Способы сварки применяемые при газовой сварке

Обновлено: 24.01.2025

Газовая сварка относится к группе сварки плавлением. Метод газовой сварки прост, не требует сложного оборудования и источника электрической энергии. К недостаткам газовой сварки относятся меньшая скорость и большая зона нагрева, чем при дуговой сварке.

Газовую сварку применяют при изготовлении и ремонте изделий из тонколистовой стали толщиной 1-3 мм, монтаже труб малого и среднего диаметров, сварке соединений и узлов, изготовляемых из тонкостенных труб, сварке изделий из алюминия и его сплавов, меди, латуни и свинца, сварке чугуна с применением в качестве присадки чугунных, латунных и бронзовых прутков, наплавке твердых сплавов и латуни на стальные и чугунные детали.

Газовой сваркой могут соединяться почти все металлы и сплавы, применяемые в настоящее время в промышленности. Наиболее широкое применение газовая сварка получила при строительно-монтажных работах, в сельском хозяйстве и при ремонтных работах.

Для выполнения сварочных работ необходимо, чтобы сварочное пламя обладало достаточной тепловой мощностью. Мощность пламени горелки определяется количеством ацетилена, проходящего за один час через горелку, и регулируется наконечниками горелки. Мощность пламени выбирается в зависимости от толщины свариваемого металла и его свойств. Количество ацетилена в час, необходимое на 1 мм толщины свариваемого металла, устанавливается практикой.

Пример. При сварке низкоуглеродистой стали на 1 мм толщины свариваемого металла требуется 100-130 дм 3 ацетилена в час.

Для сварки низкоуглеродистой стали толщиной 4 мм минимальная мощность сварочной горелки составит 100х4=400 дм 3 /ч, наибольшая - 130х4=520 дм 3 /ч.

Для газовой сварки различных металлов требуется определенный вид пламени - нормальное, окислительное, науглероживающее. Газосварщик регулирует и устанавливает вид сварочного пламени на глаз. При ручной сварке сварщик держит в правой руке сварочную горелку, а в левой - присадочную проволоку. Пламя горелки сварщик направляет на свариваемый металл так, чтобы свариваемые кромки находились в восстановительной зоне на расстоянии 2- 6 мм от конца ядра. Конец присадочной проволоки должен находиться в восстановительной зоне или в сварочной ванне.

Скорость нагрева регулируется изменением угла наклона а мундштука к поверхности свариваемого металла.

Рисунок 1 - Угол наклона (а) и способы перемещения мундштука горелки (б)

Величина угла выбирается в зависимости от толщины и рода свариваемого металла. Чем толще металл и больше его теплопроводность, тем больше угол наклона мундштука горелки к поверхности свариваемого металла. В начале сварки для лучшего прогрева металла угол наклона устанавливают больше, затем по мере прогрева свариваемого металла его уменьшают до величины, соответствующей данной толщине металла, а в конце сварки постепенно уменьшают, чтобы лучше заполнить кратер и предупредить пережог металла.

Рукоятка горелки может быть расположена вдоль оси шва или перпендикулярно ей. То или иное положение выбирается в зависимости от условий (удобств) работы газосварщика, чтобы рука сварщика не нагревалась теплотой, излучаемой нагретым металлом.

В процессе газовой сварки газосварщик концом мундштука горелки совершает одновременно два движения: поперечное - перпендикулярно оси шва и продольное - вдоль оси шва. Основным является продольное движение, поперечное служит для равномерного прогрева кромок основного и присадочного металла и получения шва необходимой ширины.

Способ 1, при котором пламя периодически отводится в сторону, применять при газовой сварке не рекомендуется, так как при этом возможно окисление расплавленного металла кислородом воздуха. Способ 2 - по спирали и способ 3 - полумесяцем рекомендуются при сварке металла средней толщины, способ 4 - при сварке тонких листов (рисунок 1).

Присадочной проволокой можно совершать такие же колебательные движения, но в направлении, обратном движениям конца мундштука горелки.

Конец присадочной проволоки не рекомендуется извлекать из сварочной ванны и особенно из восстановительной зоны пламени. Движения, совершаемые концом мундштука горелки и концом присадочной проволоки в процессе сварки, зависят от положения шва в пространстве, толщины свариваемого металла, рода металла и требуемых размеров сварочного шва. Для сварки швов в нижнем положении наиболее распространено движение полумесяцем.

Способы газовой сварки

В практике различают два способа ручной газовой сварки: правый и левый.

Левым способом газовой сварки называется такой способ, при котором сварку ведут справа налево, сварочное пламя направляют на еще несваренные кромки металла, а присадочную проволоку перемещают впереди пламени. Левый способ наиболее распространен и применяется при сварке тонких и легкоплавких металлов. При левом способе сварки кромки основного металла предварительно подогревают, что обеспечивает хорошее перемешивание сварочной ванны. При этом способе сварщик хорошо видит свариваемый шов, поэтому внешний вид шва лучше, чем при правом способе.

Правым способом газовой сварки называется такой способ, когда сварку выполняют слева направо, сварочное пламя направляют на сваренный участок шва, а присадочную проволоку перемещают вслед за горелкой. Мундштуком горелки при правом способе выполняют незначительные поперечные колебания. Так как при правом способе пламя направлено на сваренный шов, то обеспечивается лучшая защита сварочной ванны от кислорода и азота воздуха и замедленное охлаждение металла шва в процессе кристаллизации. Качество шва при правом способе выше, чем при левом. Теплота пламени рассеивается меньше, чем при левом способе. Поэтому при правом способе сварки угол разделки шва делается не 90°, а 60-70°, что уменьшает количество наплавляемого металла и коробление изделия.

а - левый, б - правый

Рисунок 1 - Способы газовой сварки

Правый способ экономичнее левого, производительность сварки при правом способе на 20-25% выше, а расход газов на 15-20% меньше, чем при левом. Правый способ целесообразно применять при сварке деталей толщиной более. 5 мм и при сварке металлов с большой теплопроводностью. При сварке металла толщиной до 3 мм более производителен левый способ.

Мощность сварочной горелки для стали при правом способе выбирается из расчета ацетилена 120-150 дм 3 /ч, а при левом - 100-130 дм 3 /ч на 1 мм толщины свариваемого металла.

Диаметр присадочной проволоки выбирается в зависимости от толщины свариваемого металла и способа сварки. При левом способе сварки диаметр присадочной проволоки d=S/2+1 мм, а при правом d-S/2 мм, где S - толщина свариваемого металла, мм.

Газовая сварка пламенем повышенной мощности

При этом способе газовой сварки горелка берется мощностью в два раза большей, чем при обычном способе сварки, и устанавливается пламя с избытком ацетилена на 7-10%. Кромки металла нагреваются только до начала оплавления. Газовая сварка стали производится следующим образом. Кромки нагреваются науглероживающим пламенем, вследствие чего верхний слой их обогащается углеродом и температура плавления металла понижается. При температуре 1200°С кромки начинают оплавляться (потеть). В это время в сварочный шов вводят присадочную проволоку, нагретую до плавления. Расплавленный металл проволоки растворяет науглероженный верхний слой основного металла и прочно соединяется с ним. Глубокое расплавление кромок производить нельзя, так как получится высокоуглеродистый хрупкий слой.

Диаметр проволоки берут больший, чем при обычной сварке. Скос кромок 60-70°С. Газовая сварка производится правым способом. Этот способ обеспечивает большую скорость сварки, но требует высокой квалификации сварщика.

Способы газовой сварки

Существуют разнообразные способы газовой сварки. Одни из них более востребованы, другие – менее. У каждого метода определенный набор достоинств и недостатков – выбор зависит от конкретной ситуации.

В одном случае наиболее эффективной окажется правый способ газовой сварки, в другом – левый. Иногда необходима сварка с помощью ванночек, подчас – с использованием сквозного валика. Какой и когда лучше всего использовать метод? Об этом – в нашей статье.

Принцип газовой сварки

Особенность метода газовой сварки состоит в том, что во время работы на участок спайки подается поток раскаленного газа. Он разогревает стыковочные поверхности заготовок до критичной температуры и разжижает присадочный материал. Последний подается к месту нагрева с противоположной стороны или же закрепляется непосредственно на сопле.

Принцип газовой сварки

Все известные способы газовой сварки предполагают защиту материала от образования оксидной пленки за счет того, что воздух вытесняется с места воздействия специальным газом. После плавного остывания шва элементы прочно скрепляются воедино. Для выполнения работ такого типа используют несколько видов газа:

  • водород и кислород;
  • кислород и ацетилен;
  • метан и кислород;
  • пропан и кислород;

Способы газовой сварки металлов допускают использование любого горючего газа с примесью кислорода, однако лучше всего для этих целей подходит ацетилен. Его рабочая температура достигает +3400 °С, в то время как у пропана – всего +2800 °С.

Область применения газовой сварки

Использование газосварки позволяет решить такие производственные задачи, как:

  • пайка (включая ремонтные работы);
  • наплавка;
  • резание металлопроката и металлических труб на отдельные детали;
  • сварка элементов в одну конструкцию.

Газовый сварочный аппарат часто применяется в промышленном производстве и в гаражных мастерских, в строительстве и автомастерских, а также в коммунальном хозяйстве. С помощью такого агрегата соединяют различные элементы сложных конструкций, тонкостенные трубы, выполняют стыковочные узлы изделий из цветных металлов.

Спайка и раскрой, выполненные способом газовой сварки, позволяют добиться нужного результата при надлежащем качестве.

Пайка осуществляется за счет трех ключевых факторов: происходит сильный нагрев краев соединяемых элементов, расплавляется припой и к этим двум составляющим добавляется специальное антиокислительное вещество – флюс. За счет взаимного проникновения молекул припоя и материала деталей конструкции (диффузии) на месте соединения образуется прочный аккуратный шов. При необходимости он может быть подвергнут последующей обработке.

Область применения газовой сварки

VT-metall предлагает услуги:

Лазерная резка металла Гибка металла Порошковая покраска металла Сварочные работы

Наплавка представляет собой покрытие основного материала слоем металла с другими характеристиками. Для этого поверхность спайки предварительно нагревается до температуры «запотевания». С помощью такого способа выполнения газовой сварки часто производят ремонт изношенных поверхностей, удлиняют или расширяют детали, улучшают показатели износостойкости и прочности элементов. Благодаря этому можно снизить стоимость починки, уменьшить расход редкого или дорогостоящего материала, продлить срок службы изделия.

Плюсы и минусы газовой сварки в целом

Любой способ соединения металлических элементов в единую конструкцию имеет свои достоинства и недостатки. Газосварочный метод, к примеру, отличается тем, что под струей газа рабочая поверхность нагревается относительно медленно. Однако нельзя четко определить, хорошо это или плохо.

К преимуществам такой интенсивности нагрева рабочей поверхности относятся:

  • Плавность термического воздействия. Особенно важно это свойство при работе с цветными металлами.
  • Отсутствие необходимости в мощном источнике питания.
  • Возможность настройки силы раскаленной газовой струи.
  • Легкость переключения режимов работы за счет дополнительных контроллеров.

Недостатки медленного нагрева рабочей поверхности при использовании способа газовой сварки:

  • Большая часть тепла во время работы рассеивается впустую, поэтому у такого способа соединения деталей низкий КПД.
  • Из-за увеличенной зоны теплового воздействия невозможно выполнять работы, требующие высокой точности.
  • Экономические затраты на газ при выполнении работ такого типа превышают расходы на электроэнергию.
  • Составляющие газосварочного оборудования (шланги, баллоны и пр.) нелегко транспортировать.
  • Для получения швов высокого качества требуется большой практический опыт.

Значительная часть оборудования такого типа для выполнения резки по металлу или сварочных работ имеет ручное управление, поэтому в подобных случаях автоматизировать производственный процесс невозможно. На сегодняшний день существует два основных способа газовой сварки: левый и правый. Остановимся подробнее на каждом из них.

Преимущества и недостатки левого способа газовой сварки

Принцип работы при левом способе заключается в том, что движение сопла направлено справа налево. При этом пламя стремится вперед, на еще непрогретый участок изделия, а присадочный материал закрепляют перед огненным потоком. Равномерные диффузия и прогрев краев деталей обеспечиваются зигзагообразными движениями аппарата.

Этот метод позволяет добиться шва высокого качества с одинаковой высотой и шириной, а также внушительной эффективности при малых финансовых затратах. Однако все это вы получите, только если толщина металла при левом способе газовой сварки не превышает 3 мм.

Рекомендуем статьи по металлообработке

Такая особенность связана с тем, что пламя подогревает лежащий впереди металл. Левый способ считается менее сложным и требует меньшего мастерства.

Как правило, его используют для работы с 2-3-миллиметровыми заготовками из стали, а также для металлов с низкой температурой плавления. При обработке деталей толще 5 мм правый способ будет быстрее.

Диаметр присадочной проволоки для левой сварки определяется по формуле:

Диаметр присадочной проволоки для левой сварки

Плюсы и минусы газовой сварки в целом

Плюсы левого способа следующие:

  • шов получается эстетичный – гладкий с небольшой чешуйчатостью;
  • оказывается малое термическое воздействие;
  • быстро и эффективно справляется с заготовками тоньше 3 мм.

Минусы левого способа:

  • теряется много тепла;
  • сварочная ванна опережает движение аппарата;
  • сложно регулировать провар;
  • действие защитной атмосферы ограничено в пространстве.

Преимущества и недостатки правого способа газовой сварки

При выполнении сварки правым способом направление работы меняется: в этом случае сопло передвигается слева направо. При этом пламя устремлено к уже обработанным участкам, а присадочный прутик крепится непосредственно за ним.

Во время операции манипулой горелки выполняются поперечные колебания небольшой амплитуды. За счет того, что пламя направлено в сторону рубца, обеспечивается лучшая защита сварочной ванны от воздуха и содержащихся в нем азота и кислорода. Кроме того, шов при таком способе газовой сварки застывает более плавно.

Жар от пламени горелки распространяется не только на область сварочной ванны, но и на металлический шов и область вокруг него. Таким образом, как бы происходит дополнительная термическая обработка.

Присадочным прутком, так же как и при левом способе, выполняются зигзагообразные движения, но с меньшей амплитудой.

КПД правого способа выше, так как меньшее количество тепла расходуется впустую. Благодаря этому угол разделки шва уменьшается с 90° до 60–70°, что, помимо прочего, сокращает объем наплавляемого материала, уменьшает коробление изделия.

Как отмечалось ранее, оптимальная толщина металла при правом способе газовой сварки составляет от 5 мм. Данный метод также подходит для работы с материалами с высокой теплопроводностью. Диаметр присадочной проволоки в этом случае вычисляется по формуле:

Диаметр присадочной проволоки для правой сварки

Преимущества и недостатки правого способа газовой сварки

Плюсы правого способа:

  • достаточное количество выделяемого тепла;
  • прочный шов;
  • постепенное остывание металла;
  • эффективная защитная атмосфера факела.

Минусы правого способа:

  • рельеф шва чешуйчатый;
  • работа с заготовками тоньше 3 мм затруднительна.

При обработке деталей толщиной до 8 мм сопло перемещают вдоль линии кромки ровно, без колебаний. Конец присадочной проволоки при этом опускают в сварочную ванну и как бы перемешивают им разжиженный металл спиралевидными движениями. Таким образом упрощается избавление от шлаков и окислов.

Левый и правый способы сварки: критерии выбора

Толщина заготовок – не единственный критерий подбора способа ручной газовой сварки. Влияние на выбор также оказывает пространственное положение элементов. Если они находятся в нижнем положении, то выбирают на основании толщины металла так, как это описывалось ранее.

Если предполагаемый шов находится в вертикальной плоскости, применяют левый способ, то есть горелка движется по направлению справа налево вслед за присадочным прутком. При работе с рубцами в горизонтальной плоскости также выбирают левый способ. Пламя в этом случае направляют в сторону формирующегося шва. Во избежание вытекания разжиженного материала из сварочной ванны ее выполняют с небольшим перекосом.

Левый и правый способы сварки: критерии выбора

Если место предполагаемого рубца находится на потолке, применяют правый способ газовой сварки. В этом случае поток пламени направлен в сторону образовавшегося шва, что предупреждает вытекание материала из сварочной ванны.

Эффективность того или иного метода зависит от условий, в которых он применяется. Принято считать, что правый способ отличается большей производительностью и энергоэффективностью, однако это так лишь в случаях, когда толщина заготовки превышает 5 мм, а сам материал обладает высокой теплопроводностью. Для более тонких металлов оптимальным является левый способ.

Другие востребованные способы газовой сварки

  • Сварка с применением ванночек.

Принцип действия напрямую отражен в названии способа – по ходу выполнения работ образуются все новые и новые сварочные ванны. Когда возникает одна из них, в нее опускается конец присадочного прутка. Он там разжижается, а после погружается в восстановительный участок пламени. В это время сопло перемещают дальше вдоль шва – туда, где будет образована следующая ванночка. Каждая из них выполняется как бы внахлест, перекрывая предыдущую примерно на треть диаметра присадочного материала.

Этот способ выполнения газовой сварки широко применяется при угловой спайке труб из стальных низколегированных или малоуглеродистых сплавов, а также при работе с тонкими металлическими пластинами.

  • Сварка при помощи сквозного валика.

Сварочная операция при этом выглядит следующим образом: сперва металлические элементы конструкции устанавливают в вертикальной плоскости так, чтобы между ними оказался зазор, по ширине равный половине толщины листа. Затем сопло равномерно перемещается вдоль борозды, подплавляя при этом верхнюю кромку отверстия заготовки. Параллельно накладывается слой расплавленного металла на нижнюю часть борозды. При этом образуется рубец в виде валика, который и соединяет элементы конструкции. Шов получается плотный, без шлаков и пор.

  • Многослойный способ газовой сварки.

При выполнении работ таким способом во время наплавки верхних слоев отжигаются нижние. Благодаря этому происходит тщательная проковка каждого уровня перед образованием следующего. При этом важно начисто обработать нижний слой перед наложением верхнего. Операция выполняется на коротких участках. В результате получается прочный шов высокого качества. Стоит отметить, что этот метод требует больших объемов сварочного газа, он не отличается высокой производительностью и достаточно дорогостоящий. Поэтому такой вариант соединения применяется для выполнения очень ответственных работ.

  • Сварка окислительным пламенем и раскислением.

Этот способ применяется для работы с заготовками из малоуглеродистых стальных сплавов. Сварочное пламя при этом обладает резко окислительными свойствами, в связи с чем в рабочей зоне образуются окислы железа, которые впоследствии необходимо убрать. Для этого нужно раскисление. Оно выполняется при помощи присадочного прутка, выполненного из особого сплава, содержащего высокий процент кремния и марганца. Такой способ газовой сварки на 10 % эффективнее, чем другие.

Техника безопасности при газовой сварке

Сварочные работы отличаются повышенной опасностью. Использование газосварочного метода – не исключение. Стоит отметить, что он требует повышенных мер предосторожности, поскольку дополнительную угрозу представляют сварочные газы: кислород и ацетилен. Соблюдение норм техники безопасности убережет мастера от производственных травм.

Другие востребованные способы газовой сварки

Генератор и газовый баллон должны находиться на расстоянии не меньше 5 м друг от друга. Во избежание повреждения соединительных шлангов их необходимо подвешивать. Если в помещении для выполнения газосварочных операций также работают другие специалисты, то по его периметру должны быть выставлены предметы защиты.

Перед зажиганием горелки проводится продувка шлангов: сперва открывается подача кислорода, а затем – ацетилена. Только после этого горючую смесь можно воспламенять. Стоит следить за тем, чтобы каналы всегда были чистыми, иначе могут произойти хлопки или обратные удары.

Нельзя работать со сварочным аппаратом с замасленными руками или допускать прочий контакт оборудования с маслом – это может привести к взрыву. Если обратный удар все же произошел, необходимо оперативно перекрыть вентили подачи газа на резаке, баллонах и водяном затворе. Пламя распространяется по шлангам медленно, однако если не предпринять указанные меры незамедлительно, может произойти детонация.

Во избежание обратных ударов при работе одним из способов газовой сварки важно исключить следующие факторы:

  • падение давления кислорода – это может произойти из-за окончания газа в баллоне, засорения инжектора или замерзания редуктора;
  • слишком близкое расстояние от сопла до детали – это снижает скорость газового потока;
  • чрезмерный нагрев сварочного мундштука или труб;
  • засорение мундштука – это провоцирует сокращение проходного отверстия и, как следствие, падение скорости подачи газа.

В случае перегрева горелки необходимо приостановить сварочные работы и остудить ее, например, в воде. Генератор с ацетиленом нельзя опустошать до тех пор, пока газ не закончится. В противном случае это может вызвать обратный удар.

При выполнении работ любым из способов газовой сварки нельзя допускать протечек газа. Наиболее уязвимые места: краны и пробки. Определить дыру можно при помощи мыльного раствора.

Нельзя проводить сварочные операции емкостей или труб, которые находятся под давлением. Перед началом работ с емкостями для кислот или горючих материалов их необходимо тщательно очистить, промыть водой и пропарить. Во время манипуляций крышки должны быть открыты.

На время краткосрочных перерывов в работе необходимо перекрыть вентили на горелке, а при длительном – еще и на баллонах. В летний период емкости со сварочным газом не должны находиться под прямыми солнечными лучами.

Важно помнить, что газовая сварка с использованием горючих и взрывоопасных газов должна выполняться в специально оборудованных цехах.

Техника безопасности при газовой сварке

В них должно быть качественное освещение, высота потолков – не менее трех метров. Для вывода опасных паров и газов с рабочего места сварщика обязательно наличие вентиляционной системы.

Прежде чем использовать любой способ газовой сварки, необходимо изучить правила транспортировки оборудования и газовых баллонов.

Почему следует обращаться именно к нам

Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

Наши производственные мощности позволяют обрабатывать различные материалы:

  • цветные металлы;
  • чугун;
  • нержавеющую сталь.

При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

Виды газовой сварки

Виды газовой сварки

Газовая сварка – метод соединения деталей, работающий там, где дуговая сварка пасует. Соединение цветных металлов, тонкостенных труб, получение аккуратных швов – все это об этом методе соединения материалов. Все виды газовой сварки применяются практически везде: от строительства до ремонта автомобилей и в быту.

Однако такой метод обработки металлов требует высокого профессионализма и досконального знания материальной составляющей. Какие газы использовать для сварки того или иного металла, какую горелку выбрать, каким способом варить – обо всем этом вы узнаете из нашей статьи.

Что нужно знать о газовой сварке

Что нужно знать о газовой сварке

Газоплазменная сварка, называемая также газовой, объединяет две металлические детали или листа, расплавляя их края и объединяя основной материал с припоем или добавочным металлом. Расплав достигается созданием области высокой температуры в зоне сварки с помощью сгорания некоторого газа с определенной скоростью. Как газовая резка, так и сварка происходят путем экзотермической реакции расплавленного металла с горящей газовой смесью, подающейся к месту реза (сварки).

Требуемая для соединения температура горения достигается смешиванием кислорода с каким-либо горючим газом. Процесс соединения газов происходит внутри газового смесителя, куда они поступают из разных источников. На выходе из смесителя происходит искусственный поджог газа. В соответствии с технологией сварки газом, объем подачи каждого из компонентов смеси регулируется отдельно. Благодаря этому создаются наилучшие условия для резки и соединения металлов. Данный принцип характерен для любого газопламенного аппарата.

Посредством аппарата газовой сварки можно:

  • сваривать различные заготовки;
  • паять (например, ремонтируя испорченные детали);
  • наплавлять;
  • разрезать металлопрокат в листах или трубы на заготовки.

Благодаря множеству преимуществ, сварка газом применяется в различных отраслях хозяйства: промышленном производстве, строительстве, ЖКХ, ремонте автотранспорта, для бытовых целей в городских квартирах, на дачах и в домах. Газосварка может соединить практически все виды металлов. Сфера ее применения обширна: слияние частей сложных конструкций, деталей из цветного металла, тонкостенных труб и пр. А если правильно выбрать припой и подобрать условия, то можно сварить чугун и напаять на него латунь. Газовая резка и сварка позволяют получать изделия высокого качества.

Процесс пайки происходит методом нагрева заготовок с одновременным расплавлением припоя с флюсом. На расплавленных стыках заготовок идет процесс взаимного проникновения (диффузии) металлов и припоя. Шов при этом получается ровный и красивый, в дальнейшем он может быть дополнительно обработан.

Рекомендовано к прочтению

Метод наплавки используется для покрытия одной металлической заготовки иным по типу или структуре металлом. Поверхность основной заготовки нагревается до температуры запотевания. Данный метод позволяет ремонтировать и восстанавливать детали, наплавлять другой материал с лучшими прочностными характеристиками, увеличивать размеры изделия. Использование наплавки понижает стоимость ремонта, уменьшает количество используемого дорогого материала и продлевает срок службы.

Основные виды газовой сварки

Основные виды газовой сварки

Особенности соединяемых металлов и их сплавов, форма заготовок, направление сварки газом и прочие факторы оказывают значительное влияние на ее технику.

Газовая сварка разработана для соединения чугуна, а также цветных металлов, поскольку, в отличие от дуговой, она выполняется быстрее и качественнее. Единственным исключением является легированная сталь. Причина – низкий коэффициент теплопередачи этого сплава, из-за которого заготовки значительно деформируются.

К настоящему времени разработаны разнообразные виды газовой сварки. Это «левая» и «правая», а также ванночками, многослойная и газовая сварка валиком.

При «правом» виде сопло сварочного аппарата ведется слева направо. Подача присадки осуществляется после прохождения соплом свариваемого участка. Пламя из сопла плавит присадку. Температура, при которой она расплавляется, как правило, меньше температуры плавления заготовки. Потому растопленная присадка ровно покрывает шов сверху.

«Левый» вид газовой сварки называют основным. При его использовании идет обратный процесс – справа налево, при этом подача присадки происходит спереди. Данный вид считается более простым, однако используется исключительно для листового тонкого металла. Помимо всего, он еще и менее экономичный, поскольку расход газовой смеси и присадки выше.

Вид соединения валиком применяют для листов металла и считают более трудоемким. Формой шов напоминает валик, откуда и пошло название. Имеет высокое качество – без шлаков, воздушных лакун и пор.

Ванная сварка – значительно более сложный вид газового соединения, требующий особого умения и навыков. Заключается он в спиральной укладке присадки в сварной шов, когда на проволоку воздействует пламя разной температуры, проходя через нее. Витки спирали немного перекрывают друг друга. Применяется для газовой сварки низкоуглеродистой листовой стали.

Многослойный вид газовой сварки считается сложнейшим из известных. Принцип его действия заключается в наплавке верхнего слоя на нижний с полным прогревом всех нижних слоев. Для получения качественного шва необходимо постоянно отслеживать положение стыков швов, они не должны находиться друг под другом.

Для каждого из описанных выше типов газовой сварки характерны свои виды швов.

Все указанные виды газовой сварки металла могут проходить с использованием флюса, который зависит от соединяемого металла. Флюс необходим для создания защиты сварного шва от снижающих его качество окислов.

Какие виды газов используются для газовой сварки

При газовой сварке используют различные виды газов: кислород, ацетилен, бензол, пропан, МАФ, бутан, керосин, углекислота, коксовый газ и пр. Чаще всего применяется ацетилен, поскольку температура его горения вместе с кислородом составляет +3 000 °С.

1. Ацетилен.

С2Н2 – такова формула чистого ацетилена. Этот вид газа не имеет цвета, пахнет чесноком, после вдыхания во рту появляется сладковатый вкус. Ацетилен чуть легче воздуха и считается опасным для человека.

Процесс приготовления данного вида газа прост: надо только смешать воду с карбидом кальция в нужных пропорциях. Поэтому его можно сделать на месте сварки, а можно привезти уже готовый, в баллонах. Карбид кальций является кристаллическим веществом, достаточно твердым, изготавливаемым посредством плавки при +1 900… +2300 °С кокса и извести.

Баллонный ацетилен выгодно использовать при небольших объемах работ. Для серийного производства эффективнее применять ацетиленовые генераторы. Основными достоинствами данного вида газа является чрезвычайно высокая температура горения, легкость его получения и удобство регулировки. Недостатками считается высокая стоимость и взрывоопасность.

2. Заменители ацетилена.

Заменителями С2Н2 для газовой сварки являются водород, пропан, коксовый газ, керосин, смесь пропана с бутаном и бензин. Эти виды, как и ацетилен, способны поддерживать высокую температуру в месте газовой сварки. Но, несмотря на повышенный расход кислорода, температура пламени все равно не достигает таких же параметров, как при горении ацетилена. Именно поэтому они применяются в основном для газовой сварки металлических конструкций из легкоплавких и цветных металлов. Для соединения стали они не подходят.

3. Кислород.

Кислород

О2 выступает неким ускорителем горения, применяемым в процессе работы вместе с избранным газом. Максимальная температура горения достигается использованием чистого кислорода, что значительно повышает качество шва. При газовой сварки можно использовать все три сорта чистоты кислорода: 99,2 %, 99,5 %, 99,7 %. При этом отмечается прямая зависимость скорости работы и нормы расхода кислорода от его чистоты.

Кислород в виде газа не имеет вкуса и запаха, прозрачен и бесцветен, а также он тяжелее, чем воздух. Его получают: из воды – электролизом, из воздуха – путем глубокого охлаждения. После изготовления в газообразном состоянии кислород хранится в баллонах, в жидком – в танках. В процессе сварки необходимо внимательно контролировать количество поступающего кислорода, поскольку его переизбыток ведет к окислению шва.

4. Углекислый газ.

СО2 обладает сильной окислительной способностью и специфическим запахом. Воздух в 1,5 раза легче углекислоты, но она прекрасно растворима в водной среде. Для работ с чугуном, коррозийными сталями, углеродистыми сплавами и металлами, а также с низколегированными соединениями применяют три типа углекислоты.

5. Защитные элементы.

Защитные элементы

Для защиты сварной ванны от воздействия воздуха применяют инертные газы. Их преимуществами являются отсутствие цвета, запаха, влияния на металл и нерастворимость в нем.

  • Аргон. Имеет несколько сортов. Редкие, активные металлы и сплавы соединяются аргонодуговым методом с использованием его высшего сорта. Для стальных и алюминиевых заготовок применяют первый сорт. Аргон не горюч и на 50 % тяжелее воздуха.
  • Гелий. Используется специалистами для соединения алюминия, стали, а также активных и чистых материалов.
  • Азот. Четыре сорта азота имеют разное количество основного вещества. Используется газ при работе с медью и ее сплавами.

Для улучшения процесса соединения металлов, а также качества шва применяются различные сварочные газовые смеси. Например, аргон и кислород, аргон и углекислота, а возможны смеси аргона, кислорода и углекислоты, а также гелия и аргона.

Какие виды газовых горелок применяются для сварки

Какие виды газовых горелок применяются для сварки

Газовая горелка – важный и достаточно сложный элемент сварочного оборудования, хотя на первый взгляд таковым не является. Она необходима для получения факела, которое воздействует на металл, и помогает регулировать объем и мощность пламени в определенных границах.

Конструкции газовых горелок делятся на:

По виду используемого газа они подразделяются на:

  • ацетиленовые;
  • под жидкое горючее, а также иные газы.

По способу обработки делятся на:

1. Инжекторный и безынжекторный виды горелок для сварки с помощью газа.

Необходимость поддержания требуемого уровня давления подаваемого газа привела к снабжению горелки струйным насосом. Высокое давление газа не требует включения насоса, поскольку горючее подается с уже необходимым уровнем. Но если газ находится в баллонах под низким давлением, то его расход увеличивается. В таком случае давление искусственно увеличивают. Именно тогда применяется подача при помощи инжектора – принудительно. Затем в сварочной камере горелки происходит смешивание кислорода с иными газами до получения требуемой смеси, которая и создает факел.

Более простыми являются горелки, в которых нет инжектора. Газы (кислород и горючее) для факела поступают в смеситель посредством системы подачи. В нее входят: шланги, вентили и ниппели. Однородной смесь для качественного пламени становится уже в смесителе.

Она проходит по трубке наконечника и подается на мундштук, затем ее поджигают, образуя необходимое для работы пламя. Следует тщательно следить за параметрами давления подачи смеси из мундштука – таким образом можно регулировать процесс горения. Скорость, с которой смесь ацетилена и кислородом вырывается из мундштука, может равняться 70–160 м/сек. Если она будет недостаточной, то смесь, попадая внутрь горелки, взрывается в ней. Если слишком высокой – факел отрывается от горелки и тухнет.

Инжекторный и безынжекторный виды горелок для сварки с помощью газа

В горелках высокого давления может использоваться метан и водород. Они достаточно просты в работе, но применяются значительно реже инжекторных горелок низкого давления.

2. Работа горелки низкого давления.

Система подачи (ниппель и регулировочный кран) поставляет кислород высокого давления (4 атм) в горелку. Газ проходит на высокой скорости через инжектор. В камере струйного насоса кислород своей струей создает пониженное давление (ниже атмосферного), благодаря чему в нее поступает горючий газ. Он проходит через ниппель и вентиль, а потом и инжектор, смешивается с кислородом в смесительной камере. Затем с необходимой для работы скоростью подается на мундштук.

В процессе работы расход кислорода неизменен, поскольку не подвержен внешним факторам. Чего не скажешь об ацетилене, на который влияют колебание давление, нагрев мундштука, возрастание сопротивления. Что приводит к повышенному его расходу.

3. Другие виды горелок.

Газовые горелки, функционирующие на жидком топливе, например, керосине, бензине, применяются в ряде отраслей промышленного производства. Принцип работы данного вида горелок заключается в распылении смеси кислорода и керосина и последующего испарения мелких капелек горючего нагревом мундштука.

Для эксплуатации этого вида горелок в безаварийном режиме необходимо соблюдать следующие требования безопасности:

  • отслеживать форму сварочного пламени;
  • регулировать факел в необходимых границах;
  • устройство должно быть защищено и неуязвимо для воздействий извне;
  • горелка должна быть удобна в использовании.

Чаще всего для проведения газовой и плазменной сварок применяется ацетилено-кислородная смесь. В качестве ее замены может быть использован пропан. Однако такой вид работ достаточно сложен и не под силу новичку, так как требует вдумчивой предварительной подготовки, что, несомненно, скажется на качестве шва и облегчит работу.

Технология газовой сварки

В процессе сварки плавлением происходит расплавление основного, а в большинстве случаев и присадочного металлов. Регулирование степени расплавления присадочного металла при газовой сварке может быть осуществлено в весьма широких пределах. Степень расплавления основного металла определяется мощностью пламени, геометрическими размерами и теплофизическими свойствами металла.

Основным типом сварного соединения является стыковое. При газовой сварке помимо стыковых часто применяются торцовые и угловые соединения (рис. 44). Стыковые соединения с отбортовкой кромок и торцовые соединения обычно свариваются без присадочного металла. Угловое соединение с наружным швом выполняется как с присадочным металлом, так и без него.


Соединения тавровые и внахлестку применяются при газовой сварке только для небольших толщин, так как при увеличении толщины резко ухудшается выполнение самой сварки, в связи с неравномерностью прогрева кромок и значительными короблениями при сварке. Сварка подобных соединений производится угловыми швами (рис. 45). При этом используются в основном вогнутые (облегченные) швы, широко применяемые в авиационной промышленности как более стойкие при знакопеременных нагрузках и дающие меньшие коробления.

В целях получения доброкачественных сварных соединений металл на кромках и вблизи от них (до 30-50 мм) должен быть перед сваркой зачищен от различных загрязнений (толстого слоя окислов, жировых пятен и пр.). Эта очистка производится либо механическими способами (пескоструйной очисткой, ручными или механизированными стальными щетками), либо химической очисткой. Иногда перед очисткой деталей щеткой производится прогрев газовым пламенем, отделяющий окислы от металла и сжигающий ряд других загрязнений.

Обычно перед сваркой осуществляется совместно со сборкой и закрепление элементов, подлежащих сварке, различными приспособлениями, а чаще всего прихватками (короткими швами). Общий принцип расположения прихваток показан на рис. 46.

При сварке длинных швов незакрепленных листов во избежание недопустимых деформаций сборка иногда выполняется с расширяющимся зазором (с разведением концов). Подготовка кромок, сборка и выполнение прихваток во многом определяют качественное выполнение сварки.

Режим и техника выполнения газовой сварки

Эффективность выполнения процесса газовой сварки определяется режимом сварки (мощностью пламени, скоростью сварки, диаметром присадочного металла) и техникой сварки (включающей расположение горелки и присадочного металла по отношению к свариваемому металлу, а также движение горелки и присадочного металла).

Мощность пламени определяется количеством сжигаемого в единицу времени горючего и обычно измеряется в л/ч.

Из практики установлено, что необходимая для сварки мощность пламени Va примерно пропорциональна толщине свариваемого металла:

где δ - толщина металла в мм;

R - коэффициент пропорциональности (л/ч·мм), равный для низкоуглеродистой стали 100-130, для чугуна и нержавеющей стали 75-100, для алюминия 100-150, для меди 150-225.

Средняя скорость перемещения пламени (υ в м/ч) по отношению к свариваемому металлу при ручной сварке на установившемся режиме прогрева и расплавления свариваемого металла также зависит от толщины:

где А - коэффициент, зависящий от свойств свариваемого металла и в некоторой степени от толщины (для стали средних толщин А = 12-15; для никеля А = 9 - 11).

Диаметр присадочного металла (обычно в виде прутков проволоки или литых стержней) выбирается в зависимости от толщины свариваемого металла и его теплофизических свойств. В большинстве случаев диаметр присадки d берется от δ/2 до δ.

Большое значение для получения швов хорошего качества имеет техника сварки, позволяющая при сварке правильно вводить и распределять тепло в свариваемом изделии, проплавлять свариваемые кромки и присадочный металл, управлять жидким металлом сварочной ванны.

Распределение тепла, вводимого в свариваемое изделие, и влияние механического действия пламени зависят от угла наклона оси пламени к поверхности свариваемого металла (φ). Проплавление основного металла и скорость сварки также зависят от этого угла. При малом значении угла φ пламя как бы скользит по поверхности металла, мало его проплавляя, но, подогревая находящийся впереди металл, способствует его тепловой подготовки для последующего расплавления. При значении φ близком к 90° глубина проплавления увеличивается, а степень тепловой подготовки еще нерасплавленного металла уменьшается. В связи с этим сварка металлов малых толщин производится при малом значении угла φ. При сварке больших толщин расположение горелки изменяют, направляя пламя более вертикально. Ниже приводятся ориентировочные углы наклона пламени при сварке сталей:


При сварке легких металлов (алюминия, магния) угол наклона φ должен быть небольшим, чтобы избежать выдувания металла из ванны механическим действием пламени.

В процессе выполнения шва угол наклона пламени может меняться. В начале сварки, когда основной металл еще не подогрет, требуется держать угол φ большим, уменьшая его до нормальной величины в процессе сварки по мере разогрева свариваемого металла.

Важным фактором, влияющим на эффективность газовой сварки, является выбор способа, определяемого взаимным расположением пламени и присадочного металла по отношению к направлению сварки.

Левый и правый способы сварки

Существует два способа сварки: левый и правый.

При левом способе сварки (рис. 47, а) пламя направляется вперед на еще не сваренные кромки основного металла и располагается между сваренным участком шва и присадочным металлом. В этом случае кромки, подлежащие сварке, предварительно подогреваются как непосредственно пламенем, так и теплом, распространяющимся в результате теплопроводности металла. Этот способ эффективен при малой толщине (для стали при δ

При правом способе (рис. 47, б) пламя направлено в сторону уже сваренного участка шва, а присадочный металл расположен между пламенем и сваренным участком шва. В этом случае впереди лежащие кромки пламенем не подогреваются, но ввод тепла в сварочную ванну оказывается более эффективным, особенно при наличии разделки кромок, так как ядро пламени можно ближе подвести к поверхности расплавляемого металла. Этот способ эффективнее при больших толщинах металла (для стали при δ > 5 мм).

При правой сварке металл шва в процессе охлаждения омывается пламенем и остывает несколько медленнее. Это позволяет в ряде случаев получать швы с лучшими свойствами металла, чем при левой сварке.

Выполнение швов при правом способе сложнее и требует соответствующих навыков сварщиков.

Для достижения наибольшей производительности труда при минимальной затрате материалов, в частности горючего, необходимо стремиться к максимальному сокращению тепловых потерь. Практика ручной газовой сварки показывает, что производительность труда сварщиков в зависимости от технических приемов может меняться на 30-50%.

Технические приемы сварки (включающие перемещения горелки и присадки) зависят от расположения шва в пространстве, формы подготовки кромок, толщины и свойств свариваемого металла.

Наиболее просто выполняются нижние швы, т. е. швы, расположенные на верхней горизонтальной плоскости свариваемого изделия. При выполнении нижнего шва с отбортовкой кромок (или торцового) применяется левая сварка, причем траектория перемещения горелки должна быть прямолинейной, без поперечных колебаний. При загрязненном металле для улучшения сплавления иногда приходится применять продольно-колебательные движения горелкой в вертикальной плоскости. При левой сварке стыковых швов при δ = 2-З мм, выполняемой без присадочного металла, применяются поперечные колебания горелки (рис. 48, а).


При увеличении толщины металла стыковые швы выполняются левой сваркой с применением присадочного металла, как указано на рис. 48, б (для δ=4-5 мм) и рис. 48, в (для δ > 5-6 мм).

Правая сварка при толщинах около 5-6 мм характеризуется в основном поперечными колебаниями присадки, а при больших толщинах - и горелки, и присадки (рис. 48, г). В последнем случае как пламя, так и присадка подводятся к кромкам синхронно, в отличие от левой сварки, когда пламя и присадка, как правило, располагаются на противоположных кромках (рис. 48, б и в).

Вертикальные швы (т. е. швы, расположенные отвесно на вертикальной плоскости), выполняются либо сверху вниз (при малых б), либо снизу вверх. Сварка сверху вниз выполняется правым способом; сварка снизу вверх выполняется как левым, так и правым способами.

При сварке толщин 2-8 мм весьма эффективной является сварка двойным валиком. При этом способе в нижней части стыка проплавляется сквозное отверстие. Пламя, располагаясь в этом отверстии и постепенно поднимаясь снизу вверх, расплавляет верхнюю часть отверстия. Этим расплавленным и присадочным металлом заполняется ванна, образующаяся на нижней поверхности этого отверстия (рис. 49).

При сварке горизонтальных швов (швов, расположенных горизонтально на вертикальной плоскости) металл ванны стремится стечь на нижнюю кромку. Поэтому сварку обычно выполняют правым способом (используя механическое поддерживание пламенем). При этом ванну держат несимметрично (с перекосом) по отношению к свариваемым кромкам (рис. 50).


Потолочные швы (швы, выполняемые на горизонтальной плоскости снизу, над головой сварщика) лучше формируются при правой сварке.

Во всех случаях весьма важным является использование присадочного металла:

1) для регулирования температуры ванны, которое осуществляется погружением и извлечением из нее присадки;

2) для защиты от расплавления кромок уже сваренного участка шва при правой сварке;

3) для поддержания ванны присадкой (при сварке горизонтальных и потолочных швов).

Пороки сварки, связанные с техникой ее выполнения

Большинство пороков сварных швов связано с техникой выполнения сварки. Рассмотрим основные из них.

Непровар - недостаточное сплавление или отсутствие сплавления кромок основного металла с металлом шва. Причинами непровара являются: неправильный выбор мощности пламени и скорости сварки; неправильное распределение тепла между кромками, а также неправильная разделка кромок (малый угол скоса, большое притупление); малый зазор или значительная загрязненность кромок окислами. Виды непроваров представлены на рис. 51.


Подрез (рис. 52, а) является следствием избыточного расплавления кромок основного металла при недостаточном количестве наплавляемого присадочного металла.

Наплыв (рис. 52, б) вызывается недостаточным прогревом и расплавлением верхней части кромок; наплывы в ряде случаев сопровождаются скрытым непроваром кромок.

В ряде случаев недостаточное расплавление присадочного металла приводит и к ослаблению сечения шва (рис. 52, в), что для большинства стыковых швов является недопустимым.

Сквозной прожог - порок, который может получаться при значительном нагреве основного (главным образом тонкого) металла у недостаточно квалифицированного сварщика.

Незаделанные кратеры в концах швов - порок, вызываемый невнимательностью сварщика.

Наплывы, подрезы, недостаточное сечение швов, незаделанные кратеры (и некоторые виды непроваров и прожогов) могут быть обнаружены при внешнем осмотре и замерах. Для обнаружения непроваров в большинстве случаев необходим, кроме того, осмотр швов с обратной стороны.

Пороки, обнаруживаемые при внешнем осмотре, называются наружными. В сварных швах, кроме наружных пороков, могут быть и внутренние, не обнаруживаемые при внешнем осмотре.

К внутренним порокам, помимо некоторых видов непроваров, относятся шлаковые включения и пористость.

Шлаковые включения появляются: при применении пламени с избытком кислорода; при недостаточном перемешивании ванны присадочным металлом; при слишком быстром застывании ванны вследствие недостаточного прогрева металла и т. д. Кроме того, причиной таких включений могут являться значительные загрязнения основного и присадочного металла и неправильное использование флюсов.

Пористость шва получается в результате выделения газов при охлаждении, когда они не успевают удаляться из металла. Причиной пористости при газовой сварке является неправильная регулировка пламени и чрезмерно быстрое остывание ванны в результате неправильной техники сварки.

Совершенно недопустимым пороком являются трещины, вызываемые низкими сварочными свойствами свариваемого металла, качеством присадочного металла, в частности его загрязнением различными примесями, а также неправильной технологической последовательностью сборочных и сварочных операций.

Кроме пороков макроструктуры, в сварных швах, выполненных газовой сваркой, иногда имеются и пороки микроструктуры, из которых наиболее характерными являются перегрев и пережог.

Перегрев связан с длительным воздействием нагрева и, как правило, приводит к весьма крупнозернистой структуре как металла шва, так и околошовной зоны основного металла. Такой крупнозернистый металл обладает худшими механическими свойствами.

Структура перегретого металла может быть исправлена общей или местной термической обработкой.

Пережог связан также с длительным нагревом и, кроме того, с окислительным действием пламени, приводящим к расположению окисных включений по границам зерен. Пережог резко ухудшает свойства металла и не может быть устранен последующей термической обработкой. При его обнаружении швы должны быть удалены и переварены вновь.

Пути повышения производительности газовой сварки

В ряде случаев применения сварки принципиально важным направлением является автоматизация и механизация процесса. Для газовой сварки в ее современном применении этот путь хотя и возможен, но не находит широкого применения в связи с заменой газовой сварки другими процессами в массовом производстве, в которых оправдывается применение специализированных автоматов.

При индивидуальных и мелкосерийных работах применение специализированных автоматов нерационально, поэтому следует рассмотреть пути возможного повышения производительности ручной газовой сварки, используемые сварщиками-передовиками.

При ручной сварке возможно применение больших мощностей пламени, чем используются обычно. Однако это требует высокой квалификации сварщиков и приводит к повышению производительности труда примерно на 20% при увеличении мощности пламени около 50%. Вопрос о рациональности применения этого метода должен решаться в каждом частном случае.

Применение жесткого пламени (т. е. пламени с повышенными скоростями истечения горючей смеси из горелок) приводит к большей концентрации нагрева и тем самым к увеличению производительности сварки. При этом скорость истечения при универсальных горелках может быть предельно увеличена на 20-30% от нормальных скоростей истечения. Сварка жестким пламенем еще более затруднительна, чем сварка пламенем повышенной мощности, в связи с усиленным выдуванием металла из сварочной ванны.

Распространенными формами повышения производительности газовой сварки являются также использование местного или общего предварительного подогрева перед сваркой с применением дешевого топлива (печи на коксовом газе, горны и пр.). Эти методы особенно эффективны при массовом производстве или заварке брака литых деталей.

Некоторые сварщики при сварке мелких деталей, умело располагая их на сварочном (обычно поворотном) столе, используют для предварительного подогрева тепло отходящих газов пламени, подогревающих следующую деталь при сварке предыдущей. Это приводит к повышению производительности сварки на 20- 40% без какого-либо увеличения расхода материалов.

Рациональные методы повышения экономичности газовой сварки должны изыскиваться в каждом отдельном случае ее применения.

Автор: Администрация

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Читайте также: