Сущность дуговой сварки в защитных газах

Обновлено: 24.01.2025

Цель работы: освоить методику подбора режимов сварки в защитных газах.

Общие методические указания

Сущность и особенности способов дуговой сварки в защитных газах

При сварке в защитном газе электрод, дуга и сварочная ванна защи­щены от воздействия окружающего воздуха струей защитного газа.

В качестве защитных газов применяют инертные газы (аргон, гелий) и активные газы (углекислый газ, азот, водород и др.), для чего используют иногда смеси двух газов и более. Наибольшее применение нашли аргон и углекислый газ.

Аргонодуговая сварка. Сварку осуществляют неплавящимися и пла­вящимися электродами. Сварку неплавящимся (вольфрамовым) элект­родом ведут на постоянном токе прямой полярности (рис. 3.1). В этом случае дуга легко зажигается и горит устойчиво при напряжении 12. 18 В. При обратной полярности возрастает напряжение дуги, уменьшается устойчивость ее горения и снижается стойкость электрода.


Рис. 1. Схема процесса дуговой сварки в инертных газах: 1- электрод; 2 - присадочная проволока; 3 - изделие; 4 - сварной шов;5 - дуга; б - поток защитного газа; 7 - горелка

Однако при обратной полярности под воздействием дуги с поверх­ности свариваемого металла удаляются оксиды. Это свойство дуги ис­пользуют при сварке алюминия, магния и их сплавов, применяя для пи­тания дуги переменный ток.

При сварке неплавящимся электродом на переменном токе сочета­ются преимущества дуги на прямой и обратной полярностях. Для повы­шения эффективности и устойчивости процессов питание дуги перемен­ным током осуществляют от специальных источников тока. Сварку в аргоне плавящимся электродом выполняют на автоматах или в виде механизированного варианта

2. Устройство, принцип работы и технологические возможности постов ручной аргонодуговой сварки и механизированной сварки в С02

Установка для аргонодуговой сварки УДГ-301 и полуавтомат для сварки в углекислом газе ПДГ-305 или подобный ему. Упрощенная схема установки для ручной аргонодуговой сварки переменным током представлена на рис.2. Она состоит из источника питания дуги 1 (трансформатора), осциллятора 2, балластного реостата 3, баллона с защитным газом 4, газоэлектрической горелки 5, редуктора и контрольных приборов (амперметра, вольтметра, расходомера газа).

Источник питания с повышенным напряжением холостого хода в сочетании с осциллятором необходим для легкого и быстрого возбуждения дуги и ее устойчивого горения, так как потенциал возбуждения и ионизация инертных газов значительно выше, чем у азота, кислорода и паров металла.


Рис. 2. Упрощенная схема ручной аргонодуговой сварки переменным

Током


Рис. 3. Упрощенная схема сварочного полуавтомата в среде СО2

Изделие (10) на рис. 3 получают при использовании сварочного полуавтомата для сварки в СО2, который состоит из сварочной горелки 1, подающего механизма 2, обеспечивающего поступление проволоки в сварочную горелку по гибкому шлангу, блока управления процессом сварки 3, который имеет электрическую связь со всеми элементами полуавтомата.

Сварочная горелка представляет собой ручной инструмент, обеспечивающий направленную подачу проволоки, токопровод к ней и газо­вую защиту зоны горения дуги. Защитный газ поступает в горелку из баллона 4, проходя последовательно через подогреватель 5, редуктор-расходомер 6 и отсекающий клапан 7. На сварочной горелке предусмот­рена клавиша управления 8 для подачи сигналов в блок управления о начале и окончании сварки. Остальные технологические команды вы­дает блок управления (продувка шланга газом, включение источника тока 9, подача проволоки и сварка, выключение тока и после некоторой выдержки - прекращение и подача газа).

В процессе ознакомления в лаборатории со схемами и натурными образцами сварочного оборудования необходимо уделить внимание назначению и устройству следующих элементов и узлов:

а) в аргонодуговой установке УДГ-301:

• источнику питания и осциллятору;

• горелкам, баллонам для аргона, запорной и регулирующей арматуре и контрольно-измерительным приборам;

б) в полуавтомате ПДГ-305:

• источнику питания и механизму подачи сварочной проволоки;

• горелкам, баллонам для СО2, осушителям, запорной и другой арматуре, контрольно-измерительным приборам.

Необходимо также выписать технические характеристики и энергетические показатели установки УДГ-301 и полуавтомата ПДГ-305, ознакомиться с правилами их подключения и безопасной работы на них.

При аргонодуговой сварке важнейшим параметром режима, который определяется в первую очередь, является величина сварочного тока. Поскольку для качественного формирования шва необходим струйный перенос электродного металла, то нужны повышенные плотности токов. Сварочный ток, при котором начинается струйный перенос, называется критическим.

Метод расчета критического тока, а также критической скорости подачи электрода предложен в работе.

где b - безразмерная константа;

Ккр - постоянная, равная удельной тепловой мощности, выделяющейся в вылете при его нагреве проходящим током, на единицу длины вылета;

l - вылет электрода, мм; dэ - диаметр электрода, мм;

α - температурный коэффициент сопротивления;

с - удельная теплоемкость; ρ - плотность; ρ0 - удельное сопротивление.

Для пользования формулами (1,2) необходимо знание всех входящих величин и потому для некоторых марок проволок они приведены в табл.1. табл. 2.

Сущность дуговой сварки в защитных газах

Сущностью и отличительной особенностью дуговой сварки в защитных газах является защита расплавленного и нагретого до высокой температуры основного и электродного металла от вредного влияния воздуха защитными газами, обеспечивающими физическую изоляцию металла и зоны сварки от контакта с воздухом и заданную атмосферу в зоне сварки. Используют инертные и активные защитные газы. При этом способе в зону дуги подается защитный газ, струя которого, обтекая электрическую дугу и сварочную ванну, предохраняет расплавленный металл от воздействия атмосферного воздуха, окисления и азотирования.

Сварку в защитных газах отличают следующие преимущества:

• высокая производительность (в 2–3 раза выше обычной дуговой сварки);

• возможность сварки в любых пространственных положениях, хорошая защита зоны сварки от кислорода и азота атмосферы, отсутствие необходимости очистки шва от шлаков и зачистки шва при многослойной сварке;

• малая зона термического влияния;

• относительно малые деформации изделий;

• возможность наблюдения за процессом формирования шва;

• доступность механизации и автоматизации.

Недостатками этого способа сварки являются необходимость принятия мер, предотвращающих сдувание струи защитного газа в процессе сварки, применение газовой аппаратуры, а в некоторых случаях и применение относительно дорогих защитных газов.

Были разработаны следующие разновидности сварки в защитном газе: в инертных одноатомных газах (аргон, гелий), в нейтральных двухатомных газах (азот, водород), в углекислом газе. Наиболее широкое применение получили аргонодуговая сварка и сварка в углекислом газе. Инертный газ гелий применяется очень редко ввиду его большой стоимости. Сварка в двухатомных газах (водород и азот) имеет ограниченное применение, так как водород и азот в зоне дуги диссоциируются на атомы и активно взаимодействуют с большинством металлов.

Сварка в углекислом газе, благодаря его дешевизне, получила широкое применение при изготовлении и монтаже различных строительных конструкций из углеродистых и низколегированных сталей. Углекислый газ, подаваемый в зону дуги, не является нейтральным, так как под действием высокой температуры он диссоциируется на оксид углерода и свободный кислород. При этом происходит частичное окисление расплавленного металла сварочной ванны, и, как следствие, металл шва получается пористым, с низкими механическими свойствами. Для уменьшения окислительного действия свободного кислорода применяют электродную проволоку с повышенным содержанием раскисляющих примесей (марганца, кремния). Шов получается беспористый, с хорошими механическими свойствами.

Примерные режимы сварки в углекислом газе угловых швов металлических конструкций

По способу защиты различают местную и общую защиту свариваемого узла (сварку в контролируемой атмосфере). Основным способом местной защиты является струйная, при которой защитная среда создается газовым потоком при центральной, боковой или комбинированной подаче газа. При центральной подаче газа дуга, горящая между электродом и основным металлом, со всех сторон окружена газом, подаваемым под небольшим избыточным давлением из сопла горелки, расположенного концентрично оси электрода. Это самый распространенный способ защиты.

С целью экономии инертных газов, а также получения оптимальных технологических и металлургических свойств защитной среды применяют горелки, конструкция которых обеспечивает комбинированную защиту двумя концентрическими потоками газов (рис. 91). Например, внутренний поток образуется аргоном, а внешний – углекислым газом. При сварке высокоактивных металлов надо защищать не только расплавленный металл, но и зону металла, нагреваемую при сварке до температуры более 300 °C, с лицевой и обратной стороны шва. Для расширения струйной защиты с лицевой стороны шва применяют дополнительные колпаки-приставки, надеваемые на сопло горелки. Защита обратной стороны шва обеспечивается поддувом защитного газа. Боковую подачу газа применяют ограниченно. Наиболее эффективная защита металла шва и зоны термического влияния обеспечивается при сварке в камерах с контролируемой атмосферой. Камеры предварительно продувают или вакуумируют, потом заполняют защитным (инертным) газом под небольшим давлением.

Рис. 91. Подача защитных газов в зону сварки:

а – центральная одним концентрическим потоком; б – центральная двумя концентрическими потоками; в – боковая; г – в подвижную камеру (насадку); 1 – электрод; 2 – защитный газ; 3, 4 – наружный и внутренний потоки защитных газов; 5 – насадка; 6 – распределительная сетка

Сварку в защитных газах можно осуществлять вручную, полуавтоматически и автоматически. Ручная сварка применяется при соединении кромок изделий толщиной до 25–30 мм при выполнении коротких и криволинейных швов. Полуавтоматическая и автоматическая сварки применяются при массовом и крупносерийном производствах. Сварка в защитных газах производится как неплавящимся, так и плавящимся электродом.

Неплавящиеся электроды служат только для возбуждения и поддержания горения дуги. Для заполнения разделки кромок в зону дуги вводят присадочный металл в виде прутков или проволоки. Применяются вольфрамовые, угольные и графитовые неплавящиеся электроды.

Вольфрамовые электроды изготовляют из проволоки марки ВТ–15 диаметром 0,8–6 мм, содержащей 1,5–2,0 % диоксида тория. Торий способствует более легкому возбуждению и устойчивому горению дуги. Однако торий является радиоактивным веществом и его применение сопряжено с соблюдением специальных санитарных правил. Для сварки алюминия и его сплавов успешно применяют электроды из проволоки марки ВЛ–10 (вольфрам с присадкой лантана). Лантан снижает расход вольфрама и повышает устойчивость горения дуги. Расход вольфрама при сварке незначителен и составляет при сварочном токе 300–400 А около 0,05–0,06 г на метр сварного шва.

Угольные и графитовые электроды применяют редко, так как они не обеспечивают достаточно устойчивого горения дуги и сварной шов получается пористым с темным налетом.

Плавящиеся электроды применяют в виде соответствующих сварочной или порошковой проволоки.

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Глава 5. Обслуживание измерительных и защитных аппаратов, реакторов и кабелей

Глава 5. Обслуживание измерительных и защитных аппаратов, реакторов и кабелей 5.1. Обслуживание трансформаторов тока Трансформатор тока (ТТ) — это измерительный элемент, в котором при нормальных условиях применения вторичный ток практически пропорционален первичному

Оборудование для плазменно-дуговой сварки, резки, напыления:

Оборудование для плазменно-дуговой сварки, резки, напыления: • источник питания плазменной дуги с вертикальной вольт-амперной характеристикой;• плазменная горелка-плазмотрон;• системы подачи газа и охлаждения горелки;• порошковый питатель (для

Сущность сварки под флюсом

Сущность сварки под флюсом Сваркой под флюсом называется дуговая сварка, при которой дуга горит под слоем сварочного флюса, обеспечивающего защиту сварочной ванны от контакта с воздухом.Особенностью процесса дуговой сварки под флюсом является применение непокрытой

Глава 13 Технология проведения дуговой сварки в защитных газах

Глава 13 Технология проведения дуговой сварки в защитных газах Сущность дуговой сварки в защитных газах Сущностью и отличительной особенностью дуговой сварки в защитных газах является защита расплавленного и нагретого до высокой температуры основного и электродного

Сущность контактной сварки

Сущность контактной сварки Контактной сваркой называется сварка с применением давления, при которой нагрев производится теплотой, выделяющейся при прохождении электрического тока через находящиеся в контакте соединяемые части.Количество выделяющейся теплоты (Дж)

1919 г. пленочные резисторы, лампы Silica, дуговой конвертер Поульсена

1919 г. пленочные резисторы, лампы Silica, дуговой конвертер Поульсена В 1919 году Ричмейер (FK Richtmeyer) начал производство резисторов по технологии напыления металлической пленки.В 1919 году компания Silica Valve представила лампы с 1 кВт анодного рассеивания.В 1919 году

Внутреннее трение (в газах и жидкостях)

Глава 7. Освобождение от захватов при попытке проведения защитных действий с помощью бросков…

Глава 7. Освобождение от захватов при попытке проведения защитных действий с помощью бросков… … Повторные атаки при изучении фехтовальных приемов с удерживанием рукояти меча обеими руками Советы о подготовке вооружения и амуниции «У каждого находящегося на службе

23. Высота защитных и страховочных ограждений должна быть:

23. Высота защитных и страховочных ограждений должна быть: a. От 0,8 до 1,1 м включительно.b. Не менее 0,5 м.c. Не менее 1,1м.d.

Правила использования защитных средств, применяемых в электроустановках

Правила использования защитных средств, применяемых в электроустановках Общие положения.Защитными средствами называются приборы, аппараты, переносные и перевозимые приспособления и устройства, а также отдельные части устройств, приспособлений и аппаратов, служащие

Глава 13 Технология проведения дуговой сварки в защитных газах



Эффективные методы проведения сварки

Эффективные методы проведения сварки Метод опирания, или сварка с глубоким проплавлением Электрод с утолщенным покрытием используют для получения глубокого проплавления. Стержень электрода плавится быстрее покрытия, в итоге чего на конце электрода образуется

Оборудование и аппаратура для проведения газовой сварки

Оборудование и аппаратура для проведения газовой сварки Газовой сваркой называется сварка плавлением, при которой нагрев кромок соединяемых частей и присадочного материала производится теплотой сгорания горючих газов в кислороде. Классифицируется газовая сварка по

Газы для проведения сварки и резки металлов

Газы для проведения сварки и резки металлов Кислород при газовой сварке способствует интенсивному горению горючих газов и получению высокотемпературного пламени. При горении газов в воздухе температура пламени значительно ниже, чем при горении в кислороде. При газовой

Глава 12 Технология проведения сварки под флюсом и оборудование для нее

Глава 12 Технология проведения сварки под флюсом и оборудование для нее Сущность сварки под флюсом Сваркой под флюсом называется дуговая сварка, при которой дуга горит под слоем сварочного флюса, обеспечивающего защиту сварочной ванны от контакта с

Технология сварки под флюсом

Сущность дуговой сварки в защитных газах

Сущность дуговой сварки в защитных газах Сущностью и отличительной особенностью дуговой сварки в защитных газах является защита расплавленного и нагретого до высокой температуры основного и электродного металла от вредного влияния воздуха защитными газами,

Глава 14 Технология проведения контактной сварки

Глава 14 Технология проведения контактной сварки Сущность контактной сварки Контактной сваркой называется сварка с применением давления, при которой нагрев производится теплотой, выделяющейся при прохождении электрического тока через находящиеся в контакте

Глава 15 Технология производства сварки легированных сталей

Глава 15 Технология производства сварки легированных сталей Легирующие элементы Легированными называют стали, содержащие специально введенный элемент для придания стали определенных свойств и структуры. В зависимости от содержания легирующих элементов стали

Глава 16 Технология производства сварки цветных металлов и их сплавов

Глава 16 Технология производства сварки цветных металлов и их сплавов Особенности сварки цветных металлов Цветные металлы и сплавы по своим физико-химическим свойствам резко отличаются от сталей, что необходимо учитывать при выборе вида сварки и технологии. По

Глава 8. Повторные атаки ножом после попыток проведения защитных действий с болевыми приемами…

Глава 8. Повторные атаки ножом после попыток проведения защитных действий с болевыми приемами… … Атаки, защиты и контратаки в фехтовании коротким мечом О вооружении слуг «Небогатый самурай должен научиться обходиться без множества слуг и большого снаряжения, легко

Глава 9. Освобождения от захватов при попытке проведения защитных действий с помощью болевых приемов…

Глава 9. Освобождения от захватов при попытке проведения защитных действий с помощью болевых приемов… … Приемы фехтования коротким мечом с проведением первого удара по атакующей конечности О тактичности «Пятьдесят — шестьдесят лет назад рёнины, говоря о службе с

Технология сварки в защитных газах

Дуговая сварка в среде защитных газов получает все большее распространение, поскольку отличается рядом технологических достоинств:

? обеспечивает высокую производительность труда и степень концентрации тепла источника питания, поэтому можно существенно уменьшить зону термического воздействия;

? дает возможность соединять металлы без использования электродных покрытий и флюсов, т. е. исключает такую стадию сварки, как очистка швов от шлака;

? позволяет автоматизировать и механизировать процесс сваривания и вести его в разных пространственных положениях;

? применяется при работе как со сталями, так и с цветными металлами и их сплавами.

Сварка в среде защитных газов является общим названием различных видов дуговой сварки, в процессе которой в зону горения сварочной дуги через сопло горелки подают струю газа. Это могут быть инертные газы (аргон, гелий), активные газы (углекислый газ, азот, кислород, водород) и их смеси, в частности:

? аргон, углекислый газ и кислород. Эта смесь используется при сварке сталей плавящимся электродом, минимизирует потери металла на разбрызгивание, стабилизирует горение сварочной дуги, устраняет пористость и дает шов хорошего качества;

? аргон и кислород, применяющиеся для сварки низко углеродистых и легированных сталей. При сварке капельный перенос металла сменяется струйным, благодаря чему производительность возрастает, а потери на разбрызгивание металла сокращаются;

? аргон и углекислый газ. Область применения данной смеси такая же, как и у предыдущей. Ее использование препятствует образованию газовых пор в шве, стабилизирует горение дуги и способствует формированию качественного сварного шва.

В стальных баллонах может содержаться как чистый газ (для контроля его расхода предназначен специальный прибор – ротаметр, а подача регулируется отдельным редуктором), так и их смеси.

Классификация сварки в среде защитных газов основывается на следующих признаках:

? по применяемому в процессе работы газу (активному или инертному);

? по способу защиты (отдельным газом или смесью);

? по используемому электроду (плавящемуся или неплавящемуся);

? по характеру сварочного тока (постоянному или переменному). Наибольшее распространение в последнее время получила сварка плавящимся и неплавящимся электродами в среде инертных газов.

Сварка неплавящимся электродом представляет собой процесс, в котором источником тепла служит дуга, зажигаемая между вольфрамовым или угольным электродом и металлом изделия (рис. 71).

Наибольшего проплавления свариваемого металла добиваются при использовании постоянного тока прямой полярности. При этом источники питания должны обладать крутопадающей вольт-амперной характеристикой, например ВДУ-601, ВСВУ-300 и др. Для сварки на переменном токе применяют стабилизатор горения дуги ВСД-01. Сварочный процесс ведут как с присадками, так и без них.


Рис. 71. Схема горения сварочной дуги в среде инертных газов: 1 – электрод; 2 – присадочная проволока; 3 – свариваемый металл; 4 – шов; 5 – дуга; 6 – струя газа; 7 – горелка; 8 – воздух

Помимо источника питания, к оборудованию, необходимому для сварки на постоянном токе, относятся:

? сварочные горелки (табл. 36);

? устройство для первоначального возбуждения дуги (ОСППЗ-300 М, ОСПЗ-2 М и др.). Необходимость в нем объясняется тем, что защитные газы, поступившие в зону горения сварочной дуги, снижают температуру дугового промежутка, вследствие чего возбуждение дуги затрудняется;

? аппаратура для управления сварочным циклом.

Технические характеристики некоторых типов сварочных горелок


Дуговая сварке в среде аргона обеспечивает высококачественный шов (особенно при соединении высоколегированных тонколистовых сталей), поскольку надежно защищает рабочую зону от воздействия атмосферного воздуха. Для сварки стали толщиной до 1 мм используют ток прямой полярности, при толщине до 3 мм – обратной полярности (варить сталь толщиной более 3 мм экономически невыгодно).

Режимы, на которые можно ориентироваться при сварке, приведены в табл. 37.

При сварке плавящимся электродом дуга возбуждается между концом проволоки, которую подают в зону горения дуги с помощью особого механизма со скоростью, совпадающей со скоростью ее расплавления, и свариваемым металлом.

Жидкий металл электродной проволоки поступает в сварочную ванну и формирует шов.

Если применяется плавящийся электрод, сварку ведут короткой или длинной дугой.

Примерные режимы аргонодуговой сварки нержавеющей стали


В первом случае расплавленный электродный металл переносится мелкокапельным способом, что позволяет снизить величину сварочного тока, уменьшить потери при разбрызгивании, обеспечить стабильный сварочный процесс. Во втором случае возможны разные способы переноса расплавленного металла – мелко-, крупнокапельный, струйный. При этом достаточно сложно поддерживать струйный перенос металла при работе в аргоне или его смеси с гелием. Стабильность сварки возрастает при добавлении к аргону 5 % кислорода либо 20 % углекислого газа.

Сварка в углекислом газе производится в любых пространственных положениях (рис. 72) и используется для углеродистых и легированных сталей. Преимуществами данного способа являются высокая производительность, широкий диапазон допустимой толщины материала и экономичность. Но на открытом воздухе сварку в среде углекислого газа практически не применяют, поскольку в таких условиях трудно обеспечить защиту сварочной ванны.


Рис. 72. Схема дуговой сварки в среде углекислого газа (А – вылет электродной проволоки):

1 – электродная проволока; 2 – струя защитного газа; 3 – токоподводящий мундштук; 4 – сопло; 5 – подающий механизм

Сварку в углекислом газе ведут разными способами – автоматическим, полуавтоматическим или плавящимся электродом. Ниже приведены ее параметры:

1. Величина, род и полярность тока. Сварку осуществляют при постоянном токе (переменный не подходит, поскольку он не обеспечивает стабильность горения дуги и дает плохой сварной шов) обратной полярности, чтобы избежать возникновения пористости, характерной для сварки при прямой полярности. Источник питания должен иметь жесткую или возрастающую внешнюю характеристику. Величина сварочного тока и диаметр электродной проволоки определяются толщиной металла и пространственным положением шва. От величины тока зависят глубина проплавления и производительность сварки. Для регуляции этого параметра изменяют скорость подачи электродной проволоки.

2. Напряжение на дуге. При повышении напряжения наблюдается уширение сварного шва, а качество его формирования улучшается. Но одновременно с этим возрастают потери кремния и марганца, разбрызгивание расплавленного металла и чувствительность дуги к магнитному дутью. С понижением напряжения сварной шов формируется хуже. Поэтому важно соблюсти баланс между напряжением и величиной тока, диаметром и составом электродной проволоки. Как правило, напряжение на дуге не превышает 22–28 В.

3. Диаметр, наклон, скорость подачи и вылет электродной проволоки. Для сварки применяют проволоку Св-08 Г2 С, в состав которой входят марганец и кремний, играющие роль раскислителей. Они препятствуют образованию газовых пор. Для полуавтоматической сварки подбирают проволоку диаметром 0,8, 1, 1,2, 1,6 или 2 мм, а для автоматической – 3 мм. Для различных видов стали используют сварочную проволоку разных марок:

? для углеродистых и низколегированных – Св-08 ГС и Св-08 Г2С, рассчитанных на величину тока 300–400 и 600–750 А соответственно;

? для низколегированных повышенной прочности – Св-10 ХГ2 С;

? для теплоустойчивых сталей типа 20 ХМФ – Св-08 ХГСМФ и т. д.

Вылет сварочной проволоки в зависимости от величины сварочного тока может варьироваться в пределах 7–14 мм при токе 60–150 А и 15–25 мм при токе 200–500 А.

4. Расход углекислого газа (7– 20 л/мин).

5. Скорость сварки (20–80 м/ч). Примерные режимы для сварки в углекислом газе представлены в табл. 38, причем скорость подачи проволоки определяется методом подбора под соответствующий режим.

Режимы дуговой сварки в среде углекислого газа


В процессе сварки не следует задерживать горелку в зоне сварочной ванны, чтобы не усилить разбрызгивание металла.

При выполнении нижних швов горелку нужно держать под углом в 5–15° вперед либо назад (второй вариант предпочтительнее, поскольку при этом надежнее защищается металл сварочной ванны).

При механизированной сварке тонколистового металла (1–2 мм) совершение колебательных движений не требуется, а горелку рекомендуется держать под углом в 30–45° (углом назад).

Стыковые соединения металла толщиной 1,5–3 мм выполняют на весу. Более тонкий металл варят в вертикальном положении сверху вниз и ограничиваются только одним проходом.

Нахлесточные соединения при толщине металла 0,8–2 мм обычно варят на весу, иногда на медной подкладке.

Скорость сварки может быть увеличена при условии качественной сборки.

При сварке меди зону сварочной дуги защищают азотом.

Азотно-дуговую сварку ведут угольными или графитными стержнями, поскольку применение вольфрамовых стержней экономически невыгодно (на их поверхности образуются легкоплавкие соединения (нитриды вольфрама), что приводит к увеличению расхода вольфрама), при постоянном токе прямой полярности.

Диаметр угольного электрода составляет 6–8 мм при величине тока 150–500 АВ; расход азота – 3–10 л/ мин; напряжение на дуге – 22–30 В.

Для фиксации стержней горелка должна быть оснащена сменными наконечниками.

Теория сварки

Теория сварки Основные понятия Прежде чем говорить о сварочных работах, необходимо ввести ряд наиболее важных понятий, которые непосредственно связаны с ними и без которых невозможно понимание тех или иных процессов. Причем они намеренно расположены не в алфавитном

Металлургия сварки

Металлургия сварки Процессы расплавления и затвердевания металла, в ходе которых его химический состав претерпевает изменения, а кристаллическая решетка – трансформацию, называются металлургическими. Сварка также относится к ним, но по сравнению с другими подобными

Виды сварки

Виды сварки Напомним, что получение неразъемного соединения твердых материалов в процессе их местного плавления или пластического деформирования называется сваркой. Металлы и сплавы, как уже было сказано, являются твердыми кристаллическими телами, состоящими из

Читайте также: