность;
  • высокая стоимость работ;
  • сложность поддержания постоянных режимов сварки и обеспечения стабильности качества сварных соединений.

При изготовлении химической аппаратуры и емкостей, сварке линолеума, облицовке хранилищ для агрессивных жидкостей широко применяется сварка нагретым газом с использованием присадочного материала (рисунок 1).

Сварка нагретым газом с применением присадочного материала

Основные типы сварных соединений

Основные типы и конструктивные элементы выполняемых швов сварных соединений листов из поливинилхлорида и полиэтилена толщиной от 2 до 20 мм (рисунок 2), их размеры, размеры швов и их предельные отклонения должны соответствовать ГОСТ 16310-80.

Выбор типа шва обусловлен главным образом толщиной и свойствами свариваемых материалов, особенностями свариваемых конструкций и условиями нагружения в процессе эксплуатации. Качество сварных соединений существенно зависит от:

  • типа сварного шва;
  • подготовки изделия к сварке;
  • положения нагревателя в процессе сварки;
  • угла наклона прутка при подаче в шов;
  • температуры;
  • расхода и давления газа-теплоносителя;
  • скорости и порядка укладки прутка в шов;
  • расстояния от наконечника нагревателя до свариваемых поверхностей;
  • усилия вдавливания размягченного прутка;
  • диаметра присадочного прутка;
  • диаметра отверстия наконечника нагревателя;
  • а также от соблюдения сварщиком технологических приемов и режимов сварочного процесса.

подготовка листовых термопластов при стыковой сварке нагретым газом

Сварка швов стыковых соединений деталей толщиной до 4 мм возможна без подготовки кромок, однако для обеспечения равномерного провара рекомендуется оставлять зазор в вершине шва шириной до 1 мм. С этой же целью при сварке стыковых, тавровых и угловых соединений деталей толщиной свыше 4 мм между краями деталей оставляют в вершине шва зазор 0,5- 1,5 мм. При сварке стыковых, угловых и тавровых соединений, особенно при толщине вертикальной стенки свыше 4 мм, для повышения прочности соединения производится скос кромок одного либо обоих свариваемых листов с одной (V-образный шов) или с двух сторон (Х-образный шов) (табл. 1). Х-образные швы более прочные, чем V-образные, так как благодаря их симметричному строению при воздействии растягивающих и изгибающих нагрузок в них не возникают дополнительные изгибающие моменты, кроме того, они требуют в 1,6- 1,7 раза меньше расхода присадочного материала, следовательно, могут быть выполнены за меньшее число проходов. При сварке нахлесточных и стыковых соединений с накладкой кромки не скашивают.

Наибольшей механической прочностью обладают стыковые соединения. Нахлесточные соединения применять не рекомендуется, так как при одной и той же толщине изделий прочность этих соединений в 6 раз меньше, чем стыковых.

В процессе сварки очень важно обеспечить правильное положение присадочного материала по отношению к поверхностям шва. Для непластифицированного поливинилхлорида, полиэтилена низкого давления, полипропилена и пентапласта присадочный материал рекомендуется держать под углом 90° к поверхности шва. Если угол наклона меньше 90°, присадочный материал нагревается на участке большей длины, расход его в результате осадки увеличивается, а в шве из-за продольного сжатия пруток изгибается. Если угол наклона больше 90°, то пруток, уложенный в шов, удлиняется, вследствие чего при охлаждении может разорваться. При сварке мягких пластмасс (пластифицированный поливинилхлорид, полиэтилен высокого давления) лучшие результаты достигаются, если угол между прутком и поверхностью равен 120°. В процессе укладки в шов сварочный пруток не должен увеличивать свою длину более чем на 15 % по сравнению с исходной.

Угол подвода наконечника нагревателя к поверхности сварного шва должен составлять (26 ± 6)° при толщине свариваемых деталей до 5 мм и (39 ± 6)° при толщине деталей более 5 мм.

Температура газа на выходе из наконечника нагревателя должна быть на 50-100 °С выше, чем температура текучести полимера, так как на участке между наконечником и свариваемой поверхностью теплоноситель охлаждается. Давление газа может изменяться в пределах 0,035-0,1 МПа.

Струю газа, нагретого до необходимой температуры, направляют колебательными движениями нагревателя на свариваемые кромки деталей и пруток. Скорость укладки прутка (обычно 0,1-0,2 м/мин), зависящая от температуры газа, с увеличением диаметра прутка уменьшается, однако общая скорость заполнения шва (скорость сварки) при этом возрастает. Повышению производительности процесса в 3-4 раза и более способствует предварительный подогрев основного и присадочного материалов. Такая сварка называется скоростной и преимущественно применяется для соединения плоских и цилиндрических изделий, имеющих швы большой протяженности. При скоростной сварке возможен прижим прутка роликом или насадкой, укрепленными на нагревателе. При использовании предварительно подогретого прутка, сечение которого соответствует профилю шва, возможна сварка за один проход, т. е. отпадает необходимость в укладке нескольких прутков.

порядок укладки сварочных прутков в шов

Расстояние от наконечника нагревателя до свариваемых поверхностей должно составлять (5 ± 2 ) мм, расход газа-теплоносителя через 1 мм площади сечения наконечника – (5 ± 1,5) л/мин. Усилие вдавливания прутка в шов на 1 мм 2 площади сечения прутка для полиэтилена низкого давления, полипропилена, непластифицированного поливинилхлорида и пентапласта составляет (3 ± 1) Н, а для полиэтилена высокого давления – (2 ± 1) Н. Для мягких присадочных прутков, не выдерживающих осевого давления, применяют прикаточные ролики, усилие вдавливания которых в сварной шов составляет (20 ± 10) Н.

Для уменьшения коробления изделий при сварке присадочный материал укладывают в шов в определенном порядке (рис. 3). Каждый последующий ряд укладывают после естественного охлаждения предыдущего до температуры не выше 40 °С. Число рядов проходов на практике принимается на один больше, чем толщина основного материала в мм.

При выполнении V-образного стыкового и углового шва в конце сварки Делают проход с обратной стороны шва (со стороны корня шва), предупреждая этим “непровар” отдельных участков (предварительно рекомендуется разделка корня шва специальным резаком со скругленным торцом). Зачистка выступающих над поверхностью изделия валиков шва не требуется.

Диаметр прутка должен подбираться в зависимости от толщины свариваемого материала, геометрии сварочного шва, скорости сварки и требуемой прочности соединения. С увеличением диаметра прутка сокращается время, необходимое для заполнения разделки, и увеличивается прочность сварного соединения. Однако применение прутков диаметром более 4-5 мм нежелательно, так как обеспечить их равномерный прогрев при сварке невозможно. Обычно корень шва заполняют прутком диаметром 2 мм, далее при толщине свариваемого материала менее 4 мм шов заполняют прутком диаметром 3 мм, а при толщине материала более 4 мм – прутком диаметром 4 мм.

Диаметр наконечника на выходе теплоносителя должен превышать диаметр одинарного прутка или ширину двойного прутка на (0,5 ± 0,25) мм.

Сварка нагретым газом без присадочного материала

сварка нагретым газом без присадки

Сварка без присадочного материала выполняется по непрерывной или периодической схеме. В первом случае соединяемые поверхности нагревают последовательно отдельными участками, во втором – одновременно. Прочность соединений, получаемых без применения присадочного материала, выше, чем с его применением, и достигает 80 – 90 % прочности основного материала, при этом удельная ударная вязкость материала почти не снижается. Данный способ сварки используется главным образом для соединения плоских изделий прямолинейным швом. Температура сварки такая же, как и с присадочным материалом, а скорость сварки повышается в 10-15 раз.

Сварка листовых термопластов осуществляется преимущественно соединением на «ус» (рис. 4), для чего кромки листов перед сваркой срезают под углом 20-25° (при такой подготовке сварное изделие имеет одинаковую толщину во всех сечениях). Нагреватель устанавливают в таком положении, чтобы газовая струя попадала в створ угла, образуемого свариваемыми листами, и направлялась на срезанные кромки шва. Для равномерного нагрева материала наконечник нагревателя должен иметь прямоугольное сечение. Давление сварки осуществляется двумя последовательно расположенными парами роликов, с помощью которых осуществляется равномерное перемещение свариваемых листов.

Существует три способа сварки пленочных термопластов:

  • нагревом соединяемых поверхностей пленок (прямым нагревом);
  • односторонним нагревом внешней поверхности пленок по месту шва (косвенным нагревом);
  • оплавлением пленок по месту их соединения.

При прямом нагреве нагретый газ попадает в створ угла, образуемого свариваемыми пленками, которые после нагрева свариваемых поверхностей прикатываются друг к другу специальными роликами.

сварка пленок нагретым газом

При косвенном нагреве свариваемых поверхностей пленок струя газа создает одновременно и давление, необходимое для их сварки (рис. 5). Для исключения разрывов нагрев пленок производится на упругой подложке, а зона разогрева ограничивается двумя натянутыми на роликах бесконечными стальными лентами, расстояние между которыми определяет ширину сварного шва.

При прямом и косвенном нагреве качество сварных соединений и скорость сварки в значительной степени зависят от расстояния между наконечником нагревательного устройства и нагреваемой поверхностью свариваемых пленок, расхода и температуры газа-теплоносителя.

При сварке оплавлением соединяемые пленки накладывают друг на друга и зажимают между двумя ограничительными губками (пленки свариваются по оплавляемым кромкам) или двумя парами губок (пленки свариваются двумя швами с одновременным разделением по линии их оплавления между губками) (рис. 6). Этот способ пригоден для соединения пленок из материалов, которые при нагревании становятся достаточно жидкотекучими и сплавляются без приложения давления (пленки из полиамида, полиэтилентерефталата, полиэтилена высокого давления и др.). В практике для оплавления кромок часто применяют источник открытого пламени. В этом случае сварные швы характеризуются высокой прочностью, но обладают низкой морозостойкостью.

Читайте также: