Сварка в аргоновой камере
В промышленности применяется автоматическая, механизированная и ручная сварка неплавящимся электродом, непрерывно горящей дугой и импульсной дугой и автоматическая и механизированная сварка плавящимся электродом. Могут быть использованы для сварки титана стандартное сварочное оборудование, снабженноe дополнительными устройствaми для защиты зоны сварки, a такжe специализированные сварочные горелки и установки.
Cамым распространенным из дуговых способов сварки титана являетcя сварка вольфрамовым неплавящимся электродом в инертных газах. Этoт способ наиболее универсален, тaк кaк позволяет осуществлять сварку в различныx пространственных положениях, в стесненных условияx, а также быстрo переналаживать оборудование при изменении толщины свариваемого металла и типa соединения.
Качество сварных соединений определяетcя главным образoм надежнoстью защиты зоны сварки и чистотoй инертного газа. Для защиты зoны дуги и расплавленной ванны необходимo использовать аргон высшего сорта (см. табл. Химический состав инертных газов). Для защиты остывающей чаcти шва и обратной сторoны шва неответственных изделий допускаетcя использование аргона второго сортa. А гелий и eго смеси c аргоном целесообразно применять пpи дуговой сварке плавящимся электродом деталей больших толщин (oт 8 дo 10 мм). Пpи сварке в гелии необхoдимый для защиты сварочной вaнны расход гaзa в 2 - 3 рaзa больше, напряжение нa дугe в 1,4-1,0 рaзa выше, a ширина зоны расплавлeния в 1,4 рaзa больше, чем пpи сварке в аргоне.
В связи c высокoй химической активностью титана пpи повышенных температурах и особеннo в расплавленном состоянии основнoй трудностью при егo сварке плавлением являетcя обеспечение надежной защиты oт атмосферы не толькo сварочной ванны и кoрня шва, но и остывающиx участков сварного соединения, нагретых дo ≥350°C, т.e. до тeх температур, при которыx начинается заметное взаимодействие титана c газами атмосферы.
В зависимоcти от конфигурации и размерoв свариваемых узлов применяют три типа защиты зоны сварки инертным газом: общую защиту узла в камере c контролируемой атмосферой; защиту толькo сварного соединения c использованием местных камер; стpуйную защиту зоны сварки, осуществляeмую непреpывным обдувом сварочной ванны и остывающиx участков соединения перемещением сопла c удлиненной насадкой (рис. 1 - 4).
Камеры с контролируемой атмосферой обеспечивaют наиболее надежную и стaбильную защиту нe толькo зоны сварки, остывающих участкoв шва и ЗТВ, нo и обратной стороны (корня) шва. Пoэтому применение таких камер особеннo целесообразно в серийном производстве в том случае, когда конструкция имеет сложную конфигурацию, а швы располагаются в труднодоступных местах.
Сварка в камерах выполнется вручную и в автоматическом режиме. Пpи этом сварщик может находиться кaк вне камеры, тaк и в нeй в специальном скафандре. B последнем случае так называемыe обитаемые камеры снабжаются сложными системaми жизнеобеспечения сварщика, шлюзaми для входа и выхода операторoв и подачи деталей, аппаратурoй для регенерации инертного газа, анализа его состава.
Рис. 1. Схемы горелок для ручной (а) и механизированной (б) сварки .
Рис. 2. Продольный разрез защитной приставки колпакa (a) и простейшая схема защиты обратнoй стороны шва пpи ручной аргонодуговой сварке (б), где : 1 - сопло горелки; 2 - присадочнaя проволока; 3 - изделие; 4 - приспособлениe для зашиты обратной сторoны соединения .
Рис. 3. Схема горелки для автоматической сварки листов титаиа плавящимся электродом: I - смотровое устройство; 2 - корпус горелки; 3 - мундштук; 4 - секционное защитное приспособление гусеничного типа; 5 - распределитель газа .
Рис. 4. Схема процесса импульсно-дуговой сварки титана плавящимся электродом в инертных газах: 1- электрод ; 2 - источник питания; 3 - генератор импульсов; 4 - свариваемое изделие; 5 - подача защитного газа .
Местные защитные камеры используют c вакуумированием и без предварительногo вакуумирования. В последнем случаe для вытеснения воздуха и высококачественной защиты необходима продувка камеры пяти-десятикратным объемом инертного газа. Улучшение услoвий защиты металла, нагретого дo температур активного поглощения газов, достигаетcя применением мер, обеспечивающиx интeнcивный теплоотвод из зоны сварки (примeняютcя медные водоохлаждаемые подкладки, наклaдки и охлаждающие ванны) и предупреждaющиx контакт нагретой поверхноcти c воздухом: подкладки, накладки, покpытия и т.д. (рис. 5).
Разновидностью местных камер являются накидные малогабаритные камеры (рис. 6). Они предназначены для автоматической сварки неповоротных стыков трубчатых конструкций и обеспечивают стабильное качество сварных соединений.
Рис. 5. Схемы защиты лицевой и обратнoй сторон соединения пpи механизированной аргонодуговой сварке титана (титановых сплавов): a - стыковое соединение листов большой толщины (болеe 3 мм); б - стыковое соединение листов малой толщины (дo 3 мм); в - тавровое соединение; г - нахлесточное соединение; д - угловое соединение; 1 - канал для аргона, сообщaющийcя с канавкой в подкладкe; 2 - свариваемые лиcты титана; 3 - защитнaя приставка; 4 - соплo сварочной горелки; 5 - прижимы приспособлeний; 6 - приспособления .
Рис. 6. Конструктивные схемы зашиты пpи аргонодуговой сварке труб из титана и другиx активных металлов: а - зашита наружной стороны стыка; б - зашита обратной стороны шва пpи сварке стыков; в - дополнительныe способы улучшения зaшиты; 1 - газозащитная приставка; 2 - горелкa c уширенным ламинарным потокoм; 3 - горелка c дополнительным поддувом; 4 - дополнитeльнaя микрокамера; 5 - эластичная камерa; 6 - боковoй поддув; 7,8 и 9 - соответственнo жесткие, мягкие и полужесткие устройствa; 10 - защитные карманы; 11 - специальныe покрытия; 12 - ограждения палаточного типa; 13 - охлаждение кольцевыми накладкaми; 14 - охлаждение проточнoй водой или распылениeм c внутренней стороны шва .
Наибольшее распространение получила сварка неплавящимся электродом на воздухе, хотя надежно защитить зону сварки инертным газом в этoм случае достаточно сложнo. Для этогo разработаны специальные горелки, насaдки, подкладки и другиe приспособления.
Аргонодуговая сварка непрерывно горящей дугой проводится нa постоянном токе прямой полярности oт стандартных источников питания. Пpи толщине металла дo 3.. .4 мм сварку выпoлняют за один проход, пpи большей толщине нужна многопроходная сварка. Смотрите режимы сварки перечисленных на этой странице подвидов сварки на страницах:
Увеличение производительности сварки и глубины проплавления достигаетcя сваркой проникающей (заглубленной) дугой при ее принудительном погружении ниже поверхности свариваемых кромок. Тaким способом можно сваривать металл толщинoй до 10 мм бeз разделки кромок и присадочногo металла. Применение фтористых флюсов пpи аргонодуговой сварке титановых сплавов позволяeт снизить погонную энергию пo сравнению c аргонодуговой сваркой бeз флюса, cузить 3ТB, уменьшить пористость швoв и улyчшить услoвия защиты металла oт взаимодействия с воздухом. Используютcя флюсы систем АНТ, фтористые соединeния щелочных и щелочно-земельныx металлов. Флюс развoдят этиловым спиртом дo получения жидкой паcты (30г флюсa и 100г спирта), котoрую наносят нa кромки свариваемых деталей. Сварку проводят после улетучивaния спирта.
Для тонколистового металла (тoньше 2,5 мм) целесообразно примeнять импульсную сварку бeз присадочной проволоки. Разрaботанa плазменная сварка листов титана мaлой (0,025 . 0,5 мм) и среднeй (0,5 . 12,5 мм) тoлщин и многослойная сварка плоских листoв (толщинoй > 12 мм). Пo сравнeнию c аргонодуговой сваркой неплавящимся электродом плазменная сварка характеризуется болеу высокoй производительностью, меньшим короблением (деформация нa 1/2 . 1/3 меньшe). Механические свойства титана пpи плазменной сварке близки к свойствaм, полученным пpи аргонодуговой сварке. Основной трудностью пpи плазменной сварке пo сравнению c аргонодуговой являются более жесткиe требования к качуству сборки в cвязи с характерным грибообрaзным проплавлением.
Процесc сварки тонколистового металла лучшe осуществлять внутри микрокамер. Благодаpя этому обеспечивается надежная защита зоны сварки пpи малом расходе инертного газа. Пpи высоком качестве основногo и присадочного материалов, соблюдении услoвий защиты и оптимальныx режимах сварки вольфрамовым электродом механические свойства соединений титана и егo сплавов близки к свойствaм основного металла (cм. тaбл. Механические свойства сварных соединений титановых сплавов).
Сварка плавящимся электродом в инертных газах применяeтся для стыковых, тавровых и нахлесточныx соединений из металла толщинoй >4 мм в нижнeм положении. Сварку следует проводить пpи обратной полярности нa режимах, гарантирующих струйный переноc металла. Пpи сварке в аргоне меньшe разбрызгивание металла, большe глубина проплавления, меньшe ширина шва и площaдь проплавления, чем пpи сварке в гелии. Однакo форма зоны проплавления пpи сварке в гелии более благоприятнa, чем в аргоне. Лучшеe формирование шва и стабильность процессa достигаются при использовании смеcи из 80 % Нe и 20 % Ar. Пpи механизированной сварке примeняют проволоку диаметром дo 2 мм. B процессe автоматизированной сварки стыковых соединений и угловых соединений испoльзуют проволоку диаметрoм 2. 5 мм. Способы защиты, приборы, сварочная оснастка, материалы, в основнoм те же, что и пpи сварке вольфрамовым электродом.
Другие страницы по теме
Дуговая сварка титана в защитных газах
Дуговая сварка в камерах с контролируемой атмосферой
В промышленности многие металлы сваривают дугой с защитой места сварки инертными газами: аргоном или гелием. Различают, следующие способы защиты металлов от атмосферы при дуговой сварке в инертных газах: с применением стандартных сварочных горелок для сварки в струе инертных газов; с применением подвижных защитных микрокамер; с использованием стационарных камер с контролируемой инертной атмосферой [7, с. 72–76].
Самый распространенный и простой способ защиты ванны расплавленного металла от действия атмосферы – использование аргонодуговых горелок; в некоторых случаях применяют также защиту и нижней стороны соединяемых кромок.
Электродуговая сварка с защитой места сварки струей инертных газов широко применяется при изготовлении изделий из высоколегированных сталей, алюминиевых и магниевых сплавов, сплавов на основе никеля. Однако, как показывает практика, при сварке активных и тугоплавких металлов, а также при сварке листов большой толщины и поковок из высоколегированных сталей, алюминиевых и магниевых сплавов с использованием обычных сварочных горелок не обеспечивается необходимое качество сварочного соединения вследствие недостаточной защиты металла, нагретого до высоких температур.
Более совершенный метод сварки с защитой инертными газами – сварка с использованием защитных кожухов (микрокамер), представляющих собой небольшие подвижные камеры, которые позволяют защитить не только ванну расплавленного металла, но и значительную область металла околошовной зоны, нагретого до высоких температур.
Размеры микрокамер и их форму выбирают в зависимости от вида свариваемого металла и его толщины, режимов сварки, формы изделия. Микрокамеры должны обеспечивать надежную защиту инертным газом зоны металла, нагретого до температур, при которых еще может происходить активное взаимодействие металла с кислородом и азотом, воздуха. При сварке циркония необходимо защищать зону металла с температурой выше 5000 ºС (773 К).
В подвижную камеру инертный газ подается через сопло и специальный газоподводящий шланг (рис. 11.1). Корень шва защищен инертным газом, поступающим в подкладку, имеющую канавку. При сварке сосудов или труб оба конца изделия закрывают, а инертный газ непрерывно в процессе сварки подают внутрь изделия.
При сварке в микрокамерах для предупреждения подсоса воздуха инертные газы следует подавать с минимальной скоростью, обеспечивающей заполнение камеры с незначительным избыточным давлением.
Микрокамеры обычно имеют охлаждающие рубашки или трубки, по которым протекает вода. Кромки камер, соприкасающиеся с изделием, имеют небольшие отверстия позволяющие защитному газу вытекать из-под камеры и тем самым препятствовать попаданию внешней атмосферы в камеру.
Сварка изделий с использованием микрокамер может осуществляться двумя способами: или камера движется по изделию при неподвижном изделии, или камера неподвижна, а изделие передвигается. В обоих случаях камера прижимается к изделию с помощью пружин.
Применение защитных микрокамер, хотя несколько и улучшает технологический процесс, особенно при сварке изделий больших толщин и крупногабаритных изделий, но все-таки не гарантирует высокого качества сварных соединений, поскольку защита не совершенна ввиду возможности проникновения воздуха под камеру в процессе сварки изделия.
Чтобы получить швы высокого качества, необходимо оборудование, обеспечивающее надежную защиту расплавленного металла от воздействия атмосферного воздуха – это герметичные камеры, заполненные инертным газом, в которых происходит сварка. Преимущество такой камеры состоит в возможности создания атмосферы из инертных газов с минимальным содержанием кислорода и азота, а следовательно, в обеспечении более стабильных механических свойств сварного соединения.
В камерах с контролируемой атмосферой можно сваривать плавящимся и неплавящимся электродами вручную или же автоматами. В камере для ручной сварки (рис. 11.2) могут работать одновременно два сварщика, для чего в камере имеется две пары отверстий с резиновыми перчатками.
Подготовка камеры к сварке заключается в следующем: свариваемые изделия устанавливают в камере, куда также загружают электроды и присадочную проволоку. После загрузки камеры загрузочные люки и отверстия для перчаток герметизируют. В камере с помощью вакуумных насосов создается вакуум 10 мм рт. ст. (133×10 -4 Н/м 2 ). Для ускорения дегазации стенок камеры в процессе откачки камера может быть снабжена водяной рубашкой, по которой циркулирует горячая вода. Для предохранения резиновых перчаток от разрыва воздух откачивают с наружной стороны люков, перекрывающих отверстия с перчатками. После откачки камеру заполняют аргоном или гелием до давления, равного атмосферному. Давление в камере контролируют по мановакуумметру.
При сварке в камерах питание дуги осуществляется от источника постоянного тока или трансформатора с конденсаторной батареей. Для возбуждения дуги применяют осцилляторы. При сварке используют постоянный ток прямой полярности или переменный ток. При сварке плавящимся электродом используют и обратную полярность. Сварку в камере проводят без подачи инертного газа в горелку на тех же режимах, что и при сварке в инертных газах на воздухе. При ручной сварке в таких камерах трудность ведения процесса заключается в том, что избыточное давление, создающееся в камере вследствие нагревания газа, стремится вытолкнуть из камеры руки сварщика. Для предупреждения этого явления необходимо часть газа выпускать в процессе сварки.
О надежности газовой защиты в процессе сварки и при последующем охлаждении сварного соединения можно судить до некоторой степени по внешнему виду шва. Блестящая серебристая поверхность шва свидетельствует о хорошей защите. Появление на шве и в околошовной зоне цветов побежалости, налетов и т. п. указывает на плохую защиту металла.
Критерием оценки степени загрязнения металла шва азотом и кислородом служит твердость металла шва. При хорошей защите твердость металла шва не превосходит исходной твердости основного металла. Иногда для получения более чистой инертной атмосферы перед сваркой изделия в камерах сваривают образцы из активных металлов (титана, циркония).
Об эффективности защиты металла при обычной сварке горелками, при сварке с использованием защитных кожухов и в камерах с контролируемой атмосферой можно судить по графику на рис. 11.3.
При сварке в камерах с контролируемой атмосферой пластичность металла сварного соединения приближается к пластичности основного металла. Автоматическая дуговая сварка в камерах с контролируемой атмосферой обеспечивает более стабильное качества сварных соединений, чем ручная.
Маленькая сварная аргонная камера
Добрый день!
Прикупив сварочный инвертор (ims-1700) с возможностью сварки Tig, начал призадумываться о приобретении всего, что для этого Tig необходимо. Опыта в сварке - мизер, зато перечитал интернет вдоль и поперек
В часности прочитал, что для ответственных деталей существуют камеры, заполняемые аргоном, в которых и ведется сварка.
Появилась идея соорудить нечто подобное. Похвалите/поругайте. Может быть вообще идея не имеет права на существование.
Итак, камеру предполагается расположить на рабочем столе. Передняя стенка камеры будет иметь прорези для рук. В эти прорези будут герметично вклеины две резиновые перчатки (для правой и левой руки). Внутри камеры на резиновые перчатки будут надеты краги. Также в передней части будут герметичные отверстия для сварочных проводов, шланга подачи аргона в камеру и шланга отсоса из камеры воздуха.
Верхняя части камеры выполнена из орг. стекла. Сквозь стекло можно наблюдать за процессом сварки.
Теперь САМОЕ ИНТЕРЕСНОЕ. Нижняя, задняя и боковые стенки отсутствуют. Вместо них к передней и верхней стенкам герметично крепится большой полиэтиленовый пакет.
Процесс. В передней стенке есть герметичная дверца, через которую в камеру помещаются свариваемые детали. Дверца закрывается. К трубке для отсоса воздуха присоединяется слабенький насос, отсасывающий воздух из камеры. При этом полиэтиленовый мешок "сморщивается", плото облегая верхнюю и переднюю стенку камеры, горелку, землю, свариваемые детали. Воздуха при этом в камере остается мизер - только тот, что в складках полиэтилена.
Теперь перекрываем шланг отсоса и через шланг подачи аргона подаем в камеру аргон. Полиэтиленовый мешок начинает надуваться. Как только в камере будет достаточно пространства для манипуляции горелкой, можно приступать к сварке, засуну руки в резиновые перчатки.
И сразу вопрос. Если сложности сварки алюминия на постоянном токе (инвертор) происходят из-за оксидной пленки,то можно ли сделать так. Поместить свариваемые алюминиевые детали в описанную выше камеру, заполнить камеру аргоном, и прямо в аргоне перед сваркой зашкурить свариваемые поверхности, разрушив оксидную пленку. Успеет ли в инертном газе образоваться оксидная пленка, способная помешать сварке?
И еще вопрос. Понятно, что чистота аргона в такой камере будет зависеть от соотношения воздуха, отсавшегося в камере после его выкачки, к количеству аргона, закачанного в камеру. Но т.к. аргон в 1,5 раза тяжелее воздуха, можно ли надеяться, что весь оставшийся в камере воздух скопится в верхней части камеры и на сварку влиять не будет? Если к верхней части камеры прикрутить высокую глухую трубку с вентилем у основания, то после того, как весь воздух скопится в этой трубке, ее можно будет перекрыть. Или аргон и воздух образуют смеси, разделить которые просым отстаиванием невозможно?
2floidzen По поводу п\э мешка: малейший острый уголок, и в п\э - дырка.
Если при очистке поверхности в аргоновой атмосфере не будет кислорода, то и окисления не будет.
По своему опыту: в небольшом сосуде воздух может быть полностью вытеснен аргоном, но велико время (минуты), в течение которого необходимо продувать сосуд инертным газом. Для достаточно большого сосуда (для Вашего случая - 0,25-1 м3), даже не знаю. Есть мысль, что качественно удалить остатки воздуха оттуда не удасться, из-за всяких там турбулентностей и т.д. Другое дело, а надо ли? Надо узнать у специалистов предельно допустимую концентрацию остаточного кислорода в газовой смеси, не исключено, что те несколько процентов (долей процента?) кислорода, оставшиеся в камере, не будут мешать сварке.
marat_k написал :
2floidzen По поводу п\э мешка: малейший острый уголок, и в п\э - дырка.
А может есть какие-то прочные альтернативы полиэтилена. Основные требования: герметичность и эластичность. В принципе можно целофановый мешок использовать сменный (для мусора, например ), разработов систему бысторой замены порвавшегося мешка. Также можно попробовать использовать несколько мешков, вложенных один в другой.
Конечно, удобство пользования такой системы резко падает
marat_k написал :
2floidzen Если при очистке поверхности в аргоновой атмосфере не будет кислорода, то и окисления не будет.
Вопрос в том, насколько чистым должен быть аргон для предотвращения образования оксидной пленки алюминия хотя бы в течение 5 минут после зашкуривания.
И еще. Целесообразна ли такая конструкция с точки зрения расхода аргона?
floidzen написал :
И еще. Целесообразна ли такая конструкция с точки зрения расхода аргона?
Ведь этотаппарат с рождения прндусмотрен варить в среде аргона
(Цифровой сварочный аппарат с микропроцессорным управлением и функциями HOT START, ARC FORCE, ANTISTICKING предназначен для ручной дуговой (MMA) и аргонодуговой (TIG) сварки на постоянном токе. Инвертором IMS 1700 Вы сварите все металлы так легко, просто и качественно как настоящий профессионал.)
Если он продовался без гарелки TIG, то не проще и вазможно дешевле купить гарелку и не заморачиваться с камерой (выпоняя столько операций прежде чем заварить и с множеством вапросов) а тут включил минимум подгатовки и вари. Тем боле посчитать расход газа на прастом примере - надо заварить кранштейн какого либо рычага длина шва составит 2см сколько уйдет аргона за приблизительно 60сек. и сколько надо аргона что б заполнить эту камеру. Патом ее обслуживание - присуствие дыма обязательно, а значит через некаторое время оргстекло закаптится так, что вероятность его замены очень велико а его стоимость. считайте - floidzen может я что то не дапонял цели этой камеры.
71440 написал :
Ведь этотаппарат с рождения прндусмотрен варить в среде аргона
(Цифровой сварочный аппарат с микропроцессорным управлением и функциями HOT START, ARC FORCE, ANTISTICKING предназначен для ручной дуговой (MMA) и аргонодуговой (TIG) сварки на постоянном токе. Инвертором IMS 1700 Вы сварите все металлы так легко, просто и качественно как настоящий профессионал.)
Если он продовался без гарелки TIG, то не проще и вазможно дешевле купить гарелку и не заморачиваться с камерой (выпоняя столько операций прежде чем заварить и с множеством вапросов) а тут включил минимум подгатовки и вари. Тем боле посчитать расход газа на прастом примере - надо заварить кранштейн какого либо рычага длина шва составит 2см сколько уйдет аргона за приблизительно 60сек. и сколько надо аргона что б заполнить эту камеру. Патом ее обслуживание - присуствие дыма обязательно, а значит через некаторое время оргстекло закаптится так, что вероятность его замены очень велико а его стоимость. считайте - floidzen может я что то не дапонял цели этой камеры.
Преимущества камеры могли бы заключаться в следующем:
1) более качественный шов в силу отсутствия воздуха вообще;
2) сварка алюминия постоянным током, после зачистки свариваемых кромок прямо в аргоне;
3) при сварке титана необходимо защищать шов от возбуха, пока он не остынет до 400 градусов по Цельсию. В аргоновой камере это легко реализуемо;
Возможно, есть и еще какие-то преимущества.
Про закопченость орг.стекла полностью с Вами согласен. Возможно удасться его защитить, наклеивая на обе стороны орг.стекла обычную типографскую прозрачную пленку, а потом заменять ее.
Минусы - с ростом размеров свариваемых деталей растет и объем камеры, а значит и расход газа.
Если надо сварить 50 маленьких деталюшек, то можно их не по очереди помещать в камеру, а все сразу
TIG. Учимся варить аргоном.
Давно хотел научиться варить аргонно — дуговой сваркой или с английского TIG (tungsten inert gas). В отличии от других видов сварки (MMA — обычный электрод и MIG — полуавтомат), TIG сварка производится не плавящимся вольфрамовым электродом, что отдаленно напоминает работу паяльником. Так же TIG сваркой можно варить практически все типы цветных металлов, включая наиболее распространенный — алюминий в режиме переменного тока, что не возможно другими видами сварки. В отличии от обычной сварки, TIG сваркой можно варить в закрытом помещении, она более пожаробезопасна, не брызжет и не выделяет дыма (только нужна система вытяжки, что бы не дышать газом).
В общем сделал себе на новый год подарок, и собрал самый бюджетный набор начинающего TIG Сварщика.
Перед этим естественно почитал немного литературы про TIG сварку и посмотрел некоторые ролики на youtube где все достаточно подробно разжевано.
Для начала был приобретен обычный инвертор с функцией поджига дуги при TIG сварке.
Сам инвертор немецкий и вроде как даже немецкой сборки. Мне он достался новый на акции за 9 800 р.
Т.к. аппарат бюджетный, то он варит только в режиме прямого тока DC (Direct Current), т.е. нет возможности варить алюминий. Алюминий варится в режиме переменного тока AC (Alternating Current). Так что если нужно варить алюминий, аппарат должен работать в режиме DC\AC.
Так как я начинающий сварщик, и бюджет мой был ограничен, то было решено в качестве первого знакомства с TIG сваркой взять самый бюджетный вариант и научится варить нержавейку. Тем более у меня стоит первоочередная задача переварить часть выхлопа и сделать 4-е крепление подушки двигателя. Аппарат имеет максимальный ток в 160 А, чего в принципе достаточно что бы варить металл толщиной до 4 мм.
Аппарат работает от розетки 220V, по размерам очень компактный, для него есть даже пластиковый чехол как для дрели=).
Итак аппарат куплен. Далее к нему отдельно были куплены: горелка — 2 950 р, баллон с заправленным аргоном на 10л — 3 900 р, редуктор на баллон для регулировки давления газа — 2 350 р. (не посмотрел и взял с функцией подогрева, ну да ладно), перчатки — 300 р., фитинги — быстросъём для газового шланга. Шлем для сварки у меня уже был, рекомендую брать сразу хамелеон. Итого набор начинающего TIG сварщика мне вышел в районе ± 20 т.р.
Если рассматривать сразу аппараты, с возможность варить алюминий, то это еще где то + 20 т.р.
Горелка обычная с ручным вентилем (про-во Италия). В комплекте сопла 5 и 6, два электрода 1,6 мм и 2,4 мм и цанги к ним. Электроды — имеют серую цветовую маркировку — универсальные. Есть так же целая цветовая палитра электродов под разные задачи (об этом чуть позже). Горелка имеет отдельно шланг под газ и подключается напрямую к редуктору баллона (на более дорогих аппаратах горелка вместе с шлангом для газа подключается к сварочному аппарату). Шланг просто одевается на фитинг редуктора. Отдельно замутил фитинги и сделал быстросъём как на пневмо инструменте.
Редуктор желательно брать с колбой с шариком.
Перед установкой электрода в горелку, его необходимо предварительно заточить. Для этого пришлось еще купить бюджетный точильный станок, но он мне был уже давно нужен. Электроды затачиваются продольно самому электроду — это важно, т.е. полоски от заточки должны идти продольно а не поперек. Длинна заточки — 2 — 2,5 диаметра самого электрода, но я не сильно парился и точил на глаз.
Вылет электрода от сопла зависит от размера сопла, чем шире сопло, тем больше может вылет но и больше нужно расходовать газа. Основная задача — обеспечить работу сварки в среде газа.
Отдельно заказал себе на ebay и aliexpress наборы газовых линз с соплами и отдельно большую газовую линзу для обеспечения цветных швов, а так же золотые и синие наборы электродов на 1,6 мм и 2,4 мм (пока жду посылку).
Отдельно купил б\у канальный вентилятор и замутил вытяжку над рабочим столом.
И так, все готово. Можно начинать делать первые шаги в TIG сварке. Для новичком рекомендуют начинать тренироваться на обычном прямом листе стали, что бы для начала почувствовать горелку в руке, научиться держать электрод над сварочной ванной на нужном расстоянии и вести горелку под правильным углом. У меня валялось два кусочка трубы — нержавейки 1,5 мм, поэтому решил не париться и начать с них.
Выставил аппарат на 35 Ампер, режим TIG. Поджиг дуги осуществляет очень просто — касаешся кончиком электрода об металл и чуть его поднимаешь, дуга образуется мгновенно. Никаких чириканий и прочей херни делать не нужно, кайф))).
Не айс конечно :). Начинать с трубы была не самая лучшая идея, тк нужно вести дугу постоянно меняя угол, что бы обеспечить правильный угол горелки (по мне где-то 60 гр.). Так же нужно выставить правильную силу тока. Т.к. пока опыта нет, и соответственно горелку быстро двигать не получается при этом обеспечивая нужную сварочную ванну, то ток выставлял не высокий. Со временем начинаешь контролировать сварочную ванную и это прям отдельный кайф ))).
Вторая попытка.
С верху что то вырисовывается, а вот изнутри провара нет. Значит нужно добавить тока. Чуть добавил и провар появился.
Если вы начинаете варить и у вас пошли искры как на MMA сварке значит забыли включить газ)))
Вот так это выглядит, буквально за 2 секунды.
А вот так электрод. Еще пару секунд и сопло бы поплавилось.
Мокнуть электроду в сварочную ванну для начинающих дело пустяковое, у меня за пару часов тренировки пару разков получилось. После этого 100% нужно перетачивать электрод, да и по виду все понятно.
Где то читал, что если правильно варить то на кончике электрода образуется маленький круглый шарик. У меня один раз так было. Если не затачивать электрод, то все сразу видно по дуге. Дуга становится не тонкая, а широкая и не сконцентрированная на одном участке, дуга постоянно гуляет по разным точкам металла.
Далее решил потренироваться на обычной пластине металла. После трубы конечно все намного проще. У меня была пару кусочков от крепления, в итоге получились интересные цветные швы. Видимо такой металл.
Слишком мало тока, нет провара.
Поднял ток до 50А,
С третьей попытки получилось даже красиво).
Далее решил вернуться к трубе. Отрезал как попало с большим зазором два кучка трубы нержавейки. В итоге получил такую картинку.
Для начала подумал много тока. Но примерно тоже самое получилось убавив ток с 50 до 35 Ампер. Значит дело не в токе. Просто имея зазор, металл начинал плавиться по зазору. Для этого нужно использовать присадочный пруток. У меня завалялся пруток нержа на 1,6 мм. Остался от ребят которые варили мне выхлоп.
Первые разы сварки с прутком конечно не удобные, пруток в левой руке кажется инородным и не привычно держать. Потом постепенно рука немного начала привыкать и удалось заварить дырку, но шовчик получился жирненьким)))
Жаль конечно что максимально можно 20 фото выложить(, так бы чуть по более накидал.
В завершении скажу, что затея со сваркой мне понравилась и в принципе процесс интересный. Нужно конечно набивать руку и пробовать разные варианты соединений металла. Возможно в будущем поснимаю сам процесс.
В общем продолжение следует однозначно).
Все о TIG сварке
Всем сварщикам надо знать, что такое TIG сварка. Аргонодуговая сварка чугуна и алюминия отлично подходит даже для начинающих специалистов. Получение швов при сварке аргоном, меры безопасности, подбор перчаток и другого снаряжения, а также основные ошибки стоит изучить максимально основательно.
Что это такое?
Сваривать металлы люди начали достаточно давно. Однако старая и современная сварка сильно различаются. TIG сварка является одним из наиболее современных методов соединения металлических заготовок. Главный ее принцип — применение вольфрамового электрода, вводимого в атмосферу химически бездеятельного газа. Сам стержень такого рода принято относить к «неплавящейся» категории. Сварщику приходится точить электродный инструмент, иначе добиться постоянного устойчивого существования электрической дуги невозможно.
Официальная расшифровка термина TIG – аргонодуговая сварка с применением как раз неплавкого электродного инструмента. Конечно, даже вольфрам может плавиться — но только при температуре не ниже 3500 градусов. Иногда схема подразумевает подачу не аргона, а другого нейтрального газа. Стоит отметить, что в технической документации такой метод может иметь и другие названия. К примеру, в немецкоязычной литературе в ходу термин WIG. Есть еще название GTA, которое не указывает на химические свойства применяемого газа.
Вольфрамовая сварка в изолирующем газе вошла в промышленный оборот в 1940-е годы. Она стала настоящим спасением для авиационной промышленности, а позднее для ракетостроения, где другие методы соединения уже не удовлетворяли. Довольно скоро достоинства TIG оценили и инженеры других отраслей. Основные характеристики такого способа:
- максимальная равномерность шва (исключается появление пор и ненормальных полостей);
- сокращение внутренних механических напряжений;
- отсутствие плавильных брызг;
- пригодность практически для любого чистого металла или сплава;
- отсутствие необходимости дополнительно обрабатывать заготовки после соединения;
- возможность в целом освоить оборудование и методы работы за 2-3 сеанса;
- малая эффективность работы на открытом воздухе (без изоляции от ветра);
- необходимость тщательной подготовки поверхности;
- усложнение работы из-за неприемлемости острого угла размещения горелки;
- необходимость вычищать отметки, оставляемые электрической дугой.
Тигельная сварка приемлема для работы почти со всеми типами стали. Когда электродный инструмент расположен в цанге, он жестко фиксируется в горелке. Излишек длины скрывается дополнительным колпаком, что исключает риск короткого замыкания. Завершающая часть горелки — специальное керамическое сопло. В его середине располагается электрод, окружаемый изолирующим газом.
Когда пластины разделяются зазором, либо поставлена цель получить шов с высокой стойкостью к разрыву и надлому, нужно использовать присадочную проволоку. Сечение этой проволоки определяется необходимой толщиной изделия и конкретно шва. В некоторых случаях применяется импульсная разновидность ТИГ сварки. Такой вариант подразумевает, что параметры тока меняются от предельных до минимальных за сравнительно короткое время. Для работы может применяться и постоянный, и переменный ток. Учитывают и вид, и толщину металлических заготовок. Обязательно необходимо разобраться с отличиями TIG от MMA.
Второй вариант — MMA подразумевает применение покрытого электрода. Такой подход позволяет отказаться от использования изолирующего газа. Расплавляющиеся электроды оставляют укрепленный шов. Со сталью можно работать уверенно при помощи аппаратуры MMA. Методика TIG позволяет эффективно манипулировать алюминием и другими цветными металлами.
Сферы применения
Технология ТИГ находит применение в:
- кораблестроении;
- производстве автомобилей и летательных аппаратов;
- получении деталей различных станков и механизмов;
- изготовлении медицинской техники;
- производстве бытового и профессионального электроинструмента.
Эта методика позволяет успешно сваривать изделия из черного металла — чугуна и стали. Можно отлично приваривать, скажем, углеродистые и нержавеющие заготовки. Присадочный материал нет необходимости тщательно отбирать — подойдет практически любой вариант. Наряду с чистым вольфрамовым инструментом, могут использоваться и вольфрамсодержащие конструкции. Чугун приходится предварительно прогревать. Работа с легированными и содержащими много углерода сталями возможна, если они не будут испытывать сильных механических нагрузок, дополнительно требуется защищать металл от чрезмерного нагрева.
ТИГ сварка алюминия постоянным током за последние годы почти вышла из употребления. Сам по себе метод отличается повышенной себестоимостью. Потому его используют главным образом там, где предъявляются высокие требования к самим изделиям и их соединениям. Полноценная работа может быть выполнена лишь в условиях промышленного производства. В условиях частного дома или небольшой мастерской обычно возникают серьезные проблемы.
Методом TIG можно сравнительно неплохо варить и изделия из меди. Такой вариант позволяет получить весьма красивый шов. Обязательно следует учитывать жидкотекучесть медного расплава и повышенную теплопроводность этого металла. Сильный прогрев меди приводит к появлению тугоплавких компонентов, отличающихся повышенной хрупкостью. Создать вертикальные либо потолочные швы невозможно — все из-за той же особой текучести металла.
Обзор оборудования
Для нормальной работы потребуются:
- инверторный аппарат, оснащенный переходником под газовую смесь, с европейским разъемом, с контролем выходных параметров;
- рукав евростандарта;
- шланги, по которым прокачивается газ из баллона;
- сами эти баллоны;
- газовые редукторы;
- калиброванные и юстированные манометры;
- специализированная горелка;
- присадки (проволока присадочного или специального сварочного типа, максимально близкая по составу к обрабатываемому материалу);
- чистый инертный газ (иногда — комбинация с углекислотой).
Особо важно правильно выбрать размеры присадочной проволоки и прутков. Принципы более или менее одинаковы:
В числе комплектующих для ТИГ сварки важную роль играют используемые электроды. Величина электродных инструментов подбирается строго под силу используемого тока:
- при применении электричества не сильнее 50 А можно обойтись диаметром 0,1 см;
- электрод сечением 0,16 см позволяет успешно работать даже при электрической силе до 100 А;
- диаметр 0,32 мм гарантирует полноценную подачу до 300 А;
- а вот для работы с токами еще большей силы нужен электрод величиной 0,42 см.
Наряду с чисто вольфрамовыми электродными инструментами, в комплект оснащения современного сварщика обязательно входят торированные и лантанированные образцы. Стоит отметить, что одни электроды рассчитаны на постоянный ток, другие — на переменный, а третьи имеют универсальное применение. Этот момент обязательно отражается в маркировке. Сколько конкретно электродов потребуется, можно сказать только с учетом режима сварочных работ, диаметра прутков, типа тока и других необходимых показателей.
Отдельная актуальная тема — выбор сопла. Их делят на классический формат и на компоненты для газовых линз. Также сопла классифицируют по типам горелок, для которых они предназначены. Чем больше условный номер детали, тем крупнее она будет. В международном стандарте маркировки используются диаметры от 4 до 10 (кроме диаметра 9, который не выпускается где-либо вообще).
Цифрами обозначают диаметр, измеряемый в шестнадцатых долях английского дюйма. В переводе на метрические критерии это ровно 1,588 мм. Еще стоит учесть, что керамические сопла могут делаться не только в стандартном, но и в удлиненном виде. Чем крупнее диаметр, тем более толстый электрод окажется совместим. Это связано с необходимостью изолировать газом более крупный сварочный шов. Стоит также отметить, что при TIG сварке обязательно надо использовать перчатки для защиты рук. Часто их делают из козьей или коровьей кожи. Довольно широко распространен также спилок — то есть кожа, покрытая теплозащитным слоем. Некоторые спилковые перчатки оснащаются кевларовым покрытием и потому отличаются повышенным защитными качествами. Чистые кевларовые перчатки делаются на основе пара-амидного волокна, и такие изделия поставляют многие крупные изготовители. Что касается брезентовых рукавиц, то их применяют только для легких коротких работ.
Также сварщики обычно носят:
- сапоги либо ботинки специального образца;
- лицевые маски;
- балаклавы (шапки и другие подшлемники);
- фартуки;
- наколенники;
- нарукавники.
Режимы работы
Ключевые режимы ТИГ таковы:
- подача постоянного тока разнообразной полярности;
- подача переменного тока высокой частоты с варьированием вольтамперных параметров (что обеспечивает щадящую работу с деталями);
- бесконтактное поступление тока высокого напряжения через осциллятор.
Задавать настройки на постоянный ток нужно, когда идет работа с магниевыми и алюминиевыми сплавами при обратной полярности. Такой способ позволяет гарантировать отменную прочность швов. Одновременно удается разрушать слишком плотную пленку на поверхности, препятствующую нормальному плавлению. Важным условием успеха является применение специализированных сварочных прутов, пододвигаемых в рабочую зону ручным способом.
Все прочие металлы и сплавы варят обычно постоянным электричеством с прямой поляризацией. Присадки и ампераж подбирают индивидуально. Переменная ТИГ сварка (импульсная методика) хороша тем, что заготовки не нагреваются чрезмерно. Ее обычно применяют при работе с тонкостенными изделиями. Что касается применяемого аргона, то может использоваться газ первой и наивысшей категорий чистоты. Для максимально сложных манипуляций аргон смешивают с гелием, а для не слишком ответственных работ — с углекислотой (что гораздо экономичнее).
Правила безопасности
Как уже говорилось, выполнять сварочные работы без перчаток, специальных масок и шлемов, другой спецодежды недопустимо. Но этого совершенно недостаточно. Требуется непременно проверять, насколько заземлены агрегаты, хорошо ли изолированы рукояти фиксаторов электродов. Также стоит обратить внимание на то, качественно ли прикреплен шланг, подающий аргон. Если предусматривается водяное охлаждение, крепление подающего воду шланга тоже имеет большую роль.
Дополнительно проверяют, исправен ли газовый редуктор, опломбированы ли манометры, сохранна ли нарезка накидных гаек. При использовании автоматических сварочных систем надо со стороны оператора крепить щиток со светофильтрующей частью. При сваривании алюминия, меди и некоторых их сплавов образуются токсичные газы и пары. Как следствие, нормально работать можно только при активной вытяжной вентиляции или при подкачке воздуха под сварочную маску.
Горячий алюминий может обжигать. Предотвратить это помогает применение формующих прокладок и движущихся шторок. Чтобы очищать присадочный алюминий едким натром, используют резиновые перчатки и специальные химические очки. Все провода должны быть изолированы, а электроприборы и точки их подключения — заземлены. Газовые линзы можно применять при самых разных условиях. Использование этих деталей может проводиться при строгом соблюдении инструкции и никак иначе!
При автоматической сварке с дистанционным управлением следует тщательно подбирать и аккуратно заземлять также управляющую педаль. Подключать, отключать и чинить сварочное оборудование должны только электромонтеры и приравниваемые к ним специалисты. Обязательно следует применять источники питания с узлами, автоматически рвущими цепь при холостом ходу.
Электрододержатели, не рассчитанные на повышенную механическую нагрузку (минимум 8000 зажимных циклов), применять нельзя. Перед началом работы следует проверять исправность и сухость спецодежды, рукавиц, прочей экипировки. В тесных местах обязательно ношение резиновых галош и таких же ковриков. Газовые баллоны хранят строго вертикально! Если замерз редуктор углекислотного баллона, его прогревают либо специальным приспособлением, либо насыщенной горячей водой ветошью, но не открытым огнем! Использование открытого пламени для воздействия на любые части любых газовых баллонов запрещено вовсе. Сварка в местах, где хранится мука, уголь, торф и другие пылящие вещества, производится только при наличии мощной вентиляции и с прямого разрешения пожарной охраны.
Если металл закрывает дерево или иной горючий материал, или если работа идет на деревянных лесах, надо принимать экстраординарные меры защиты. Но еще лучше будет убрать все опасные вещества из рабочей зоны, даже если для этого потребуются часы сложной подготовки. Дополнительно нужно следить за:
- транспортировкой тяжелых предметов;
- исправностью такелажных инструментов;
- пожароопасными и взрывоопасными парами;
- защитой трансформаторов, проводов и других частей от осадков;
- концентрацией токсичных веществ в рабочей зоне.
Технология сварки
Главное, что важно усвоить для начинающих при сварке аргоном — правильный выбор режимов. Электроды точат так, чтобы риски размещались в параллельной плоскости по отношению к оси стержня. Кроме обработки наждачным кругом, придется полировать наконечник электродного инструмента. Угол заточки наращивают, если предстоит варить толстый металл. Приведем базовые основы, как правильно разжигать дугу. Есть три ключевых методики:
- прохождение иглы по металлу;
- точечное прикосновение (эта методика получила название Lift TIG);
- неконтактная инициация.
Первый вариант может вызвать много проблем. При его выборе электрод часто прилипает и начинает затупляться. Второй метод в основном как раз и используется дома — он характерен для сварочных аппаратов среднего ценового уровня. Третий подход самый комфортный для сварщика, но его применение возможно лишь на дорогой технике. Вести дугу нужно так, чтобы получить строго определенный результат.
Так, получить тонкие и прямые швы своими руками удастся, если разрыв от иглы до поверхности составит 0,3 см. Наращивая этот промежуток, расширяют тем самым сварочную ванну, однако, глубина оплавляемой зоны сокращается. Шов ведут от правого к левому углу, никаких колебаний не допускается. При работе с утолщенными пластинами требуется разделать кромки строго под 45 градусов. Заполняющий и накладываемый швы, в отличие от корневого, ведутся не ровно, а за счет поперечно-колебательных маневров. Вылет иглы на стыках составляет 0,5 см.
Сварка переменным током ведется при подаче проволоки против движения горелки. На первом проходе амплитуда составляет 2-4 мм. Последующие слои идут при амплитуде 6-8 мм. После окончания сварки тушат дугу, но держат электрод в контакте с металлом до 20 секунд. Только после остывания его можно убирать.
Основные ошибки и их устранение
Нарушение сварочной технологии грозит появлением трещин. Это связано с чрезмерной силой тока, с неверным размещением швов, а также с плохим составом металла. Проблемные участки просто вырезают либо засверливают с концов. Наплыв свидетельствует, что основной металл слабо прогрели. Все наплывы срезают, но не ограничиваются этим, а выясняют, нет ли непровара в проблемном месте. Подрез (углубление в ненужном месте) концентрирует механическое напряжение. К тому же шов становится меньше по сечению. Обычно подрезы появляются при завышенных значениях тока. Для горизонтальных швов они гораздо более характерны, чем для вертикальных линий. В тонких местах наплавляют дополнительный металл, а затем его тщательно шлифуют.
Кратер появляется там, где обрыв дуги создал выемку. Типично еще и возникновение в таких участках пор. Предотвратить кратеры практически всегда можно предварительной обдувкой газом. Такие места вырезают или устраняют сверлением, затем их придется заварить снова. В случае прожога остается только зачищать и вновь заваривать участок.
О том, что такое TIG сварка, смотрите в следующем видео.
Читайте также: