Сварочный инвертор blueweld схема

Обновлено: 24.01.2025

Сварочный инвертор Blueweld Prestige 164 — компактный и легкий однофазный сварочный аппарат постоянного тока с воздушным охлаждением. Применяется для сварки MMA и TIG (контактное зажигание) электродами с основным и рутиловым покрытием. Свариваемые металлы: нержавеющие стали, чугун, конструкционная сталь.

  • высокая стабильность сварочной дуги и сварочного тока при колебании напряжения в сети
  • функции регулирования силы дуги «Arc Force», горячего старта Hot Start и защита от прилипания электрода Anti Sticking
  • Система воздушного охлаждения
  • термозащита, защита от перегрузок, повышенного и пониженного напряжения

Технические характеристики Blueweld Prestige 164

  • Напряжение питания 220В / 50Гц
  • Максимальная мощность 4.6кВт
  • Сварочный ток 5-150А
  • Нагрузка от максимальной 10%
  • Сварочный ток при нагрузке в % от максимальной 140А
  • Сварочный ток при нагрузке 60% 70А
  • Диаметр электрода 1.6-4мм
  • Габариты аппарата 310х120х225мм
  • Размеры кейса 420х380х170мм
  • Вес 3.4кг

Производство: BLUEWELD, Италия
Во вложении находятся: Заводская инструкция по ремонту, и анализ блок-схемы фирмы в переводе на русский. В архиве два файла Word с рисунками и принципиальными схемами силовой части и БУ
Вложения к странице

ФайлОписаниеРазмер файла:
Prestige-164.rar437 Кб

Ремонт инвертора Telwin 165 своими руками


В данной статье немного приоткроем завесу над буднями обычного сервисного центра по ремонту сварочной техники. Сегодня вашему вниманию представляем ремонт сварочного инвертора Telwin Force 165. Возможно, ознакомившись с предоставленной информацией, вы сможете устранить некоторые неисправности своими руками. И помните, не беритесь за ремонт, если не уверены в своих действиях, в результате, это всегда обходится дорого.

Как ни банально это звучит, ремонт начинается с разборки аппарата. Для начала снимается ручка, которая зафиксирована на 4 винтах. Затем откручиваются 2 винта, расположенные на пластмассовой части (держат переднюю и заднюю панель) и 2 винта, которыми зафиксирован корпус по бокам). Также не забудьте снять ручку регулятора тока, потянув ее на себя, потому что она не позволит передней панели инвертора отделиться от общего корпуса.

Диагностика начинается с поверхностного осмотра платы. Нужно внимательно посмотреть, нет ли перегоревших дорожек, поврежденных элементов и тому подобного. При беглом осмотре сразу видно, что вышел из строя зарядный резистор, который отвечает за плавный заряд конденсаторов.


Без него будет большой удар в сеть. То, что сгорел зарядный конденсатор говорит о 3 вещах:




Приступаем к прозвонке

Начать прозвонку лучше с выходных клемм, таким образом проверяется годность выходного диодного моста.


  • входной мост с обратной стороны платы;
  • диодный мост на предмет КЗ;
  • конденсаторы по высокой стороне;
  • силовые транзисторы IGBT нужно замерять меду стоком и истоком, то есть между коллектором и эмиттером.


В данном конкретном случае ремонта Telwin Force 165 вышли из строя именно транзисторы.

Обычно, при выгорании транзисторов выгорают и драйверы. В таком случае транзисторы нужно демонтировать. После демонтажа транзисторов нужно проверить исправность драйверов. Для этого находят сопротивления 15 Ом и звонят их в режиме прозвонки тестера. Если они целы, большая вероятность, что драйвер годный. Если же эти резисторы в обрыве, тогда придется полностью проверить драйвер. Рядом расположены диоды и транзисторы, их проверяют на пробой.


Перед включением нужно убедиться, что у нас по высокому нет замыкания (что замыкание было действительно в транзисторах). Проверяем на конденсаторах.

Топология данного инвертора, Telwin 165, это косой полумост. Выходной трансформатор включен между транзисторами. Почему так называется, косой полумост? Транзисторы включены как бы наискось. В другом косом плече моста стоят разрядные диоды. Их нужно прозвонить заранее, потому что при пробое транзисторов очень часто эти диоды тоже пробивает.

Проверяют также супрессоры – снабберы транзисторов. Они вылетают редко.


Если КЗ нет, нужно подать питание и осциллографом посмотреть, какой сигнал приходит на транзисторы. Многие ремонтники смотрят на форму сигналов на затворах, но мы рекомендуем от эмиттера до затвора впаивать конденсатор 220 -1000 пФ. Тем самым имитируется емкость затвора и нагружается цепочка драйвера. Таким образом, весь драйвер выходного транзистора думает, что он работает на затвор транзистора. Осциллограмма будет примерно такой, как при работе с реальным транзистором. Без нагрузки все может хорошо показывать, под нагрузкой – мы увидим, какая будет форма.

Перед подключением питания в обязательном порядке понадобится стоваттная лампочка с двумя проводами. Если вы не опытный ремонтник, вам нужно обрезать дорожку на плате. Дело в том, что вы можете не заметить замкнутый трансформатор, битый снаббер, диоды и т.д. Разрез питающей дорожки вас спасет от дорогостоящего выхода всей силы из строя.

После любой манипуляции, когда вы включили питание, а потом выключили его, нужно на лампочку разрядить конденсаторы. Напряжение на них смертельное, 310В, может быть даже летальный исход.

В процессе наладки, между двумя разрезанными дорожками впаивается лампочка, которая ограничивает ток, идущий через выходную часть. И даже если где-нибудь что-то будет не так (занижена частота, пробиты трансформаторы, выход и т.д.), лампочка просто загорится в полный накал, а все остальное останется целым.

В Telwin Force 165 схема построена следующим образом: как таковая отсутствует дежурка, но … через резистор от сетевого напряжения (310В) заряжаются конденсаторы, которые дают подпитку ШИМу и он короткими импульсами пытается запустить силовую часть. В момент запуска силовой части отвод из силового трансформатора через диод и кренку начинает питать всю схему. Вся схема «заводится» — в этот момент щелкает реле и включается вентилятор. Таким образом производится запуск инвертора, т.е он работает на самоподпитке (не от дежурки). Если вы включили инвертор и щелкнуло реле, завращался вентилятор – это значит, что сила «завелась».

В конкретной рассматриваемой плате при подаче питания на указанных на фото выводах между эмиттером и затвором должны быть короткие «пачки» импульсов – попытки запуска — примерно раз в одну секунду.


Для проверки нужно подпаять минусовой щуп осциллографа на эмиттер.

Важный момент! Напряжение, которое вы подаете, должно быть развязано от сети гальванически, чтобы осциллограф и все остальные приборы, которые вы подключаете, не попали попали под фазу (включая человека, который ремонтирует инвертор).

Другой щуп осциллографа ставится на затвор и подается питание.


На экране осциллографа должны появится серия запускающих импульсов. Значит, драйвер, ТГР, и управляющий ТГРом транзистор – все в рабочем состоянии.


Затем, отключается питание, разряжаются конденсаторы на лампочку и производится переключение на другое плечо.


Проверяются импульсы на другом плече. С помощью осциллографа вы можете измерить размах посчитать их длительность.

Запаиваем весь конечный каскад и пробуем его запустить, потому что все работает в штатном режиме, о чем свидетельствует описанная проверка.

При установке новых силовых IGBT –транзисторов все поверхности алюминиевых радиаторов, к которым они будут прилегать, должны быть идеально чистыми: очищены от любых загрязнений и промыты спиртом.

Проведите пальцем по радиатору в месте установки транзисторов: не должно быть вкраплений, отверстия под резьбу без заусениц и не должны возвышаться (когда откручивают винт, бывает как-бы «вытаскивают» резьбу из алюминия – получается бугор).


Нужно убедиться, что на IGBT-транзисторах нет вкраплений, потому что любая песчинка сделает зазор между транзистором и радиатором, соответственно, функция теплоотвода не будет выполняться в полной мере.

Пасту КПТ-8 (Кремнийоргани́ческая Па́ста Теплопрово́дная) ГОСТ 19783-74, используемую для улучшения теплообмена между мощными электронными компонентами и радиатором, нужно наносить на транзистор исключительно из тюбика. Не нужно выковыривать пасту лопатками из банок.

Пасту нужно мазать как можно меньшим слоем и только на металлическую часть. При затяжке транзистора она должна едва выйти из-под корпуса. Толстый же слой приводит к деформации транзистора.

Радиаторы с транзисторами обратно устанавливаются на плату и запаиваются. В технологический разрез дорожки платы, о котором говорилось ранее, впаивается лампочка, после чего подается питание. Должно щелкнуть реле и включиться вентилятор, это значит, что силовая часть запустилась. Если лампочка не горит, это говорит о том, что все работает нормально и ток покоя в норме.

Нужно проверить выход. На выходных клеммах инвертора должно появиться напряжение. Проводите все работы очень аккуратно, потому что схема в момент проверки находится под высоким напряжением 310В по постоянному току!


К выходным клеммам подключается небольшая лампочка 40 Вт и если все в норме, она должна загореться – силовая часть в рабочем состоянии.

Далее плата промывается изопропиловым спиртом от паяльного флюса, восстанавливается «разорванная» дорожка и нагружается на реостат (проверяется выходной ток).

Регулятор тока выводится на минимум и подключается реостат. Ставятся щупы и снимается напряжение холостого хода. Подключается нагрузка и регулируется ток ручкой инвертора. В данном конкретном случае ремонта ток не регулировался, т.е. был постоянно на максимальном своем значении. Если бы в качестве нагрузки был бы подключен не реостат, а реальный сварочный электрод, при первом же касании о металл этим электродом, вся силовая часть сгорела бы снова, так как инвертор постоянно работает на максимальной своей мощности! Оказывается, изначальная проблема, приведшая к поломке, заключалась в отсутствии регулировки тока. Это говорит о том, что неисправность находится где-то в задающем генераторе. Следствие выбитой силы уже было отремонтировано, а причину – нужно искать.

За регулировку тока отвечает трансформатор, через который проходит первичная обмотка силового трансформатора. Нужно проверить целостность вторичной обмотки этого регулировочного трансформатора. Операционник LM324 проводит сравнение между установленным положением ручки регулятора тока в одном плече и полученными данными с указанного на фото транса в другом плече.


Результаты, полученные операционником, подаются на микросхему ШИМ (задающий генератор работы всей силовой части) и от длительности его импульсов зависит выходной ток. Длительность же импульсов задается операционной микросхемой на основании полученных данных между установленной ручкой и тем, что пришло с трансформатора. В данном случае ремонта данная схема не работает. Нужно устанавливать причину.

Заменой микросхемы компаратора LM324 проблема была решена, а ремонт инвертора завершен. Дальнейшее испытание на реостате показали, что аппарат полностью исправен, а ручка регулировки тока работает, как и положено.

Ремонт BLUEWELD PRESTIGE 164


Ремонтируем сварочный инвертор BLUEWELD PRESTIGE 164. Убились, естественно, силовые транзисторы, в этих аппаратах редко что-то другое убивается. А с ними и ТГР — трансформатор гальванической развязки, ну и куча мелкой рассыпухи по всему драйверу, без этого никак.

Ремонтируем сварочный инвертор BLUEWELD PRESTIGE 164

В силовом блоке этого инвертора применяются IGBT транзисторы — IRGP4068D (GP4068D).

Инвертор собран на IGBT транзисторах - IRGP4068D (GP4068D)

Для ремонта использовался заводской ремкомплект, клиент не захотел переделок, чтобы все было оригинальное, ну что ж, хозяин-барин. В комплект входит: два силовых транзистора IRGP4068D, трансформатор гальванической развязки — ТГР, два диода RURP860 и одна теплопроводящая прокладка. Вот сам ремкомплект.

Ремкомплект BLUEWELD PRESTIGE 164

Сначала сделаем некоторые измерения содержимого. Это не обязательно но для общего развития, а может и пригодится кому.

ВНИМАНИЕ! Некоторые из этих измерений, например ёмкость переходов IGBT транзистора, не имеют никакого отношения к данным приведённым в даташитах и других справочниках. Все измерения сделаны в домашних условиях обычными доступными приборами — цифровым мультиметром или китайским транзистор-тестером. Эти замеры могут иметь значение для сравнения. Действительно если у двух транзисторов имеющих одинаковое название сильно отличаются показания измерений — значит, по крайней мере, один из них точно подделка (если во втором мы полностью уверены). А отличия в корпусах и шрифте маркировки только увеличивают подозрения.

Индуктивность трансформатора гальванической развязки — ТГР BLUEWELD PRESTIGE 164

Индуктивность первичной обмотки ТГР BLUEWELD PRESTIGE 164

Индуктивность первичной обмотки ТГР BLUEWELD PRESTIGE 164

Индуктивность вторичной обмотки ТГР BLUEWELD PRESTIGE 164

Индуктивность вторичной обмотки ТГР BLUEWELD PRESTIGE 164

Теперь займёмся транзисторами IRGP4068D (GP4068D)

IGBT транзистор IRGP4068D (GP4068D)

IGBT транзистор IRGP4068D (GP4068D) вид сбоку

Ёмкость переходов IGBT транзистора IRGP4068D (GP4068D)

Ёмкость перехода затвор-коллектор IGBT транзистора IRGP4068D (GP4068D)

Ёмкость перехода затвор-коллектор IGBT транзистора IRGP4068D (GP4068D)

Ёмкость перехода затвор-эмиттер IGBT транзистора IRGP4068D (GP4068D)

Ёмкость перехода затвор-эмиттер IGBT транзистора IRGP4068D (GP4068D)

Ёмкость перехода коллектор-эмиттер IGBT транзистора IRGP4068D (GP4068D)

Ёмкость перехода коллектор-эмиттер IGBT транзистора IRGP4068D (GP4068D)

Теперь всё это надо установить, припаять, прикрутить и воткнуть в розетку, «делов-то», предварительно очень желательно, даже настоятельно советую, проверить все элементы драйвера иначе последствия непредсказуемы.

Схема и ремонт сварочного инвертора PRESTIGE–164

Сварочный инвертор blueweld схема


Ремонт плат управления в сварочных инверторах можно отнести к сложным ремонтам, требуется знание элементной базы и принципов работы электронных компонентов.

Сварочный инвертор BlueWeld Prestige 210 PRO принесли в ремонт по причине постоянного включения защиты, светился желтенький светодиод аппарат, естественно, не варил.

Ремонт BlueWeld Prestige 210 PRO

Внешний осмотр ничего не дал, прозвонка тоже. Транзисторы, диоды и все, что можно проверить, было в порядке, но осциллограф показал отсутствие импульсов с платы управления.

Ремонт плат управления, даже несложных, где всего пара микросхем, требует знания элементов и принципов работы цифровой логики, а эта плата оказалась вполне навороченной. Шесть микросхем плюс туева хуча активных и пассивных элементов давали повод для раздумий и лирических рассуждений.



Плата управления BlueWeld Prestige 210 PRO.

Хорошо, что в наличии оказалась идентичная плата от такого же сварочника. После замены платы аппарат запустился. Это все замечательно, теперь точно установлено, что управление неисправно, но желательно и родную плату отремонтировать.

Для начала нужно запустить плату от внешнего источника питания. Дело в том, что если ПУ выпаяна из сварочного аппарата то даже при подаче штатных напряжений +17 и +5 вольт на плату ШИМ все равно не запустится, чтобы его перехитрить собираем вот такую схемку.



Схемка для запуска платы управления
BlueWeld Prestige 210 PRO от внешнего БП.

Теперь подаем на плату +17 и +5 вольт и приступаем к ремонту.

Да. легко сказать "приступаем к ремонту", а вот как это действо описать, ведь ремонт плат управления сварочных инверторов дело. интимное.

В общем после шаманских плясок с бубном, исследования изотерики и ауры электронных компонентов удалось установить аномальные зоны, и обрубить все энергетические хвосты и прочие отростки обнаглевшей ауры. Во как.

Быстро сказка сказывается, да не скоро дело делается. Долго ли коротко ли, но путем сравнения режимов работы двух плат удалось установить, что SMD резистор, по схеме R10 13кОМ, увеличил свое сопротивление в 3 раза. В результате чего неправильно работал элемент U1A микросхемы MC33074D и на его выходе, 1-я ножка, было не +15 вольт а 0 и сажался на корпус вывод 1 микросхемы UC2845(UC3845). Поэтому импульсы на 6-м выводе этой микросхемы отсутствовали.

Вывод 1 микросхемы UC2845 это:

1. Comp:(рус. Коррекция) выход усилителя ошибки. Для нормальной работы ШИМ-контроллера необходимо скомпенсировать АЧХ усилителя ошибки, с этой целью к указанному выводу обычно подключается конденсатор емкостью около 100 пФ, второй вывод которого соединен с выводом 2 ИС. Если на этом выводе напряжение занизить ниже 1 вольта, то на выходе 6 микросхемы будет уменьшаться длительность импульсов, тем самым уменьшая мощность данного ШИМ-контроллера.

В нашем случае этот вывод сидел на корпусе поэтому импульсы полностью отсутствовали.


Итак, ситуация проясняется, меняем резистор R10.



На фото вместо 13кОм впаян резистор 10кОм это временно для проверки, а так лучше поставить то, что должно быть, иначе результаты могут быть непредсказуемы. После замены R10 ШИМ, как ему и положено, запустился и на 3-й ножке платы управления появились импульсы.



Импульсы на плате управления BlueWeld Prestige 210 PRO.
Осциллограма снята на выпаянной из инвертора ПУ.

Это всего лишь частный случай ремонта, учитывая обилие электронных компонентов, разнообразие дефектов может быть очень велико.

В архиве есть схема платы управления с режимами снятыми в рабочем устройстве, может помочь при таком ремонте.

Внимание!
Сварочный инвертор это сложное электронное устройство, ремонтируя его самостоятельно вы принимаете весь риск на себя.

Ремонт сварочных инверторов фирмы BlueWeld и других производителей.

Если вам приходилось использовать такой сварочный инвертор отзывы о нем можно оставить в комментариях.

Помогите с ремонтом Blueweld Prestige 164

StalkerFox

Вы можете написать сейчас и зарегистрироваться позже. Если у вас есть аккаунт, авторизуйтесь, чтобы опубликовать от имени своего аккаунта.
Примечание: Ваш пост будет проверен модератором, прежде чем станет видимым.

Последние посетители 0 пользователей онлайн

Объявления

Топ авторов темы

KRAB 24 постов

Ahneus 10 постов

Дмитрий Вас 27 постов

ummagumma 11 постов

Популярные посты

KRAB

даже "мертвый! ТГР не даст там "пилу" . но вы "мотайте" . как в классике - ". пилите, Шура, пилите, они золотые . " Исправность ТГР проверяется менее чем за минуту осцилом или измери

ummagumma

ummagumma

полная жопа. то ли показомер, то ли трабл. индухтивность первички тгр тысяча мкгн. такой порядок. скорее показомер речайшый отстойный шлак.

ага, это многократно описано, но аФтар - лентяй кроме прочего . А еще там отлично работает готовый и доступный МИТ-4В - проверено лично (хотя мотал и на Ш и на кольцах, а можно просто феррит

Изображения в теме

Да, интеграл, но не по площади конуса, а по его видимой части. По вашей картинке излучатель светит на конус под углом 90 градусов к образующей. А угол альфа в формуле - это не то, что вы рисуете, это угол между направлением на излучатель и нормалью к поверхности. Кроме того, для пространственной фигуры в формулу расчета входит и длина волны излучения. Может, стоит почитать учебник?

Andrey 69

Да ко мне люди то опасались подходить Шурик,не боись-это не самый поганоразбираемый фен. Если что кунаков позовем на помощь

Dr. West

Black-мур

Ничего особенного. Скорее всего два самореза и вверху защелок пара. Тему про еще не принесенный фен заводить ну прямо не знаю. Начинаешь когда разбирать понятно все становится без интернетных чтений. Пальцами аккуратно пошатать и примерно ясно где защелки П.С. Не dyson-вот где увлекательные слова с разборкой

А можно и вообще его вырвать. Я так однажды 3ГД-2 без диффузора оставил. Лет 10 назад приятель попросил подлечить свои старенькие 6АС-2. А мой детёныш, когда я снял с одной перделки защитную решётку, ткунала через дырдочку на мордахе пищалки пальчиком и вмяла колпачок. Я решил его быстренько пылесосом поправит. 2-киловаттному филипсу отстегнул "дишло" с щёткой, включил, подношу к дырдочке пищалки - чпок, и колпачок вместе с катушкой в "кружке" пылесоса. Крышку декомпрессии на кривулине патрубка я открыть-то забыл. Две недели ждал, когда с авито приедет живая старушка.

Диего

Здравствуйте! Во вторник на ремонт принесут, указанный в заголовке фен. Проблема у него вроде как простая, при перегибе шнура у основания, то работает, то нет. По идее разобрать, выкусить поврежденный участок и припаять на место, все просто. Но, я знаю, что современные фены не так просто разобрать, так как есть скрытые винты и защелки. Если кто с таким сталкивался, подскажите хитрые моменты при разборке.

Читайте также: