Сварочный аппарат стэ 24
Сварочные аппараты переменного тока, применяемые на заводах и строительно-монтажных площадках, подразделяют на четыре основные группы: сварочные аппараты с отдельным дросселем; сварочные аппараты со встроенным дросселем; сварочные аппараты с подвижным магнитным шунтом; сварочные аппараты с увеличенным магнитным рассеянием и подвижной обмоткой. Они отличаются по конструкции и по электрической схеме. Сварочные аппараты состоят из понижающего трансформатора и устройства—дросселя, подвижного магнитного шунта, подвижной обмотки—для создания падающей внешней характеристики и регулирования сварочного тока. Трансформатор обеспечивает питание дуги переменным током напряжением 60. 70 В.
Сварочные аппараты с отдельным дросселем (рис. 25) состоят из понижающего трансформатора и дросселя (регулятора тока). Трансформатор Тр имеет сердечник (магнитопровод) 2 из пластин, отштампованных из тонкой трансформаторной стали толщиной 0,5 мм. На сердечнике расположены первичная / и вторичная 3 обмотки. Первичная обмотка из изолированной проволоки подключается к сети переменного тока напряжением 220 или 380 В. Во вторичной обмотке, изготовленной из медной шины, индуцируется напряжение 60. 70 В. Небольшое магнитное рассеивание и малое омическое сопротивление обмоток обеспечивают незначительное внутреннее падение напряжения и высокий к. п.д. трансформатора. Последовательно с вторичной обмоткой в сварочную цепь включена обмотка 4 (из голой медной шины) дросселя Др. Обмотка имеет асбестовые прокладки, пропитанные теплостойким лаком. Сердечник дросселя также набран из пластин тонкой трансформаторной стали и состоит из двух частей: неподвижной 5, на которой расположена обмотка дросселя, и подвижной 6, перемещаемой с помощью винтовой пары 7. При вращении рукоятки гґо часовой стрелке воздушный зазор а увеличивается, против часовой стрелки—уменьшается.
При возбуждении дуги (при коротком замыкании) большой ток, проходя через обмотку дросселя, создает
мощный магнитный поток, наводящий
э. д.с. дросселя, направленную против напряжения трансформатора. Вторичное напряжение, развиваемое трансформатором, полностью поглощается падением напряжения в дросселе. Напряжение в сварочной цепи почти достигает нулевого значения.
При возникновении дуги сварочный ток уменьшается; вслед за ним уменьшается э. д.с. самоиндукции дросселя, направленная против напряжения трансформатора, и в сварочной цепи устанавливается рабочее напряжение, необходимое для устойчивого горения дуги, меньшее, чем напряжение холостого хода. Изменяя зазор а между неподвижным (и подвижным магнитопро - водами, изменяют индуктивное сопротивление дросселя и тем самым ток в сварочной цепи. При увеличении зазора магнитное сопротивление магнитопровода дросселя увеличивается, магнитный поток ослабляется, уменьшается э. д.с. самоиндукции катушки и ее индуктивное сопротивление. Это приводит к возрастанию сварочного тока. При уменьшении зазора сварочный ток уменьшается. Один оборот рукоятки винтовой пары изменяет сварочный ток примерно на 20 А. По этой схеме изготовлены сварочные трансформаторы типа СТЭ. Трансформаторы СТЭ-24-У и СТЭ - 34-У не сложны по устройству и безопасны в работе и поэтому их широко применяют при ручной дуговой сварке.
На рис. 26 представлен трансформатор СТЭ-34 с регулятором (дросселем) РСТЭ-34.
Трансформатор / и регулятор 2 заключены в отдельные кожухи из тонкой листовой стали с жалюзи для естественного охлаждения н установлены на колесики для перемещения. Первичная обмотка из изолированной проволоки размещена на двух. катушках. Для включения трансформатора в сеть с напряжением 220 В обмотки катушек соединяют параллельно, а для сети напряжением 380 В —последовательно. Вторичная обмотка из голой медной шины расположена поверх первичной обмотки на тех же катушках. При этом вторичная обмотка соединена всегда последовательно. На торцовой стенке кожуха на клеммовой доске расположены выводы первичной обмотки, на другой торцовой стенке—выводы вторичной обмотки.
Сварочные аппараты со встроенным дросселем^рис.27) имеют электромагнитную схему, разработанную акад. В. П. Никитиным. Магни - топровод трансформатора состоит
из основного сердечника /, на котором расположены пе. рвичная 2 и вторичная 6 обмотки собственно трансформатора, и добавочного сердечника 4 с
обмоткой 5 дросселя (регулятора тока). Добавочный магнитопровод расположен над основным и состоит из неподвижной и подвижной частей, между которыми с помощью винтовой пары 3 устанавливается необходимый воздушный зазор а.
Магнитный поток, создаваемый обмоткой дросселя, может иметь попутное или встречное направление с потоком, создаваемым вторичной обмоткой трансформатора, в зависимости от того, как включены эти обмотки. При встречном соединении магнитные потоки, возникающие при прохождении тока во вторичной обмотке трансформатора Фт и обмотке дросселя Фд, будут направлены навстречу друг другу. При этом напряжение холостого хода £Лх = = (/тх— t/дх, где £/тх - напряжение во вторичной обмотке трансформатора, В; Uдх — напряжение в обмотке дросселя, В. При попутном включении магнитные потоки Фт и Фд будут иметь одинаковое направление и напряжение холостого хода Uxx=ilтх + “Ь Ндх-
Сварочный ток регулируют, изменяя воздушный зазор а; чем больше зазор а, тем больше сварочный ток.
Сварочный аппарат СТН-500, представленный на рис. 28, предназначен для ручной дуговой сварки. Здесь применено встречное включение вторичной обмотки трансформатора и обмотки дросселя. Обмотки трансформатора размещены на двух катушках для включения в сеть с напряжением 220 и 380 В. Сварочный ток регулируют вращением рукоятки, как и в регуляторе типа РСТЭ. На торцах кожуха сварочного аппарата установлены клеммовые доски, к которым выведены с одной стороны концы первичной обмотки, а с другой—одни конец вторичной обмотки и один конец обмотки дросселя. Для облегчения перемещения аппарат устанавливают на тележку. Сварочные аппараты СТН-500-1 отличаются от СТН-500 тем, что имеют алюминиевые обмотки.
Сварочные аппараты ТСД, применяемые главным образом при автоматической сварке, имеют дистанционное управление регулированием сварочного тока. Подвижная часть сердечника перемещается с помощью червячной передачи от электродвигателя, управляемого двумя магнитными пускателями. При включении одного из них сварочный ток возрастает, при включении другого— уменьшается. Для охлаждения аппарата установлен вентилятор с электродвигателем трехфазного тока мощностью 0,25 кВт.
Характеристика сварочных аппаратов с дросселем приведена в табл. 3.
Марка сварочного аппарата
Пределы регулирования сварочного тока, А
Сварочные аппараты с увеличенным магнитным рассеянием и подвижным магнитным шунтом (рис. 29) имеют целый замкнутый магнитопровод, у которого на одном
стержне расположены первичная 4 и вторичная 3 обмотки трансформатора, а на другом — реактивная обмотка /. Между ними находится стержень— магнитный шунт 2. Шунт замыкает магнитные потоки, создаваемые первичной и реактивной обмотками. При этом образуются магнитные потоки рассеяния, которые создают значительное индуктивное сопротивление. Таким образом обеспечивается падающая внешняя характеристика трансформатора.
Сварочный ток регулируют, перемещая магнитный шунт вдоль направления магнитного потока. При выдвижении шунта рассеяние магнитных потоков первичной и реактивной обмоток уменьшается, вследствие чего уменьшается индуктивное сопротивление трансформатора. При этом сварочный ток возрастает. По такому принципу работают сварочные аппараты типа СТАН и СТШ.
Сварочные аппараты типа СТШ имеют магнитный шунт, состоящий из двух половин, которые могут сдвигаться и раздвигаться. При полностью сдвинутых половинах шунта сварочный ток будет минимальный. Если раздвигать половины шунта, то магнитный поток рассеяния уменьшается и поэтому сварочный ток возрастает. В строительстве и промышленности применяют сварочные аппараты СТШ - 300, СТШ-500 и СТШ-500-80. Аппарат СТШ-500-80 отличается от первых двух типов тем, что имеет два диапазона сварочных токов(катушки обмоток могут переключаться с последовательного соединения для малых сварочных токов на параллельное соединение для больших сварочных токов). Для монтажных работ рекомендуются аппараты легкого типа CTLLI - 250 массой 44 кг.
Характеристика сварочных аппаратов с подвижным магнитным шунтом приведена в табл. 4.
Сварочные аппараты с увеличенным магнитным рассеянием и подвижной обмоткой. Трансформатор имеет магнитопровод, на обоих стержнях которого расположены по две катушки: одна с первичной обмоткой, а вторая — со вторичной обмоткой. Катушки первичной обмотки закреплены неподвижно в нижней части сердечника, а катушки вторичной обмотки перемещаются по стержню с помощью винтовой пары. Сварочный ток регулируют изменением расстояния между первичными и вторичными обмотками. При увеличении этого расстояния магнитный поток рассеяния возрастает, а сварочный ток уменьшает-
Марка сварочного аппарата
Потребляемая мощность, кВ А
Вторичное напря жение, В
Пределы регулирования сва ровного тока, А
ся. По этому принципу изготовлены трансформаторы типа ТС (рис. 30), ТСК и ТД с алюминиевыми обмотками. Сварочные аппараты ТСК имеют конденсаторы, которые включены параллельно первичным обмоткам. Они способствуют повышению коэффициента мощности. Трансформаторы типа ТД имеют сварочных токов: при параллельном вичных и вторичных обмоток и малые токи — при последовательном их соединении. Переключение обмоток
производится одновременно пакетным переключателем. В каждом диапазоне ток плавно регулируют, изменяя расстояние между катушками первичной и вторичной обмоток. Удобны для ра боты в условиях строительно-монтаж ной площадки трансформаторы ТД 304, отличающиеся от ТД-300 нали чием устройства в виде Дополнитель ной приставки для дистанционного ре гулирования сварочного тока. Харак теристйка сварочных аппаратов с под вижной обмоткой приведена в табл. 5
два диапазона большие токи — соединении пер-
Для. строительно-монтажных ра бот очень удобны облегченные переносные сварочные аппараты ТСП-1 и ТСП-2. Они предназначены для сварки коротких швов, прихваток, т. е. при сварке с большими перерывами. Вторичная обмотка трансформатора ТСП- 1 секционирована, что позволяет ступенчато регулировать сварочный ток переключением секций с помощью перемычки на броневой доске трансформатора. Масса сварочного аппарата ТСП-1 — 35 кг. Пределы сварочного тока 105. 180 А. Масса аппарата ТСП-2 — 63 кг. Номинальный ток — 300 А.
Трехфазные сварочные аппараты применяют при сварке трехфазной дугой спаренными электродами. Процесс сварки осуществляется сварочными дугами, которые возбуждаются между каждым электродом и свариваемой деталью и между электродами. Аппарат (рис. 31) состоит из трех - фазного трансформатора /, регулятора сварочного тока и магнитного контактора 3. Первичная обмотка включается в силовую сеть напряжением
Потребляемая мощность, кВ-А
Вторичное напряжение, В
Пределы регулирования сварочного тока, А
220 В (соединение обмоток в треугольник) или 380 В (соединение обмоток в звезду). Вторичная обмотка имеет по две катушки на каждом стержне и выполнена из голой медной шины. Регулятор сварочного тока состоит из двух дросселей и трех обмоток. Две обмотки 5 и б расположены на одном магнитопроводе и подключены к спаренным в едином электрододержателе, но изолированным друг от друга электродам 7 и 8. Третья обмотка 4 расположена на втором магнитопроводе и подключена к свариваемой детали 9. Регулятор вмонтирован в общий корпус и снабжен двумя рукоятками, с помощью которых (изменением воздушных зазоров в магнито - проводах) регулируется сварочный ток. Одной рукояткой регулируют ток одновременно в обеих фазах, подключенных к электродам, а второй рукояткой— в фазе, подсоединенной к изделию.
Магнитный контактор 3 служит для включения цепи спаренных электродов. В начальный момент при возбуждении дуги сварочная цепь замыкается через свариваемую деталь и один из электродов (на рисунке электрод 8). Ток проходит по обмотке 4 регулятора и обмотке 2 контактора. Контактор включает обмотку 5 регулятора. Возникает вторая дуга. При отводе электродов от детали ток в обмотках 4 и 2 прекращается и контактор 3 выключает цепь обмотки 5, гасит дугу между электродами.
Трехфазный сварочный аппарат ЗСТ конструкции проф. Н. С. Силунова имеет мощность 45 кВ-А, вторичное напряжение — 60 В, сварочный ток— 450 А. Заводом «Электрик» для ручной сварки выпущены трехфазные сварочные аппараты ТТС-400 на 400 А, состоящие из двух спаренных трансформаторов СТН в едином корпусе. Схема питания трехфазной сварочной дуги приведена на рис. 32. Для автоматической сварки заводом «Электрик» выпущены трехфазные сварочные аппараты ТТСД-1000 на 1000 А, состоящие из двух спаренных трансформаторов ТСД-1000-4.
Трехфазные сварочные аппараты обеспечивают высокую производительность, экономию электроэнергии (к. п.д. достигает 0,9) и равномерную загрузку фаз сети при высоком коэффициенте мощности (cos ф= 0,8), однако ввиду сложности сварочного оборудования и трудностей при сварке потолочных и вертикальных швов применяются ограниченно.
При необходимости обеспечить большой сварочный ток и при отсутствии сварочных аппаратов достаточной мощности можно применять параллельное включение трансформаторов Схема такого включения сварочных аппаратов представлена на рис. 33. Для параллельной работы нужно применять трансформаторы с одинаковыми внешними характеристиками и напряжениями первичной и вторичной цепей. Одноименные концы первичных обмоток а соединяют между собой и общие клеммы 1 включают в силовую сеть переменного тока. Одноименные концы вторичной обмотки Ь также соединены между собой: клеммы 2 под-
ключают к дросселям Др, а клеммы 3— к детали. Дроссели соединяют между собой также параллельно. Сварочный ток регулируют вращением рукояток дросселей так, чтобы обеспечить равенство нагрузок на трансформаторы. Равенство нагрузок проверяют амперметром.
В некоторых случаях для повышения устойчивости горения дуги, питаемой переменным током, применяют способ наложения на сварочный ток частотой 50 Гц токов высокой частоты (150. 500 кГц) и высокого напряжения (1500. 6000 В). Такие меры предпринимают при сварке тонкостенных изделий дугой малой мощности и при сварочном токе 20. 40 А, а также при сварке в защитных газах, сварке специальных сталей и некоторых цветных металлов.
Для получения токов высокой частоты и высокого напряжения применяют осцилляторы - параллельного и последовательного включения. Принципиальная схема осциллятора параллельного включения ОСПЗ-2М и его включения в сварочную цепь показана на рис. 34. Осциллятор ОСПЗ-2М включают непосредственно в питающую сеть напряжением 220 В. Он состоит из повышающего (с 220 В до 6000 В) трансформатора ПТ и колебательного контура. Колебательный контур, состоящий из высокочастотного трансформатора ВЧТ, конденсатора Сз и разрядника Р, вырабатывает высокочастотный ток. Контур связан со сварочной цепью индуктивно через трансформатор ВЧТ, выводы вторичной обмотки которого присоединяют: один — к клемме «земля» выводной панели, а другой—ко второй клемме через конденсатор Сб и предохранитель Ярг Конденсатор Сб препятствует прохождению тока высокого напряжения и низкой частоты в сварочную цепь и служит для защиты сварщика в случае пробоя конденсатора Сз. Предохранитель Пр'2 выключает осциллятор в случае пробоя конденсатора Се. Для устранения радиопомех в питающей сети осциллятор снабжен фильтром из двух защитных дросселей Др і и Др-2. и четырех конденсаторов Сі, Сч, С з и Са. Фильтр защищает цепь питания от токов высокой частоты. Для общей защиты от радио - помех осциллятор имеет экранирующий металлический кожух.
Осцилляторы последовательного включения ( М-3, ОС-1) применяют в установках для дуговой сварки в защитных газах. Они обеспечивают более надежную защиту генератора (или силового выпрямительного блока) от пробоя высокочастотным напряжением осциллятора.
При применении осциллятора дуга загорается легко, даже без прикосновения электрода к изделию (при зазоре 1. 2 мм), что объясняется предварительной ионизацией воздушного промежутка между электродом и свариваемой деталью.
Институтом электросварки им. Е. О. Патона разработан импульсный генератор ГИ-1, который. подает ток высокого напряжения (200. 300 В) импульсами в те моменты, когда напряжение в сварочной цепи переходит через нулевое значение. Тцкие генераторы более надежны в работе и более экономичны, чем осцилляторы, так как требуют меньше энергии.
Трансформаторы с нормальным магнитным рассеянием
Трансформаторы с отдельным дросселем. Жесткая внешняя характеристика такого трансформатора получается за счет незначительного магнитного рассеяния и малого индуктивного сопротивления обмоток трансформатора. Падающие внешние характеристики создаются дросселем, имеющим большое индуктивное сопротивление.
Технические данные трансформаторов СТЭ-24У и СТЭ-34У с дросселями приведены в таблице.
Трансформаторы типа СТН со встроенным дросселем. По этой конструктивной схеме выполнены трансформаторы СТН-500 и СТН-500-1 для ручной дуговой сварки и трансформаторы с дистанционным управлением ТС Д-500, ТС Д-2000-2, ТСД-1000-3 и ТСД-1000-4 для автоматической и полуавтоматической сварки под флюсом. Технические данные указанных трансформаторов приведены в таблице.
Схема конструкции трансформатора типа СТН системы академика В. П. Никитина и его внешние статические характеристики показаны на рис. 1. Магнитное рассеяние и индуктивное сопротивление обмоток (1 и 2) трансформатора невелики, внешняя характеристика жесткая. Падающая характеристика создается за счет реактивной обмотки 3, создающей индуктивное сопротивление. Верхняя часть магнитопровода является одновременно и частью сердечника дросселя.
Величина сварочного тока регулируется перемещением подвижного пакета 4 (винтовым механизмом с помощью рукоятки 5). Напряжение холостого хода у этих трансформаторов 60 —70 В, а номинальное рабочее напряжение Uном = 30 В. Несмотря на объединенный магнитопровод, трансформатор и дроссель работают независимо друг от друга. В электротехническом отношении трансформаторы типа СТН не отличаются от трансформаторов с отдельными дросселями типа СТЭ.
Для автоматической и полуавтоматической сварки применяют трансформаторы типа ТСД. Общий вид конструкции трансформатора ТСД-1000-3 и его электрическая схема показаны на рис. 2 и 3.
Трансформатор типа ТСД имеет специальный электропривод для дистанционного регулирования сварочного тока» Для включения приводного синхронного трехфазного электродвигателя ДП с понижающим червячным редуктором служат два магнитных пускателя ПМБ и ПММ, управляемые кнопками. Перемещение подвижной части пакета магнитопровода ограничивается конечными выключателями ВКБ и ВКМ.
Трансформаторы снабжены фильтрами для подавления радиопомех. Кроме применения для автоматической и полуавтоматической сварки под флюсом, трансформаторы ТСД-1000-3 и ТСД-2000-2 применяются в качестве источника питания для термической обработки сварных соединений из легированных и низколегированных сталей.
Рис. 3. Электрическая схема трансформатора ТСД-1000-3: Тр — понижающий трансформатор, КУБ, КУМ — кнопки дистанционного управления сварочным током - «Больше», «Меньше», ПМБ, ПММ — магнитные пускатели, ДП — двигатель провода механизма перемещения пакета магнитопровода, ВКБ, ВКМ — конечные выключатели, ДВ — двигатель вентилятора, Трс — трансформатор сварочный
СВАРОЧНЫЕ ТРАНСФОРМАТОРЫ
Современные заводы, как правило, снабжаются переменным трёхфазным током. Поэтому представляется естественным производить сварку непосредственно переменным током, не преобразуя его предварительно в постоянный ток. Против переменного тока в дуге выдвигались следующие основные возражения: мгновенные значения переменного тока периодически проходят через нуль 100 раз в секунду, поэтому дуга переменного тока будет недостаточно устойчива. В дуге постоянного тока можно менять распределение тепла, меняя полярность; при переменном токе эта возможность теряется.
Многолетний опыт показал, что при современных электродах с хорошей обмазкой устойчивость дуги вполне достаточна как при постоянном, так и при переменном токах. Разница в устойчивости дуги для постоянного и переменного токов становится почти неощутимой и возможный некоторый недостаток устойчивости дуги переменного тока может быть всегда скомпенсирован, например, за счёт некоторого повышения напряжения холостого хода сварочного трансформатора. Что касается распределения тепла между электродами, то опыт показывает, что для большинства случаев распределение тепла в сварочной дуге переменного тока вполне удовлетворяет требованиям сварочной техники и даёт возможность получить безупречные результаты сварки.
В свою очередь, переменный ток имеет некоторые специфические преимущества перед постоянным током, например, можно отметить практически полное отсутствие магнитного дутья при сварке на переменном токе, в то время как при постоянном токе магнитное дутьё часто заметно мешает работе.
Сварочные трансформаторы просты по устройству, дёшевы, почти не требуют обслуживания и занимают малые площади. Они портативны, обладают малыми размерами и весом, имеют высокий к, п. д., а отсюда и незначительный расход электроэнергии, почти )В два раза меньший по сравнению с агрегатами постоянного тока, к. п. д. сварочных трансформаторов достигает 80—85%, расход электроэнергии равен 3,5—4,25 кет-час на 1 кг наплавленного металла.
Для получения необходимой падающей характеристики на электродах дуги, необходимо' включить последовательно с дугой в сварочную цепь достаточное сопротивление. По экономическим соображениям это сопротивление должно быть по возможности чисто индуктивным с минимальной активной составляющей. Таким образом, задача получения необходимой падающей характеристики сводится к увеличению индуктивного сопротивления в цепи трансформатора. Лучшие результаты получаются при увеличении индуктивности вторичной цепи трансформатора, что и применяется на практике.
Фиг. 14. Схемы сварочных трансформаторов.
Увеличение индуктивности вторичной цепи трансформатора может быть получено включением последовательно с дугой индуктивного сопротивления дроссельной катушки, конструктивно отдельной от трансформатора. В разновидности системы дроссельная катушка может быть объединена конструктивно в одно целое с трансформатором. . Соответствующим конструированием трансформатора индуктивность вторичной цепи трансформатора может быть настолько повышена, что необходимость в отдельной дроссельной катушке отпадает, и необходимая падающая характеристика получается за счёт индуктивности самого трансформатора. Таким образом, получается три следующие основные системы сварочных трансформаторов:
1) с отдельной дроссельной катушкой во вторичной цепи;
2) с дроссельной катушкой во вторичной цепи, конструктивно объединённой в одно целое с трансформатором;
3) с увеличенной индуктивностью без дроссельной катушки.
в нашей промышленности. Видоизменения основных схем и объединение элементов отдельных схем образуют громадное количество» возможных систем и конструкций сварочных трансформаторов.
Сварочные трансформаторы изготовляются обычно однофазными, сухими, с естественным воздушным охлаждением. Примером
Сварочные аппараты инверторного типа и полуавтоматы можно купить здесь
Сварочные аппараты с отдельным дросселем (рис. 25) состоят из понижающего трансформатора и дросселя (регулятора тока). Трансформатор Тр Имеет сердечник (магнитопровод) 2 из пластин, отштампованных из тонкой трансформаторной стали толщиной 0,5 мм. На сердечнике расположены первичная / и вторичная 3 обмотки. Первичная обмотка из изолированной проволоки подключается к сети переменного тока напряжением 220 или 380 В. Во вторичной обмотке, изготовленной из медной шины, индуцируется напряжение 60. 70 В. Небольшое магнитное рассеивание и малое омическое сопротивление обмоток обеспечивают незначительное внутреннее падение напряжения и высокий к. п.д. трансформатора. Последовательно с вторичной обмоткой в сварочную цепь включена обмотка 4 (из голой медной шины) дросселя Др. Обмотка имеет асбестовые прокладки, пропитанные теплостойким лаком. Сердечник дросселя также набран из пластин тонкой трансформаторной стали и состоит из двух частей: неподвижной 5, на которой расположена обмотка дросселя, и подвижной 6, перемещаемой с помощью винтовой пары 7. При вращении рукоятки гГо часовой стрелке воздушный зазор а увеличивается, против часовой стрелки—уменьшается.
При возбуждении дуги (при коротком замыкании) большой ток, проходя через обмотку дросселя, создает
мощный магнитный поток, наводящий э. д.с. дросселя, направленную против напряжения трансформатора, Вторичное напряжение, развиваемое трансформатором, полностью поглощается падением напряжения в дросселе. Напряжение в сварочной цепи почти достигает нулевого значения.
При возникновении дуги сварочный ток уменьшается; вслед за ним уменьшается э. д.с. самоиндукции дросселя, направленная против напряжения трансформатора, и в сварочной цепи устанавливается рабочее напряжение, необходимое для устойчивого горения дуги, меньшее, чем напряжение холостого хода. Изменяя зазор а между неподвижным, и подвижным магнитопро - водами, изменяют индуктивное сопротивление дросселя и тем самым ток в сварочной цепи. При увеличении зазора магнитное сопротивление магнитопровода дросселя увеличивается, магнитный поток ослабляется, уменьшается э. д.с. самоиндукции катушки и ее индуктивное сопротивление. Это приводит к возрастанию сварочного тока. При уменьшении зазора сварочный ток уменьшается. Один оборот рукоятки винтовой пары изменяет сварочный ток примерно на 20 А. По этой схеме изготовлены сварочные трансформаторы типа СТЭ. Трансформаторы СТЭ-24-У и СТЭ - 34-У не сложны по устройству и безопасны в работе и поэтому их широко применяют при ручной дуговой сварке.
Трансформатор / и регулятор 2 заключены в отдельные кожухи из тонкой листовой стали с жалюзи для естественного охлаждения н установлены на колесики для перемещения. Первичная обмотка из изолированной проволоки размещена на двух катушках. Для включения трансформатора в сеть с напряжением 220 В обмотки катушек соединяют параллельно, а для сети напряжением 380 В —последовательно. Вторичная обмотка из голой медной шины расположена поверх первичной обмотки на тех же катушках. При этом вторичная обмотка соединена всегда последовательно. На торцовой стенке кожуха на клеммовой доске расположены выводы первичной обмотки, на другой торцовой стенке—выводы вторичной обмотки.
Сварочные аппараты со встроенным дросселем(Рис.27) имеют электромагнитную схему, разработанную акад. В. П. Никитиным. Магни - топровод трансформатора состоит из основного сердечника /, на котором расположены пе. рвичная 2 и вторичная 6 обмотки собственно трансформатора, и добавочного сердечника 4 с
Обмоткой 5 дросселя (регулятора тока). Добавочный магнитопровод расположен над основным и состоит из неподвижной и подвижной частей, между которыми с помощью винтовой пары 3 устанавливается необходимый воздушный зазор а.
Магнитный поток, создаваемый обмоткой дросселя, может иметь попутное или встречное направление с потоком, создаваемым вторичной обмоткой трансформатора, в зависи-
Мости от того, как включены эти обмотки. При встречном соединении магнитные потоки, возникающие при прохождении тока во вторичной обмотке трансформатора Фт и обмотке дросселя Фд, будут направлены навстречу друг другу. При этом напряжение холостого хода Uxll = = UTX — UДх, где — напряжение во вторичной обмотке трансформатора, В; Uд* — напряжение в обмотке дросселя, В. При попутном включении магнитные потоки Фт и Фд будут иметь одинаковое направление и напряжение холостого хода UXX=Uтх + + U ДХ.
Сварочный ток регулируют, изменяя воздушный зазор а; чем больше зазор а, тем больше сварочный ток.
Сварочные аппараты с увеличенным магнитным рассеянием и подвижным магнитным шунтом (рис. 29) имеют целый замкнутый магнитопровод, у которого на одном
стержне расположены первичная 4 И вторичная 3 обмотки трансформатора, а на другом — реактивная обмотка 1. Между ними находится стержень— магнитный шунт 2. Шунт замыкает магнитные потоки, создаваемые первичной и реактивной обмотками. При этом образуются магнитные потоки рассеяния, которые создают значительное индуктивное сопротивление. Таким образом обеспечивается падающая внешняя характеристика трансформатора.
Читайте также: