Сварочный аппарат на симисторе
Способы и схемы управления тиристором или симистором
Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.
Содержание статьи
Определение
Тиристор (тринистор) - это полупроводниковый полууправляемый ключ. Полууправляемый - значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.
Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).
Другой подобный прибор называется симистор - двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.
Основные характеристики
Как и любых других электронных компонентов у тиристоров есть ряд характеристик:
Падение напряжения при максимальном токе анода (VT или Uос).
Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).
Обратное напряжение (VR(PM) или Uобр).
Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.
Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.
Обратный ток (IR) — ток при определенном обратном напряжении.
Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).
Постоянное отпирающее напряжение управления (VGT или UУ).
Ток управления (IGT).
Максимальный ток управления электрода IGM.
Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)
Принцип работы
Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.
Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.
Кроме управляющего тока, есть такой параметр как ток удержания - это минимальный ток анода для удержания тиристора в открытом состоянии.
После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора - он закроется (выключится).
Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.
Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения - на каждую полуволну синусоиды соответственно.
После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.
Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.
Распространенные схемы управления тиристорами или симисторами
Самой распространенной схемой является симисторный или тиристорный регулятор.
Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление - тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.
Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.
Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.
Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.
Такие схемы регулировки напряжения называется СИФУ - система импульсного фазового управления.
На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.
Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами - схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.
Так как для нас не имеет значения полярность полуволны в настоящий момент времени - достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках "zero crossing detector circuit" или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:
Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».
Заключение
Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу…
Симистор BTA41-800B или точечная сварка — версия Плюс (продолжение — заводская плата)
Благодаря большому интересу к моему творчеству по созданию аппарата точечной сварки и поддержке обзоров читателями, я решил опубликовать еще один обзор. Данный обзор будет продолжением этого и этого. В этот раз основным рассматриваемым элементом будет управляющая плата, заказанная и изготовленная в Китае. Любителей поделок и интересующихся точечной сваркой приглашаю под кат.
Про сам симистор, являющийся ключом, который коммутирует первичную обмотку сварочного трансформатора, я более-менее подробно написал здесь. Там же было изготовление платы с помощью ЛУТ. Схема и код полученного решения описаны здесь.
Благодаря интересу читателей, я заказал платы в Китае, вместе с компонентами. И расскажу о том, что получилось в итоге. Надеюсь этим обзором облегчить труд тем, кто попросил меня изготовить данные платы и всем остальным, изготавливающим платы самостоятельно.
Платы пришли в вакуумной упаковке, в таком виде:
Качество плат вполне приличное:
Как видно я использовал панелирование, чтобы максимально использовать доступное пространство. Размер платы получился более компактным, чем ручной вариант, итог: 5 на 10 см.
Платы с небольшим усилием отламываются и получается две. Места отлома я подровнял Dremel-ем. Припаиваем элементы рассмотренные ранее:
Есть пара моментов, на первой плате одно отверстие оказалось закрыто металлизацией, пришлось его высверлить. Отверстия под ножки симистора получились чуть тоньше чем требовалось, пришлось взять сверлышко на 1 мм и доработать (видимо металлизация съела доли миллиметра). Получилось, на мой взгляд, вполне аккуратно. Стоит сравнить с этим:
Думаю разница есть.
Я специально силовые дорожки, идущие к трансформатору оставил без маски, чтобы их можно было усилить — залудив толстым слоем припоя (заказавшим по необходимости следует это проделать вместе с припайкой проводов).
Многие писали, что радиатор не нужен в данном применении — я оставил отверстие на плате для его крепления, желающие могут его посадить на теплопроводную пасту и закрепить на плате. Пример показан на самодельной плате, радиатор можно взять с неисправной материнской платы или видеокарты, либо отпилить (как я) кусок алюминиевого профиля.
Теперь про подключение элементов к плате:
В принципе, для тестовой сварки достаточно подключить сеть (220 Вольт), трансформатор и кнопку сварки. Подключение экрана позволяет видеть текущие режимы и энкодером настраивать параметры. SPI нужен для смены прошивки (в качестве программатора можно использовать Arduino со скетчем Arduino ISP или USBASP), которую при заливке загрузчика, также можно загружать через USB to Serial.
Термистор в текущей прошивке не используется.
Отверстия для проводов я сделал диаметром 2 мм, чтобы удобно можно было припаять достаточно толстый провод.
Каждую плату я тестирую, не припаивая а вставляя в отверстия с металлизацией провода, вот такая тестовая сборка:
При таком подключении проводов следует быть максимально аккуратным (а вообще лучше так не делать — 220 Вольт опасно для жизни!) Провода следует припаять и тестировать на диэлектрической поверхности, не дотрагиваясь до платы руками! Работу управления вентилятором тестировал перетыканием проводов лампы в соответствующие гнезда, конечно, предварительно выключал сетевое напряжение.
В прошлом обзоре, в комментариях, был вопрос насчет подключения OLED дисплея с диагональю 0.96", так вот он вообще не требует изменения прошивки:
К сожалению, быстро русифицировать устройство не получилось, но как я это сделаю — выложу новую прошивку. Но там всего несколько слов — думаю проблем при использовании быть не должно. Напомню:
— Pulse duration — продолжительность сварочного импульса в миллисекундах (следует понимать, что, в целом, продолжительность кратна 10 мс, но у нас есть смещение относительно начала положительной полуволны, поэтому регулируется миллисекундами.
— Number pulses — количество сварочных импульсов (скважность равна 2, коэффициент заполнения 1/2)
— Shift time — сдвиг относительно начала положительной полуволны в миллисекундах, для оптимальной работы трансформатора и еще по ряду причин (обо всем можно почитать в прошлых обзорах про мою конструкцию, в частности в комментариях), следует включать на пике синусоиды сетевого напряжения — у меня получилось 3 мс (вы можете экспериментировать с данным значением)
Переключение между настройками осуществляется коротким нажатием на энкодер. Изменение текущего параметра — вращением энкодера. Длительное нажатие приведет к сохранению выставленных параметров, при отключении питания и новом включении сохраненные параметры будут восстановлены.
Видео тестирования первой платы, как всегда, в качестве нагрузки выступила лампа накаливания 75 Вт:
В комментариях буду рад увидеть пожелания по улучшению прошивки, по мере появления времени я ее буду обновлять и выкладывать новые версии.
На текущий момент на все полученные платы уже есть заказчики, если будет интерес — закажу еще и вышлю всем желающим по мере изготовления (пишите в личку).
Спасибо всем кто прочитал этот демонстрационный обзор, надеюсь информация будет полезной, особенно тем, кто ожидает свои платы.
Симисторный регулятор мощности (напряжения)
Зачастую радиолюбители просто используют купленные паяльники (обычно 30-60 Ватт). Но такое использование имеет два минуса :
Во-первых, при долгом применении паяльник перегревается, и им становится неудобно работать. Во-вторых из-за этого срок службы паяльника значительно снижается.
На самом деле для пайки радиодеталей достаточно 20, ну максимум 25 Ватт. А самый простой способ уменьшить мощность - это уменьшить напряжение. А один из самых простых и дешёвых способов понизить напряжение - собрать регулятор на основе симистора (ВТ136).
При использовании номиналов, указанных на схеме, диапазон регулировки - около 100-200 В
Буквой D2 обозначен динистор DB3, а D3 симистор BT136. Итоговая цена при покупке в магазине составила, примерно, 60 рублей, но если заказать детали в Китае цена может снизится раза в два.
У меня в удлинителе места было очень мало, поэтому я собрал всё навесным монтажом, и выглядит это не очень, не обессудьте.
Принцип работы регулятора таков: при замкнутом переключателе (SA1 на схеме) ток идёт напрямую, минуя регулятор, а если разомкнуть переключатель, мы получаем возможность регулировать напряжение вращением ручки переменного резистора(R2). Нагляднее принцип работы регулятора во можете увидеть на видео ниже.
Всем спасибо за прочтение, надеюсь, что моя статья поможет вам продлить жизнь вашего паяльника.
Список радиоэлементов
Прикрепленные файлы:
Lukas_59 Изменена: 07.10.2016 0
Оценить статью
Средний балл статьи: 2.3 Проголосовало: 1 чел.
Комментарии (30)Для добавления Вашей сборки необходима регистрация
Почитайте
вот эту тему на этом сайте
Прекрасный регулятор на симисторе.
Да и еще поставьте хотя-бы RC цепь на симистор, а то велика вероятность, что сам он не закроется. На собственном опыте наблюдал.
[Автор]
А разряд конденсатора как будет идти? ИМХО, схема у Вас работает исключительно благодаря тому, что диод этот удачно сгорел (коротнул). В оригинале там еще светодиод встречно-параллельный диоду должен быть.
Я применял схему со светодиодом. Он удобен. Видно включение и видно примерно угол открывания (по яркости). Только светодиод надо использовать т.н. "суперяркий". Обычные старые видно не будет.
А в качестве корпуса я использовал двойник в розетку. В одно окно вкл. паяльник, а во второе вставлен переменный резистор. Получается очень удобно. Только одну из двух шин внутри придется разрезать и скреплять винтом. Монтаж навесной. Симмистор лучше крепить прямо на шину. Она будет радиатором заодно.
Подскажите, чем можно заменить динистор? Например, 2 стабилитрона на 3.3В анод к аноду/катод к катоду?
Динистор в этой схеме ни чем нельзя заменить. Разберите сгоревшую энергосберегайку и извлеките от туда динистор. В большинстве случаев в сгоревших электронных балластах динисторы остаются целые.
Hepo, на двух транзисторах для тиристорного регулятора, а здесь симисторный.
Здесь нужен аналог двухнаправленного динистора.
стабилитроны не подойдут. Я находил аналог на 2 транзисторах сейчас не помню. А динистор легко находится в сгоревших энергосберегайках. Правда попадаются схемы и без него.
Спасибо! Посмотрел несколько плат от энергосберегающих ламп. От светодиодных - нет, а вот от люминесцентных нашёл 1 DB3 в SMD стеклянном корпусе. Раньше думал стабилитрон, но сейчас заметил на плате надпись DB3.
Конечно схема заслуживает внимания, но давно обросшая плесенью. Смысл тратить средства на покупку деталей. Этого добра завались на свалках мусора. Многие пылесосы снабжены регуляторами мощности. Малюсенькое плато и довольно мощное. Я обучаю мальчишек электронике. Тащат этого добра много.
Подскажите, пожалуйста:
1. На какое напряжение конденсатор?
2. Можно ли вместо подстроечника на 470 кОм взять подстроечник на 1 МОм 0.125 Вт и параллельно ему поставить резистор на 1 МОм 0.25 Вт?
3. Резистор 4.7 кОм на 0.25 Вт подойдёт?
1. 220 (250) Вольт
2. Теоретически можно, но во-первых лучше брать по-мощнее, во-вторых лучше поставить не подстроечник, а переменник и в-третьих а зачем?
3. Точно не знаю (поэтому сам взял на 1Вт), но думаю мощность маловата.
Автору на будущее: отмечайте узлы схемы чёрными точками - схему будет читать в разы удобнее.
Эта схема не регулирует напряжение, а регулирует время его присутствия на нагрузке. Поэтому итоговый сигнал будет сильно отличаться от синусоиды, следовательно мультиметр не может показать реальных значений RMS, т.е. измерения напряжения тут произведены некорректно, да и ни к чему они тут.
Это регулятор мощности и никак не напряжения. При мощности 0.5 или выше от номинальной, напряжение будет равно амплитудному действующему.
Схема работает и без динистора.
Открываю "великую" тайну, на кой ляд все лепят динистор в эту схему, думаю, это полезно будет вам знать:
хоть симистор и является якобы симметричным тиристором, на самом то деле он не симметричный. ну, точнее условно симметричный. (открывайте любое описание на любой симистор и любуйтесь). что означает не симметричный? а то и значит, что ток открытия любого симистора зависит от полярности на электродах. и хоть чуть-чуть, но отличается. например на электроде 1 - плюс, на электроде 2 - минус, ток открытия 7 мА. меняем плюс и минус местами, ток открытия 12 мА. меняем полярность на управляющем электроде, ток открытия 15 мА. ну и т.д. Внимательный обыватель сразу же скажет: и что с того? да то, что ток открытия тянет за собой напряжение открытия. а если нагрузка у нас не слабая, получаем соответствующую пульсацию тока, неравномерное его распределение по полуволнам, а это дополнительные биения на валу электродвигателя, например, если мы движок регулируем. Вот чтобы совладать с этим придумали гениальный "ход конём" - динистор влепить, который в обе стороны открывается при практически одинаковом напряжении. Но при этом приходится жертвовать до 7% мощности на нагрузке при регулировке симистором+динистор. (ждать, пока напряжение поднимется до 32В, которое гарантированно обеспечит током открытия - превысит самый максимально возможный уровень при любых комбинациях полярности). удачи всем во всех начинаниях.
Как сделать простой регулятор тока для сварочного трансформатора
Важной особенностью конструкции любого сварочного аппарата является возможность регулировки рабочего тока. В промышленных аппаратах используют разные способы регулировки тока: шунтирование с помощью дросселей всевозможных типов, изменение магнитного потока за счет подвижности обмоток или магнитного шунтирования, применение магазинов активных балластных сопротивлений и реостатов. К недостаткам такой регулировки надо отнести сложность конструкции, громоздкость сопротивлений, их сильный нагрев при работе, неудобство при переключении.
Наиболее оптимальный вариант - еще при намотке вторичной обмотки сделать ее с отводами и, переключая количество витков, изменять ток. Однако использовать такой способ можно для подстройки тока, но не для его регулировки в широких пределах. Кроме того, регулировка тока во вторичной цепи сварочного трансформатора связана с определенными проблемами.
Так, через регулирующее устройство проходят значительные токи, что приводит к его громоздкости, а для вторичной цепи практически невозможно подобрать столь мощные стандартные переключатели, чтобы они выдерживали ток до 200 А. Другое дело - цепь первичной обмотки, где токи в пять раз меньше.
После долгих поисков путем проб и ошибок был найден оптимальный вариант решения проблемы - широко известный тиристорный регулятор, схема которого изображена на рис.1.
При предельной простоте и доступности элементной базы он прост в управлении, не требует настроек и хорошо зарекомендовал себя в работе - работает не иначе, как "часы".
Регулирование мощности происходит при периодическом отключении на фиксированный промежуток времени первичной обмотки сварочного трансформатора на каждом полупериоде тока. Среднее значение тока при этом уменьшается.
Основные элементы регулятора (тиристоры) включены встречно и параллельно друг другу. Они поочередно открываются импульсами тока, формируемыми транзисторами VT1, VT2. При включении регулятора в сеть оба тиристора закрыты, конденсаторы С1 и С2 начинают заряжаться через переменный резистор R7. Как только напряжение на одном из конденсаторов достигает напряжения лавинного пробоя транзистора, последний открывается, и через него течет ток разряда соединенного с ним конденсатора.
Вслед за транзистором открывается и соответствующий тиристор, который подключает нагрузку к сети. После начала следующего, противоположного по знаку полупериода переменного тока тиристор закрывается, и начинается новый цикл зарядки конденсаторов, но уже в обратной полярности. Теперь открывается второй транзистор, и второй тиристор снова подключает нагрузку к сети.
Изменением сопротивления переменного резистора R7 можно регулировать момент включения тиристоров от начала до конца полупериода, что в свою очередь приводит к изменению общего тока в первичной обмотке сварочного трансформатора Т1. Для увеличения или уменьшения диапазона регулировки можно изменить сопротивление переменного резистора R7 в большую или меньшую сторону соответственно.
Транзисторы VT1, VT2, работающие в лавинном режиме, и резисторы R5, R6, включенные в их базовые цепи, можно заменить динисторами. Аноды динисторов следует соединить с крайними выводами резистора R7, а катоды подключить к резисторам R3 и R4. Если регулятор собрать на динисторах, то лучше использовать приборы типа КН102А.
В качестве VT1, VT2 хорошо зарекомендовали себя транзисторы старого образца типа П416, ГТ308. Вполне реальна замена их более современными маломощными высокочастотными, имеющими близкие параметры.
Переменный резистор типа СП-2, остальные типа МЛТ. Конденсаторы типа МБМ или МБТ на рабочее напряжение не менее 400 В.
Правильно собранный регулятор не требует налаживания. Необходимо лишь убедиться в стабильной работе транзисторов в лавинном режиме (или в стабильном включении динисторов).
Внимание! Устройство имеет гальваническую связь с сетью. Все элементы, включая теплоотводы тиристоров, должны быть изолированы от корпуса.
Точечная сварка в домашней мастерской
Разновидности и классификация сварки
Сваркой называют процесс получения неразъемного соединения деталей за счет образования межатомных связей в сварном шве. Такие связи возникают при воздействии местного или общего нагрева свариваемых деталей, либо под воздействием пластической деформации, либо того и другого вместе.
Сварка чаще всего применяется для соединения металлов и их сплавов, для соединения термопластов и даже в медицине. Но сварка живых тканей выходит за рамки данной статьи. Поэтому вкратце рассмотрим лишь те виды сварки, которые применяются в технике.
Современное развитие сварочных технологий таково, что позволяет выполнять сварочные работы не только в условиях производства, а также на открытом воздухе и даже под водой. В последние годы сварочные работы в качестве эксперимента уже проводились в космосе.
Для производства сварки применяются различные виды энергии. В первую очередь это электрическая дуга или пламя газовой горелки. Более экзотичными источниками являются ультразвук, излучение лазера, электронный луч, а также сварка трением.
Все сварочные работы сопряжены с высокой пожарной опасностью, загазованностью вредными газами, ультрафиолетовым облучением, и просто опасностью поражения электрическим током. Поэтому проведение сварочных работ требует неукоснительного соблюдения правил техники безопасности.
Все способы сварки в зависимости от вида энергии и технологии ее использования подразделяются на три основных класса: термический класс, термомеханический класс, и механический класс.
Сварка термического класса осуществляется плавлением за счет использования тепловой энергии. В основном это широко известная электродуговая сварка и газовая сварка. Сварка термомеханического класса выполняется при помощи тепловой энергии и механического давления. Для сварки механического класса используется энергия давления и трения. Все разделения сварки на классы производятся согласно ГОСТ 19521-74.
Точечная сварка
Точечная сварка относится к разряду так называемых контактных сварок. Кроме нее туда же относятся стыковая и шовная сварки. В условиях домашней мастерской последние два вида осуществить практически невозможно, поскольку оборудование слишком сложное для повторения в условиях кустарного производства. Поэтому далее будет рассмотрена только точечная контактная сварка.
Согласно вышеприведенной классификации точечная сварка относится к термомеханическому классу. Процесс сварки состоит из нескольких этапов. Сначала свариваемые детали, предварительно совмещенные в нужном положении, помещаются между электродами сварочной машины и прижимаются друг к другу. Затем подвергаются нагреву до состояния пластичности, и последующему совместному пластическому деформированию. При использовании автоматического оборудования в промышленных условиях достигается частота сварки 600 точек в минуту.
Краткая технология точечной сварки
Нагрев деталей осуществляется за счет подачи кратковременного импульса сварочного тока. Длительность импульса варьируется в пределах 0,01…0,1 сек в зависимости от условий сварки. Этот кратковременный импульс обеспечивает расплавление металла в зоне электродов и образование общего для обеих деталей жидкого ядра. После снятия импульса тока в течение некоторого времени детали удерживаются под давлением для остывания и кристаллизации расплавленного ядра.
Прижатие деталей в момент сварочного импульса обеспечивает образование вокруг расплавленного ядра уплотняющего пояска, который препятствует выплеску расплава из зоны сварки. Поэтому дополнительных мер защиты места сварки не требуется.
Усилие сжатия электродов следует снимать с некоторой задержкой после окончания сварочного импульса, что обеспечивает условия для лучшей кристаллизации расплавленного металла. В некоторых случаях на окончательной стадии рекомендуется увеличение усилия прижима деталей, что обеспечивает проковывание металла и устранение внутри сварного шва неоднородностей.
Следует заметить, что для получения качественного сварочного шва свариваемые поверхности должны быть предварительно подготовлены, в частности, зачищены от толстых оксидных пленок или попросту ржавчины. Для сварки достаточно тонких листов, до 1…1,5 мм применяется так называемая конденсаторная сварка.
Конденсаторы заряжаются от сети непрерывно, достаточно небольшим током, потребляя незначительную мощность. В момент сварки конденсаторы разряжаются через свариваемые детали, обеспечивая необходимый режим сварки.
Такие источники применяются для сварки миниатюрных и сверхминиатюрных деталей в приборостроении, электронной и радиотехнической промышленности. При этом возможна сварка, как черных, так и цветных металлов, причем даже в различном сочетании.
Достоинства и недостатки точечной сварки
Как и все на свете точечная сварка имеет свои достоинства и недостатки. К достоинствам, прежде всего, следует отнести высокую экономичность, механическую прочность точечных швов и возможность автоматизации сварочных процессов. Недостатком следует признать отсутствие герметичности сварочных швов.
Самодельные конструкции аппаратов точечной сварки
В условиях домашней мастерской точечная сварка может быть просто необходима, поэтому было разработано немало аппаратов, пригодных для самостоятельного изготовления в домашних условиях. Далее будет приведено краткое описание некоторых из них.
Одна из первых конструкций аппарата для точечной сварки была описана в журнале РАДИО N 12, 1978 г. с.47-48 . Схема аппарата показана на рисунке 1.
Рисунок 1. Схема аппарата для точечной сварки
Подобный аппарат не отличается повышенной мощностью, с его помощью можно сваривать листовой металл толщиной до 0,2 мм или стальную проволоку диаметром до 0,3 мм. При таких параметрах вполне возможна сварка термопар, а также приваривание тонких деталей из фольги к массивным стальным основаниям.
Одно из возможных применений это приваривание тонких листов фольги с предварительно наклеенными тензодатчиками к испытываемым деталям. В виду того, что свариваемые детали малогабаритные, усилие прижима при их сварке невелико, поэтому сварочный электрод выполнен в виде пистолета. Прижим деталей осуществляется усилием руки.
Схема сварочного аппарата достаточно проста. Основное ее назначение это создание сварочного импульса необходимой длительности, что обеспечивает различные режимы сварки.
Основным узлом аппарата является сварочный трансформатор Т2. К его вторичной обмотке (по схеме верхний конец) с помощью многожильного гибкого кабеля подключается сварочный электрод, а к нижнему концу подключается более массивная свариваемая деталь. Подключение должно быть достаточно надежным.
Сварочный трансформатор подключен к сети через выпрямительный мост V5…V8. В другую диагональ этого моста включен тиристор V9 при открытии которого напряжение сети через выпрямительный мост прикладывается к первичной обмотке трансформатора Т2. Управление тиристором осуществляется с помощью кнопки S3 «Импульс» расположенной в рукоятке сварочного пистолета.
При включении в сеть от вспомогательного источника сразу же заряжается конденсатор С1. Вспомогательный источник состоит из трансформатора Т1 и выпрямительного моста V1…V4. Если теперь нажать кнопку S3 «Импульс», то конденсатор С1 через ее замкнутый контакт и резистор R1, будет разряжаться через участок управляющий электрод – катод тиристора V9, что приведет к открытию последнего.
Открывшийся тиристор замкнет диагональ моста V5…V9 (по постоянному току), что приведет к включению сварочного трансформатора Т1. Тиристор будет открыт до тех пор, пока не разрядится конденсатор С1. Время разряда конденсатора, а следовательно и время импульса сварочного тока можно регулировать переменным резистором R1.
Для того, чтобы подготовить следующий импульс сварки, кнопку «Импульс» необходимо кратковременно отпустить, чтобы зарядился конденсатор С1. Следующий импульс будет сформирован при повторном нажатии на кнопку: весь процесс повторится, как было описано выше.
В качестве трансформатора Т1 подойдет любой маломощный (5…10Вт) с выходным напряжением на обмотке III около 15В. Обмотка II используется для подсветки, ее напряжение 5…6В. При указанных на схеме номиналах С1 и R1 максимальная длительность импульса сварки около 0,1 сек, что обеспечивает сварочный ток на уровне 300…500 А, что вполне достаточно для сварки малогабаритных деталей, упоминавшихся выше.
Трансформатор Т2 изготовлен на железе Ш40. Толщина набора 70 мм, первичная обмотка намотана проводом ПЭВ-2 0,8 и содержит 300 витков. Вторичная обмотка намотана сразу в два провода и содержит 10 витков. Провод вторичной обмотки многожильный диаметром 4мм. Также можно применить шину сечением не менее 20 кв.мм.
Тиристор ПТЛ-50 вполне возможно заменить на КУ202 с буквами К, Л, М, Н. При этом емкость конденсатора С1 придется увеличить до 2000 мкФ. Вот только надежность работы аппарата при такой замене может несколько уменьшиться.
Более мощный аппарат для точечной сварки
Описанный выше аппарат можно назвать аппаратом для микросварки. Схема более мощного аппарата показана на рисунке 2.
Рисунок 2. Принципиальная схема аппарата точечной сварки
При ближайшем рассмотрении нетрудно заметить, что структурно она очень похожа на предыдущую и содержит те же узлы, а именно: сварочный трансформатор, полупроводниковый тиристорный ключ и устройство выдержки времени, обеспечивающее требуемую длительность сварочного импульса.
Эта схема позволяет сваривать листовой металл толщиной до 1 мм, а также проволоку диаметром до 4 мм. Такое увеличение мощности по сравнению с предыдущей схемой достигнуто за счет применения более мощного сварочного трансформатора.
Общая схема аппарата показана на рисунке 2а. Первичная обмотка сварочного трансформатора Т2 подключена к сети через тиристорный бесконтактный пускатель типа МТТ4К. Прямой ток такого пускателя 80 А, обратное напряжение 800 В. Его внутреннее устройство показано на рисунке 2в.
Схема модуля достаточно проста и содержит два тиристора, включенных встречно – параллельно, два диода и резистор. Контакты 1 и 3 коммутируют нагрузку в то время, когда замкнуты контакты 4 и 5. В нашем случае они замыкаются при помощи контактной группы реле К1. Для защиты от аварийных ситуаций схема содержит автоматический выключатель АВ1.
Реле времени собрано на трансформаторе Тр1, диодном мосте КЦ402, электролитических конденсаторах С1…С6, реле К1 и коммутирующих переключателях и кнопках. В положении показанном на схеме при включении автомата АВ1 начинают заряжаться конденсаторы С1…С6.
Конденсаторы подключаются к диодному мосту при помощи переключателя П2К с независимой фиксацией, что позволяет подключать различное количество конденсаторов и тем самым регулировать выдержку времени. В цепи заряда конденсаторов установлен резистор R1, его назначение ограничить зарядный ток конденсаторов в начальный момент зарядки. Это позволяет увеличить срок службы конденсаторов. Зарядка конденсаторов происходит через нормально – замкнутый контакт кнопки КН1.
При нажатии на кнопку КН1 замыкается ее нормально – разомкнутый контакт, который подключает реле К1 к времязадающим конденсаторам. Нормально – замкнутый контакт в это время, естественно, размыкается, что препятствует подключению реле К1 непосредственно к выпрямительному мосту.
Реле срабатывает, своими контактами замыкает управляющие контакты тиристорного реле, которое и включает сварочный трансформатор. После того, как конденсаторы разрядятся, реле отключится, сварочный импульс прекратится. Для подготовки к следующему импульсу кнопку КН1 требуется отпустить.
Для точного подбора времени импульса служит переменный резистор R2. В качестве реле К1 подойдет герконовое реле типа РЭС42, РЭС43 или подобное с напряжением срабатывания 15…20 В. При этом, чем меньший ток срабатывания реле, тем больше выдержка времени. Ток между контактами 4 и 5 тиристорного пускателя не превышает 100 мА, поэтому подойдет любое слаботочное реле.
Конденсаторы C1 и С2 по 47 мкФ, С3, С4 100 мкФ, С5 и С6 470 мкФ. Рабочее напряжение конденсаторов не менее 50 В. Трансформатор Тр2 подойдет любой, мощностью не свыше 20 Вт с напряжением вторичной обмотки 20…25 В. Выпрямительный мост можно собрать из отдельных диодов, например широко распространенных 1N4007 или 1N5408.
Сварочный трансформатор изготовлен на магнитопроводе от сгоревшего ЛАТРА на 2,5 А. После удаления старой обмотки железо обматывается не менее, чем тремя слоями лакоткани. На торцах магнитопровода, перед намоткой лакоткани, устанавливаются кольца из тонкого электрокартона, которые подгибаются по внешней и внутренней кромкам кольца. Это предотвращает разрушение лакоткани при намотке и последующей эксплуатации.
Первичная обмотка выполняется проводом диаметром 1,5 мм, лучше всего, если провод будет с тканевой изоляцией, что улучшает условия для пропитки обмотки лаком. Для пропитки можно использовать лак КС521 или ему подобный. Количество витков показано на рисунке 2б. с помощью отводов можно осуществлять грубую регулировку сварочного тока. Между первичной и вторичной обмотками наматывается слой хлопчатобумажной ленты, после чего катушка пропитывается лаком.
Вторичная обмотка выполнена многожильным проводом в кремнийорганической изоляции диаметром 20 мм и содержит 4…7 витков. Площадь провода не менее 300 кв.мм. На концах провода устанавливаются наконечники, которые для лучшего контакта следует пропаять. Возможно выполнить вторичную обмотку жгутом из нескольких более тонких проводов. Общая площадь должна быть не менее указанной, а намотка всех проводов должна производиться одновременно. Такая конструкция трансформатора обеспечивает сварочный ток до 1500 А. Напряжение холостого хода 4…7 В.
Сварочно – контактный механизм выполняется в соответствии с характером выполняемых работ по одной из известных схем. Чаще всего это сварочные клещи. Давление, создаваемое механизмом, около 20 КГ/см.кв. Более точно это усилие подбирается практическим путем. Контакты изготавливаются из меди или бериллиевой бронзы. При этом размер контактных площадок должен быть по возможности минимальным, что обеспечивает получение более качественного сварочного ядра.
Любительских конструкций для точечной сварки сейчас можно найти немало. В дело идет все, что угодно. Например, одна из конструкций создана на основе силовых трансформаторов ТС270 от старых ламповых цветных телевизоров. Для создания такой установки понадобилось шесть трансформаторов. Появляются даже схемы с микропроцессорным управлением, но общий смысл конструкций остается неизменным: создать кратковременный импульс сварочного тока и достаточное усилие прижима в месте сварки.
Читайте также: