Сварка труб из алюминия

Обновлено: 10.01.2025

Сварка труб из алюминиевых сплавов за последнее десятилетие получила интенсивное развитие. В США с 1960 по 1965 г. выпуск сварных алюминиевых труб увеличился в 3,6 раза и составил 30% от всего объема производства труб из алюминиевых сплавов. Интенсивное развитие трубосварочного производства обусловлено как преимуществами сварных труб, так и высокими экономическими показателями процессов их производства.

Сварные трубы отличаются малой разностенностью, неограниченной длиной и могут выпускаться с различными специальными покрытиями, предварительно нанесенными на исходную полосовую заготовку. Высокая экономическая эффективность трубосварочного производства основана на сравнительно низких капитальных затратах и себестоимости производства за счет резкого снижения трудоемкости и повышения выхода годного.

Основные области применения сварных алюминиевых труб — изготовление предметов широкого потребления, ирригационные сети и установки, строительство, электротехника и др. Главное препятствие для дальнейшего расширения областей применения сварных труб — трудность удаления внутреннего грата, особенно на трубах малого диаметра.

1. СПОСОБЫ СВАРКИ ТРУБ

Все существующие способы сварки алюминиевых труб можно разделить на две группы: сварка давлением и сварка сплавлением. К первой группе относят радиочастотную сварку с контактным или индукционным токоподводом при частоте сварочного тока до 450 кгц и индукционную сварку током частотой 8—10 кгц. Последний метод эффективен при сварке толстостенных труб большого диаметра, но пока еще не нашел широкого промышленного применения.

Радиочастотной сваркой изготавливают прямошовные трубы диам. 9—220 мм с толщиной стенки 0,5—6 мм, причем указанный сортамент не является предельным для данного метода производства труб.

К сварке сплавлением относят дуговую сварку в среде защитных газов и электроннолучевую сварку. Электроннолучевая сварка труб находится в стадии опытных разработок. Метод перспективен по сравнению с дуговой сваркой в среде защитных газов, так как позволяет повысить скорость сварки и достичь более высокого качества шва. Дуговую сварку в среде защитных газов применяют при изготовлении труб диам. 6—600 мм с толщиной стенки 0,3—10 мм.

В последние годы большое внимание уделяется разработке промышленной технологии и оборудования для производства алюминиевых труб со спиральным швом. Данным методом освоено производство труб диаметром от 12 до 3000 мм с толщиной стенки от 0,125 до 9 мм, причем отношение диаметра к стенке может быть более 100. При спиральной формовке используют как дуговую сварку, так и контактную радиочастотную.

Дуговая сварка в среде защитных газов

При дуговой сварке в среде защитного газа источником тепла для разогрева и оплавления свариваемых кромок трубной заготовки служит дуга, возбуждаемая между электродом

и свариваемыми кромками трубы. Электрод может быть плавящимся или неплавящимся. В первом случае металл электрода «участвует» в образовании шва, во втором — сварной шов образуется только из расплавленного основного металла или в отдельных случаях благодаря дополнительному введению в очаг сварки присадочного материала. При сварке алюминиевых труб чаще всего применяют неплавящийся вольфрамовый электрод без подачи присадочного материала. Сварка труб плавящимся электродом не нашла еще широкого применения, хотя этот способ позволяет существенно повысить толщину стенки свариваемых труб и скорость сварки по сравнению со сваркой вольфрамовым электродом.

При сварке вольфрамовым электродом применяют переменный ток или постоянный ток обратной полярности (т. е. когда к электроду подключен положительный полюс). Сварку плавящимся электродом производят только на постоянном токе обратной полярности.

В качестве защитного газа используют аргон высокой чистоты.

В связи с разработкой в последнее десятилетие метода радиочастотной сварки применение аргоно-дуговой сварки для изготовления легкосплавных труб резко сократилось. В серийном производстве алюминиевых труб этот метод применяется только в отдельных случаях — когда требуются небольшие количества особотонкостенных труб с большим отношением диаметра к стенке.

Основные причины вытеснения метода аргоно-дуговой сварки — низкие скорости сварки (не выше 2—5 м/мин) и узкий диапазон сплавов, пригодных для данного способа сварки: в основном — алюминий и сплавы системы А1—Mg и А1—Мп.

Радиочастотная сварка труб

Метод радиочастотной сварки труб разработан и широко внедрен в промышленность в последнее десятилетие.

Метод основан на стремлении тока «выбрать» путь с минимальным результирующим сопротивлением.

Проявление действия этого закона при прохождении тока по проводникам связано с рядом эффектов, два из которых — эффект близости и поверхностный эффект — имеют непосредственное отношение к процессу радиочастотной сварки труб. Эффект близости выражается в том, что при прохождении по проводникам двух разнонаправленных токов происходит перераспределение плотности тока по сечению проводников таким образом, что линии токов стремятся сблизиться; в случае одинаково направленных токов — линии токов стремятся разойтись. «Поверхностный эффект» выражается в вытеснении тока при прохождении его по проводникам из центральных частей на периферию. С повышением частоты данные эффекты проявляются более резко. Таким образом, используя отмеченные выше эффекты, можно добиться избирательного протекания тока по проводникам, а за счет этого — избирательного нагрева частей проводников. Отсюда — возможность высокоскоростного концентрированного нагрева свариваемых кромок трубы.

Для повышения концентрации тока на свариваемых кромках и устранения вредных потерь при растекании тока по побочным цепям внутрь трубы вводят магнитный сердечник из феррита, его применение особенно эффективно при сварке труб малого диаметра.

Высокоскоростной концентрированный нагрев кромок под сварку обладает рядом достоинств:

1. Узкая зона нагреваемого металла.

Глубину проникновения тока в кромки определяют по формуле

Для алюминиевых сплавов глубина проникновения тока составляет десятые доли миллиметра.

2. Высокие скорости нагрева и, следовательно, высокие скорости сварки труб. Это позволяет производить сварку ряда высокоактивных материалов, в том числе и алюминия без применения защитной атмосферы.

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Аргонная сварка алюминия

Аргонная сварка алюминия

Аргонная сварка алюминия – единственный способ получить прочное соединение, которое отвечает всем предъявляемым требованиям. Проблема сварки алюминия в том, что на его поверхности находится инертная оксидная пленка, достаточно прочная, чтобы сделать неэффективными другие способы сварки.

Однако недостаточно просто выбрать аргоновую сварку как метод. Необходимо также правильно подобрать расходные материалы и настроить само оборудование. О том, как получить крепкие швы, не требующие обработки, какие есть способы проверки соединений, читайте в нашей статье.

Почему подходит именно аргон для сварки алюминия

Для работы с таким металлом, как алюминий, подходит любой инертный газ. Примером может служить гелий, он использовался еще в 40-е годы XX века в Соединенных Штатах Америки в качестве газа для сварки алюминия и его сплавов. Но у аргона есть одно неоспоримое преимущество – его стоимость значительно ниже при сохранении того же результата. Впрочем, для работы требуется иное знание – почему качественные швы, соединяющие алюминиевые детали, создаются под защитным слоем инертного газа.

Почему подходит именно аргон для сварки алюминия

Поскоблите поверхность любого алюминиевого изделия и увидите блестящий металл. Впрочем, постепенно блеск металла будет мутнеть и становиться все более тусклым. Это говорит о происходящем процессе окисления алюминия. Что по-научному звучит как «образование окиси алюминия (Al2O3)» – вещества, появляющегося на поверхности для защиты металла от продолжения окисления.

Чистый алюминий имеет температуру плавления, равную +6600 °С, а пленка покрывающая его поверхность – +20 000 °С. Это сильно затрудняет обычную сварку. Приходится искать технологию, которая сначала уберет окисленный слой с поверхности и удалит ее из зоны сварки. И она есть. Основным источником энергии для нее служит электричество, которое создает дугу переменного тока. Направление последнего меняется так же, как и тока в обычной электросети с частотой 50 Гц.

При работе с алюминием переменный ток решает несколько задач:

  • Дает возможность применять легкое, компактное оборудование (инвертеры для сварки), заменив ими огромные преобразователи, которые, помимо своего размера, были неудобны необходимостью спецподготовки места сварки и повышенными требованиями к квалификации специалиста.
  • Легко убирает слой оксида алюминия с поверхности металла, поскольку рабочая температура электрода выше термической стойкости Al2O3.

Во время выполнения работы необходимо строго выдерживать полярность электрического тока. Обратная полярность, когда электрод становится анодом, – это процесс, при котором электронный поток идет следующим образом: электрод → заготовка. Внутри дуги температура находится в диапазоне от +5 000 °С до +6 000 °С, что выше температуры приконтактных зон, однако она все равно значительно больше температуры плавления алюминия. Электроны своей энергией рвут пленку оксида алюминия и счищают ее с поверхности металла, обеспечивая качественную плавку.

Рекомендуем статьи по металлообработке

Впрочем, одной обратной полярности для выполнения сварочных работ с алюминием мало. Окружающая среда должна быть нейтральна к высоким температурам и защищать поверхность от вновь образовывающейся окиси. Что и делает инертный газ.

Аргонная сварка алюминия имеет высокую производительность и делает процесс устойчивым, обеспечивая требуемое качество шва на изделии.

Подготовительные процедуры перед сваркой алюминия аргоном

Подготовительные процедуры перед сваркой алюминия аргоном

Работа с алюминием имеет множество особенностей, которые необходимо учитывать в процессе сварки:

  • Быстрое покрытие поверхности металла оксидной пленкой в результате взаимодействия с кислородом, находящимся в окружающем нас воздухе, по причине высокой химической активности. Температура плавления пленки > +2 000 °С, в то время как сам металл плавится при +660 °С. При попадании жестких частей пленки в сварной шов, качество и прочность последнего значительно снижаются.
  • Контроль процесса аргонной сварки алюминия затруднен, поскольку цвет металла при расплавлении не изменяется.
  • В результате гигроскопичности алюминий впитывает влагу из воздуха. Впоследствии, при нагреве, она начинает испаряться и мешает сварочному процессу из-за аргона, ухудшая качество шва.
  • Алюминий имеет высокий коэффициент линейного расширения. Поэтому во время остывания заготовка может достаточно сильно деформироваться или потрескаться. Чтобы этого избежать, при сварке аргоном увеличивают расход присадочной проволоки или видоизменяют шов.

Расход аргона при выполнении сварки необходимо аккуратно регулировать. При недостаточном его поступлении в зону работы алюминий может вспениться, избыток же не позволит сделать правильного шва.

Одним из видов оборудования должен быть аппарат аргонной сварки алюминия переменного тока. Установка постоянного тока для выполнения аргонной сварки не подходит. Наиболее пригодным может стать инвертор с TIG-режимом. Дополнительные опции в нем должны позволять:

  • розжиг дуги бесконтактным методом;
  • регулирование баланса переменного тока;
  • заваривание аргоном кратера шва;
  • регулирование времени подачи аргона после выключения дуги.

Для снижения расхода аргона во время сварки алюминия необходимо заменить обычную горелку на оснащенную газовой линзой, которую еще называют цангодержателем. Внутри такого приспособления стоит специальная сетка. Аргон проходит через ее ячейки, что снижает расход с одновременным увеличением защиты места сварки.

Электрод для аргонной сварки выбирают универсальный вольфрамовый AC/DC, цвет неважен. Может также использоваться зеленый специализированный электрод для переменного тока AC. Конец проволоки делается слегка острым, но его притупление остается. Делается это для того, чтобы после зажжения дуги он приобрел каплеобразную форму. Для предотвращения перегрева вольфрамового электрода его закрепляют в сопло с вылетом от 0,3 до 0,5 см. В процессе аргонной сварки конец затупляется налипшими брызгами алюминия и его приходится снова заострять.

Алюминий быстро плавится, поэтому диаметр присадочной проволоки должен быть больше или равен толщине заготовок для успешного ее продвижения. Подача может происходить как вручную, так и выполняться полуавтоматом. Выбор проволоки зависит от чистоты алюминия. Для алюминия, содержащего сплавы, берут проволоку с кремниевыми добавками № 4043, а для чистого – № 5356.

Технология аргонной сварки алюминия

Технология аргонной сварки алюминия

Одним из серьезных этапов сварки аргоном является очистка кромок деталей. Перед началом работы требуется механически почистить их, а затем обезжирить. Чтобы убрать все жиры с поверхности деталей, надо использовать растворитель, например, ацетон. Помимо этого, при толщине детали > 0,4 см необходимо бывает разделать кромки, то есть скосить их. Делается это для понижения сварочной ванны ниже уровня поверхности детали, чтобы сформировать корень шва.

Для исключения прожогов оставляют маленькое притупление. При обработке с помощью аргона тонких заготовок используют отбортовку – так называют процесс загиба кромок деталей под прямым углом. Делается это для более плотного прилегания деталей друг к другу при аргонной сварке. Если кромки достаточно хорошо подготовить, то уберется напряжение заготовки и не произойдет ее деформации, что увеличит качество сварного соединения.

С поверхности необходимо убрать пленку окиси. Для этого кромки деталей обрабатывают любым абразивом (например, наждачкой) на расстояние ≤ 3 см от края. Также можно поработать напильником.

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Тепло хорошо отводится, если поместить обрабатываемую деталь на подкладку из стали или меди. Тонкие заготовки обязательно надо разместить таким образом, чтобы предотвратить образование прожогов от соединения аргоном.

После окончания подготовительных работ надо хорошенько настроить переменный ток, подобрать правильный электрод, выбрать его диаметр и присадочную проволоку для соединения аргоном. Нижеизложенная информация призвана облегчить процесс выбора. При использовании двухрежимного аппарата он должен быть переведен в режим работы переменного тока АС.

Способ формирования шва

Толщина заготовки, мм

Диаметр электрода, мм

Диаметр проволоки, мм

С отбортовкой кромок

Начинается работа с большой силой тока для быстрого прогрева металла. В процессе ток уменьшается, что предотвращает последующие пережоги, поскольку тепло быстро расползается по зоне аргонной сварки.

Настройка скорости подачи аргона в сварочную ванну очень важна. На интенсивность сильное влияние оказывают сила тока и скорость перемещения горелки. Рассмотрим несколько примеров: лист алюминия толщиной 0,1 см обрабатывается силой тока < 50 А – расход аргона будет от 4 до 5 л/мин. При толщине 0,4–0,5 см и силе тока >150 А – расход аргона вырастет до 8–10 л/мин. Излишнее количество аргона в сварочной ванне может привести к примеси воздуха, а это ухудшит показатели шва. При его недостатке шов не удастся качественно защитить от воздействия кислорода.

Процесс начинается с газовой продувки. Горелка включается примерно на 20 секунд. Затем она подносится к поверхности металла на расстояние в 2 мм для создания электрической дуги. Дугу для аргонной сварки металлов, в том числе и алюминия, нельзя разжигать касанием. Поступающий в рабочую зону аргон защищает ее от воздействия кислорода, в то время как электрическая дуга плавит кромки вместе с проволокой (если она применяется для аргонной сварки). Электрод следует держать под углом 70–80° к заготовке для создания качественного ровного шва.

Проверка качества сварки алюминия аргоном

Присадочная проволока, в случае ее использования, должна подаваться под углом 90° к электроду. Для защиты шва проволоку следует подавать перед электродом краткими движениями возвратно-поступательного характера. Выглядит это как прикосновение кончика проволоки к поверхности с последующим движением вверх и назад. Нельзя двигать электрод и присадку поперек шва. Все движения должны быть плавными, тогда шов получится ровным. При резких движениях металл начинает разбрызгиваться.

Расстояние между изделием и электродом в процессе всей работы с помощью аргона должно быть одинаковым и не превышать 1,5–2,5 мм. От него зависит длина дуги – чем она короче, тем ровнее металл будет плавиться, а значит, и шов получится прочнее и красивее.

Расплавленный алюминий достаточно быстро застывает, поскольку в процессе нагревания происходит его усадка. Из-за этого при охлаждении может потрескаться углубление на конце шва. Для предотвращения этого углубление заваривают, направляя электрод обратно. По окончании сварочных работ с аргоном горелка продувается в течение 10 секунд газом. Насколько будет качественным шов? Определить это несложно, достаточно взглянуть на его ширину, которая должна быть одинаковой, и структуру (наподобие чешуек). На шве, получаемом методом сварки с аргоном, не должно быть наплывов, пузырей и непроваров.

Проверка качества сварки алюминия аргоном

Изделия и конструкции из алюминия и сплавов с ним используются в машиностроении. Это трубопроводы, резервуары, емкости и пр. Их надежность и долговечность определяется качеством сварных швов.

Основными методами контроля сварных соединений алюминиевых изделий являются дефектоскопия ультразвуком, рентгено- и гамма-графирование, визуальный осмотр и измерение, гидравлические испытания гелиевым искателем течей.

Обязательно проверяются механические свойства сварных швов, созданных с аргоном, проводят металлографию – проверку состава и структуры соединения (в случае выполнения работ, технологически предусматривающих термический контроль сварки аргоном).

Обязательно проверяются механические свойства сварных швов, созданных с аргоном

Проведение контроля доверяют работникам ОТК производителя алюминиевых конструкций, иногда проверку проводят при участии представителей заказчика, поскольку аргонная сварка алюминия, цена которой не считается высокой, является в то же время очень ответственной.

Методы, параметры и объемы работ по контролю устанавливаются на каждую группу изделий, тип конструкции, а иногда и на конкретную продукцию, в соответствии с «Правилами контроля» или техническими условиями.

Существуют определенные особенности в проведении контроля изделий из алюминия и его сплавов, поскольку материал склонен к образованию пор внутри соединения, выполненного с аргоном. Помимо пор, в шве могут образовываться и несплавления, возникающие между кромками и швом, а также между валиками. Поиски несплавлений затруднены, поскольку их невозможно обнаружить рентгено- и гамма-графированием. Специалисты используют для этой цели ультразвук, делая дефектоскопию.

Несплавление в корне шва – достаточно частый дефект, возникающий во время работы неплавящимся электродом при сквозной проплавке, когда корень шва создается на неостающейся подкладке. Корень шва, при невозможности получить доступ к подварке, следует делать под защитой нейтрального газа. А непосредственно перед сваркой аргоном необходимо проводить шабрение кромок, чтобы убрать окисную пленку.

При проведении многослойной обработки металла поры в нижних слоях могут переплавляться в процессе наложения верхних валиков! Именно поэтому пористость не учитывается в процессе промежуточного просвечивания изделия.

Контрольную процедуру внешнего осмотра проходят все сварные соединения, кроме швов, имеющих внешние дефекты – наплывы, свищи начала шва, трещины, кратеры, не прошедшие заваривание и их выводы на основной металл, цепи пор и сплошные сетки, непровары и подрезы.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Сварка труб из алюминия

Антикоррозионное оборудование

Сварка трубопроводов из алюминия и его сплавов, из меди и ее сплавов

Трубы из цветных металлов и их сплавов сваривают газовой, электродуговой и аргонодуговой сваркой. Газовая сварка в настоящее время вытесняется другими, более эффективными и производительными способами, однако объем ее применения при сварке трубопроводов из цветных металлов остается значительным. Это объясняется невысокой стоимостью оборудования, материалов и простотой технологического процесса, а также возможностью сварки труб с малыми толщинами стенок (0,5—2 мм), что особенно важно при сварке труб малых диаметров.

Сборку стыков труб из алюминия и его сплавов выполняют на прихватках с предварительным подогревом кромок до 200—250° С. После наложения прихваток их поверхность непосредственно перед сваркой зачищают при аргонодуговой сварке металлическими щетками, а при других способах сварки остатки шлака удаляют, промывая водой. После очистки поверхность прихваток тщательно осматривают и в случае обнаружения дефектов (трещин, пор) прихватки вырубают и стыки труб прихватывают повторно.

Трубы со стенками толщиной до 2—2,5 мм сваривают газовой или аргонодуговой сваркой по отбортовке без присадочного металла. При толщине стенок до 6 мм трубы под сварку соединяют встык, без скоса кромок, с зазором 1—2 мм; при толщине стенок 6 мм и более делают скос кромок под углом 60—70° с притуплением в вершине угла разделки шва, равным Д толщины стенки.

Газовую сварку труб из алюминия и его сплавов обычно выполняют ацетиленокислородным пламенем. Для растворения а удаления в шлак окислов применяют специальные флюсы. Большое распространение получил флюс АФ-44.

При сварке алюминиевых сплавов АМц и АМг хорошие результаты дает флюс № 8. Флюсы изготовляют в виде порошков и разводят в дистиллированной воде до состояния пасты. Наносят флюс на поверхность присадочного прутка и свариваемые кромки труб кистью тонким слоем.

Для дуговой сварки применяют угольные или графитовые электроды, имеющие форму стержней длиной 200—700 мм и диаметром 6—25 мм. Ручная дуговая сварка металлическим обмазанным электродом в настоящее время находит незначительное применение. Дуговую сварку в среде защитных газов применяют для труб из алюминия и его сплавов с толщиной стенки от 1 мм и выше. Этот способ сварки высокопроизводителен и позволяет сваривать трубы в любом пространственном положении. В качестве защитных газов при дуговой сварке трубопроводов из алюминия и его сплавов используют аргон. Сварку выполняют неплавящимся (вольфрамовым) электродом на переменном токе и плавящимся электродом на постоянном токе обратной полярности. Сварку неплавящимся электродом труб с толщиной стенки до 8 мм можно осуществлять вручную или механизированным способом (автоматами типа АТВ и полуавтоматами). Для сварки целесообразно применять вольфрамовые электроды ВТ-5, ВТ-10 и ВТ-15, содержащие 1,5—2% окиси тория, или цирконизированные электроды.

Сварка меди и ее сплавов затруднена образованием пор в швах. Чтобы получить беспористые швы с высокими свойствами, необходимо раскислять металл сварочной ванны. Газовую сварку меди и ее сплавов выполняют при нормальном ацетиленокислородном пламени. Мощность наконечника горелки выбирают из расчета 200 л/ч ацетилена на 1 мм толщины свариваемого металла. Трубы со стенками толщиной до 3 мм сваривают встык без скоса кромок или с отбортовкой без присадки, толщиной более 3 мм — со скосом кромок под углом 45° и притуплением на 2 /5 толщины стенки.

Перед сваркой кромки тщательно очищают наждаком или напильником от слоя окислов и загрязнений. Чтобы предохранить металл от окисления и удалить образующиеся окислы, применяют флюс следующего состава: бура 60—70%, борная кислота 10—20%, поваренная соль 30—10%. Иногда для сварки медных труб с небольшой толщиной стенки применяют флюс из одной буры или смеси буры с борной кислотой, взятых в равных количествах. Кроме этого, для сварки меди и латуни используют флюс БМ-1. Швы, выполненные газовой сваркой, обладают невысокими механическими свойствами. Для повышения качества рекомендуется механическая и термическая обработка: проковка шва для получения мелкозернистой структуры (при толщине стенки трубы до 5 мм— в холодном состоянии, при большей толщине —при 400—500°С), отжиг и быстрое охлаждение для уменьшения хрупкости (нагрев до 500—600° С и охлаждение в воде).

Процесс газовой сварки труб из латуни мало отличается от сварки медных труб.

Дуговая сварка меди и ее сплавов качественными электродами широко применяется в практике.

Используют электроды марок ЗТ, «Комсомолец-100», ММЗ-1, ММЗ-2 и 1П. При толщине стенки труб до 4 мм скоса кромки не делают и сварку ведут без подогрева. При большей толщине производят V-образную разделку кромок под углом 60—70° и предварительный подогрев свариваемого участка до 350—400° С.

Дуговую сварку в среде защитных газов труб из меди и ее сплавов производят в поворотном положении вольфрамовым электродом на постоянном токе прямой полярности. Для сварки меди в качестве защитных газов используют аргон и азот. Трубы с толщиной стенки до 5 мм сваривают без скоса кромок, а при толщине от 5 до 12 мм выполняют V-образную разделку кромок с общим углом 90°. Перед сваркой кромки подогревают до 550° С.

1. В чем заключаются особенности сварки трубопроводов из алюминия и его сплавов?

2. Какое оборудование и какие флюсы используют при данной сварке?

3. В чем заключаются особенности сварки трубопроводов из меди и ее сплавов?

3. Низкий удельный расход электроэнергии. Техническое осуществление процесса радиочастотной сварки требует выполнения трех основных условий:

коактивных материалов, в том числе и алюминия без применения защитной атмосферы.

1) наличия V-образного сходящегося зазора между свариваемыми кромками;

2) обеспечения передачи тока радиотехнической частоты для равномерного разогрева свариваемых кромок;

3) обеспечения требуемых силовых и скоростных параметров сварки, диктуемых свариваемым материалом.

Ток радиочастоты передают к свариваемым кромкам контактным (рис. 159) или индукционным (рис. 160) способами. Последний хотя и более энергоемок, но применяется чаще вследствие простоты, надежности и низких эксплуатационных расходов.

При сварке токами радиочастоты возможны три варианта ведения сварочного процесса:

разогрев кромок ниже температуры плавления; разогрев кромок с оплавлением в точке схождения кромок;

разогрев кромок с оплавлением до точки схождения кромок. Так как свариваемые кромки покрыты пленкой окислов алюминия, обладающих более высокими температурой плавления и плотностью, чем основной металл, используют только третий вариант.

Вне зависимости от способа токоподвода ток радиочастоты, проходя по свариваемой трубной заготовке, концентрируется на кромках, вызывая интенсивный их нагрев. Металл доводится до оплавления, окислы выбрасываются из зоны сварки электродинамическими силами, действующими в очаге сварки, и очищенные кромки заготовки сдавливаются сварочными валками. Выбор частоты тока диктуется следующими факторами:

шириной зоны нагрева под сварку; теплофизическими и электромагнитными свойствами материала;

толщиной свариваемого материала; диапазоном частот, выделенных для промышленного использования. Находит применение сварочный ток частотой от 70 кгц до 1,76 мгц, но большая часть установок работает на частоте 440—450 кгц.

При радиочастотной сварке формирование сварного шва осуществляется по одному из трех вариантов соединения кромок (рис. 161): встык, внахлестку, встык с отбортовкой кромок. Наиболее широко применяют соединение кромок встык. Минимальная толщина кромок при сварке встык 0,5 мм, так как при более тонких стенках возникают серьезные затруднения с передачей сварочного давления на кромки и их устойчивостью в очаге сварки. Более тонкие стенки успешно сваривают внахлестку и встык с отбортовкой.

2. ТЕХНОЛОГИЯ РАДИОЧАСТОТНОЙ СВАРКИ ТРУБ

Технологический процесс производства сварных алюминиевых труб состоит из следующих основных операций: подготовки ленточной заготовки, формовки трубной заготовки, сварки, калибровки и правки на стане, отделки и испытаний труб.

Подготовка ленты к формовке

Исходным материалом служат рулоны холоднокатаной ленты. Резку на требуемую ширину производят на дисковых агрегатах продольной резки. Максимальное отклонение ширины ленты от номинала не должно превышать 0,3 мм. Технологическая смазка при резке — керосин или веретенное масло. При резке тонких лент с целью предотвращения повреждений кромок используют смотку на съемных кассетах. К качеству реза предъявляют высокие требования, так как в дальнейшем кромки не подвергают обработке и дефекты резки сказываются на качестве сварки и работе сварочного оборудования. На станах для сварки труб большого диаметра разрезка на дисковом агрегате продольной резки является, как правило, предварительной, так как непосредственно перед формовочным станом на дисковых ножницах выполняют операцию окончательной обрезки кромок. Это вызвано особенностями работы больших станов, а также необходимостью удаления бокового грата, образующегося при стыковке лент больших толщин.

Операции размотки, правки, обрезки концов на гильотинных ножницах не отличаются существенно от обычных применяемых в трубосварочном производстве. Правке подвергают только ленты толщиной более 2,5 мм. Стыковку выполняют двумя способами. Для сплавов с хорошей свариваемостью устанавливают простые и относительно дешевые аргоно-дуговые автоматы. При использовании широкой гаммы сплавов, в том числе и дуралюминов, применяют стыковую сварку оплавлением. Оборудование для сварки оплавлением более дорогое и сложное, но этот метод гарантирует высокое качество шва на любых алюминиевых деформируемых сплавах и минимальное время на весь цикл стыковки, что позволяет сократить размеры петлеобразователя.

Формовка трубной заготовки

Формовку трубной заготовки производят на валковых многоклетевых станах методом холодного профилирования. Число клетей зависит от материала, размера трубы и величины отношения

диаметра к толщине стенки. Профиль валков каждой

клети выполняют на основании разработанной калибровки. Наиболее широкое распространение в практике заводов имеют калибровки двух типов.

Первый тип калибровок дает малое удлинение кромок, валки относительно просты в изготовлении. Калибровки отличаются высокой степенью универсальности и взаимозаменяемости.

Второй тип калибровок дает большую устойчивость ленты в поперечном направлении и позволяет проектировать валки несколько меньших габаритов.

Для труб малого диаметра в основном применяют калибровки первого типа.

Разработку калибровки валков и их изготовление производят в следующей последовательности. Устанавливают тип калибровки, количество формовочных и калибровочных клетей и ширину исходной заготовки в зависимости от размера и материала трубы. Затем определяют профиль валков.

Значения ширины лент, используемых в практике одного из заводов, приведены в табл. Радиус открытых калибров при однорадиусной калибровке определяют по известным значениям ширины ленты с учетом распределения углов подгибки ленты по клетям. Опытные данные по рекомендуемому распределению углов подгибки приведены на рис. 163. Радиус и конструкцию закрытых калибров горизонтальных валков либо определяют по заданному углу подгибки с последующим расчетом толщины шайбы, либо используют практические данные по расстановке шайб в закрытых клетях и затем определяют радиус калибров. При радиочастотной сварке алюминиевых труб применяют обычно не менее трех закрытых калибров с раз

Читайте также: