Схема сварочного инвертора торус 200
Генератор импульсов выполнен на микросхеме U2 типа SGAN, которая имеет два выхода для управления последующими усилителями. Преобразователь источника тока выполнен по полномостовой схеме с частотой преобразования около кгц.
При проверке каждого отдельно взятого диода утечка более 1 мОм. Мы благодарны Вам за выбор нашей компании «Зона-Сварки».
Рассмотрим конкретный пример.
сварочный аппарат ТОРУС 200с заварит даже школьник.
С появлением мощных высоковольтных транзисторов и диодов широкое распространение получили сварочные инверторы. Также, в модуль входят дроссель и трансформатор.
В начале статьи приводится описание структурной схемы сварочного инвертора. Без выпаивания здесь не обойтись и для этого удобно использовать паяльник с отсосом.
Датчиком тока является кольцевая катушка L1 сквозь которую проходит толстый провод питания преобразователя.
Запас в 40 ампер довольно надёжен, к тому же максимальный импульсный ток едва ли не на порядок больше.
Модуль ключей.
Сварочный инвертор «MMA 200», устройство, ремонт.
Свежие записи
Заказчик оказался сознательным пользователем, что в конечном счете сэкономило ему не мало денег и ускорило процесс ремонта. Когда все транзисторы проверены и неисправные заменены исправными, модуль ключей можно условно считать исправным. Автоматика в данном случае не только учитывает и сглаживает перепады входного напряжения, но и корректирует даже такие помехи, как затухание сварочной дуги из-за сильного ветра. Схемы аппаратов Сварис Сварочный аппарат Сварис характеризуется простотой в применении и невысокой стоимостью.
При кузнечном или прочем ремонте используется точечная сварка. Забираем Оформляете забор техники в любой точке Москвы и области, либо привозите самостоятельно в наши сервисные центры: «Тушино» , «Щелковская» , «Ленинский» , «Рязанский» , «Люберцы».
Далее проводим вторичный осмотр и делаем вывод, что данный аппарат уронили! Конденсатор был заменен, инвертор заработал.
Так как они включены в параллель и к выходу подключен резистор, сопротивление утечки было около 10 кОм.
Это напряжение питает мощный выходной каскад 2.
Также сигнал обратной связи с выходного каскада через токовый трансформатор Т1 подается на схему защиты от перегрузок, выполненную на тиристоре Q3 и транзисторах Q4 и Q5. RDMMA относится к оборудованию нового типа, которое создается без применения трансформаторов.
Только при учете конструктивных особенностей можно провести ремонт сварочного инвертора и его точную настройку.
*В ремонте!* Инвертор «ТОРУС» (Финал)
Что включает в себя конструкция сварочного инвертора
При таком дефекте высокое напряжение от цепей стока попадает в цепи затворов.
На этом этапе надо признать, что заказчик оказался сознательным, после сильного удара он не стал подключать данный аппарат к сети , а принес его в наш сервисный центр.
В качестве выходного выпрямителя используется мощный диодный мост.
При таком дефекте высокое напряжение от цепей стока попадает в цепи затворов. Они в норме. В недавнем времени ключи стали снабжать снабберами конденсаторами, впаянными между стоком и истоком каждого транзистора , которые защищают транзисторы от пробоя. Регулировка тока производится изменением скважности управляющих импульсов при постоянной частоте.
Это один из конденсаторов, через которые подключаются выходные трансформаторы к выходному каскаду на полевиках. Высокочастотные помехи, создаваемые при работе инверторного устройства, могут через его вход попасть в электрическую сеть. Каждое плечо выпрямителя смонтировано на отдельном радиаторе и состоит из двух диодных сборок 60CPQ или четырёх 30CPQ
Запас в 40 ампер довольно надёжен, к тому же максимальный импульсный ток едва ли не на порядок больше. За счет этого возможна более точная и плавная регулировка показателей тока, при работе не появляется сильного шума. Сопротивление должно упасть почти до нуля и это означает, что транзистор открылся.
Экономичность аппарата при этом несколько снижается, зато надёжность возрастает многократно. Дело в том, что ещё есть схема регулировки тока и защиты по току и если эта защита не работает, то Вы рискуете пойти по второму кругу поиска неисправностей. Защита основных элементов от серьезного перепада напряжения. Исключительная стабильность напряжения, подаваемого на сварочную дугу, обеспечивается за счет автоматических элементов электрической схемы инвертора. Диоды выпрямителя при преобразовании переменного тока в постоянный очень сильно нагреваются, что может серьезно сказаться на их работоспособности.
Модуль ключей. И тут все в порядке. Делаем контрольные замеры и испытываем на практике Выводы: 1. Можно проверить, не светится ли красный индикатор на передней панели аппарата и если это так, то скорее всего выключен тумблер рабочего режима. Для неопытных можно посоветовать отпаять от него провода, чтобы в случае КЗ не вводить себя в заблуждение.
Обзор Сварочный аппарат ТОРУС 200 КЛАССИК
Элементы электрической схемы сварочных инверторов
Кроме того, инверторные аппараты являются наиболее эффективным типом оборудования, которое используется для сварки алюминия, нержавеющей стали и других сложносвариваемых металлов. Инвертор перестал варить.
Это один из конденсаторов, через которые подключаются выходные трансформаторы к выходному каскаду на полевиках. Без выпаивания здесь не обойтись и для этого удобно использовать паяльник с отсосом. Ранее для подобной обработки металла использовали обычные трансформаторы, которые характеризуются меньшей эффективностью.
Подобная проблема могла вывести из строя силовые транзисторы. Самостоятельно проверить блок можно только при наличии специального осциллографа и соответствующих навыков работы с ним. Если тактовые импульсы на ногах 10 и 12 то есть на входах есть, но нет импульсов на ножках 1 и 7 то есть на выходах нужно ногу 11 посадить на общий провод и если микросхема исправна, импульсы на выходах должны появиться.
Разработчики постоянно совершенствуют принципиальные электрические схемы инверторных аппаратов, что позволяет наделять их новыми функциями и улучшать их технические характеристики. Общий провод осциллографа соединяем с общим проводом платы управления занимает заметную часть площади лицевой стороны , а щупом проверяем сигналы на ногах 1 и 7 микросхем DD2 и DD3. Подаю переменные 3в и смотрю сигналы на выводах 1 и 7 микросхемы DD1 — короткие прямоугольные импульсы с частотой 50гц.
Оно немного выше и в пределах 55 В. Он представлен сочетанием датчика тока нагрузки и трансформатора. Сопротивление должно упасть почти до нуля и это означает, что транзистор открылся. Получить на выходе устройства ток достаточной силы для того, чтобы можно было с его помощью эффективно выполнять сварочные работы, позволяет понижающий напряжение трансформатор, установленный за инверторным блоком.
Все блоки электрической схемы, которые работают под большой нагрузкой и сильно нагреваются, не только обеспечены принудительным охлаждением, но также подключены к термодатчикам, отключающим их питание в том случае, если температура их нагрева превысила критическое значение. Далее устраняем поломку и заливаем трансформаторы термо-клеем.
Далее проводим вторичный осмотр и делаем вывод, что данный аппарат уронили! Модуль входного выпрямителя. Корпус с вентилятором. Видео по ремонту Выезжаем в любую точку Москвы и области! Состоит такой фильтр из дросселя и нескольких конденсаторов.
Оно немного выше и в пределах 55 В. Вращается вентилятор и через секунд слышится щелчок. Это один из конденсаторов, через которые подключаются выходные трансформаторы к выходному каскаду на полевиках. Они в норме.
Подробный ремонт с разбором ТОРУС 250-Экстра в сервисном центре Зона-Сварки.РФ — Ремонт сварки
УСТРОЙСТВО И РЕМОНТ СВАРОЧНОГО ИНВЕРТОРА
Современные сварочные аппараты с целью уменьшения габаритов и массы, строятся исключительно по инверторной схеме, с мощными полевыми транзисторами в качестве силовых переключающих элементов. Несмотря на множество различных моделей таких аппаратов, суть работы и принцип действия почти одинаковы. Данная статья будет полезна для понимания функционирования схем инверторов, а так-же для их самостоятельного ремонта. В качестве примера выбран отечественный сварочный инвертор «ТОРУС”.
Устройство сварочного аппарата «ТОРУС-200”
«ТОРУС-200” – сварочный аппарат инверторного типа представляет собой источник постоянного тока с защитой от КЗ и тепловой защитой. Преобразователь источника тока выполнен по полномостовой схеме с частотой преобразования около 100 кгц. Регулировка тока производится изменением скважности управляющих импульсов при постоянной частоте. Четыре ключа преобразователя располагаются на отдельных радиаторах. Каждый ключ состоит из четырёх параллельных полевых транзисторов IRFP460.
Трансформатор преобразователя намотан проводом-литцендратом в шёлковой оплётке прямо на сердечник, т.е. без каркаса. Рядом установлен дроссель, который включен последовательно первичке трансформатора, причём намотка обоих выполнена одним куском провода, т.е. «по месту”. Выходной выпрямитель выполнен по двухтактной схеме (со средним выводом вторичной обмотки). Каждое плечо выпрямителя смонтировано на отдельном радиаторе и состоит из двух диодных сборок 60CPQ150 или четырёх 30CPQ150. Выпрямитель, питающий преобразователь состоит из моста GBPC3508W, установленного на радиатор и шести параллельных электролитических конденсаторов 470 мкф 400в. Принципиальная схема:
Схема мягкого включения представляет собой реле задержки включения полного заряда конденсаторов выпрямителя питания преобразователя. Исполнительный элемент – э.м. реле замыкающее мощный резистор.
На плате управления располагаются:
1. Блок питания электроники, который выполнен как отдельны модуль и представляет собой стандартный БП на 15в.
2. Схема «мягкого включения”.
3. Блок конденсаторов зарядно-разрядной цепи преобразователя.
4. Схема управления преобразователем. Также, на передней панели аппарата установлена платка индикации, выключения и регулировки тока.
Схема управления преобразователем состоит из:
1. Тактового генератора на микросхеме TL494. Он выдаёт две фазы тактовых импульсов с частотой около 100 кгц. Функции ШИМ не используются и микросхема выдаёт импульсы постоянной скважности. В этой микросхеме есть два компаратора, к которым подключены датчики тепловой защиты (терморезисторы на дросселе и радиаторе выходного выпрямителя).
2. Схемы регулировки тока и защиты по КЗ. Выполнены на двух компараторах микросхемы LM393. Датчик тока выполнен на ферритовом кольце с обмоткой, сквозь которое проходит плюсовой провод питания преобразователя.
3. Два выходных драйвера на микросхемах IR2112. На входы драйверов поступают тактовые импульсы, скважность которых изменяется в драйвере от импульсов, поступающих с компараторов схемы регулировки тока и защиты от КЗ. Выходы драйверов нагружены на импульсные трансформаторы, со вторичных обмоток которых управляющие импульсы поступают на ключи преобразователя.
Рекомендации по самостоятельному ремонту сварочного аппарата
СА «Торус” выпускается несколькими производителями. Первый такой аппарат попался под названием «Дуга-200” и на момент написания этой статьи через мои руки прошло семь аппаратов данной конструкции. Предполагаю, что эта схема подойдёт и для младших моделей «Торуса”, поскольку для того, чтобы уменьшить максимальный сварочный ток достаточно уменьшить число ключей в группе и число диодных сборок или поставить более слабые компоненты.
Для ремонта сварочного аппарата, как и любого другого электронного устройства крайне желательно иметь некоторые познания в электронике и хотя бы минимальный опыт ремонта. Если ни того, ни другого нет, но есть много желания и денег, тогда можно попробовать. Из приборов необходим осциллограф и стрелочный авометр. Любой ремонт начинается с вскрытия и внешнего осмотра внутренностей. Конструктивно «Торус” состоит из следующих модулей:
1. Модуль входного выпрямителя
2. Модуль выходного выпрямителя..
3. Плата управления ключами.
4. Корпус с вентилятором.
Модуль ключей. Модуль ключей состоит из четырёх групп по четыре транзистора в группе. Каждая группа смонтирована на отдельном радиаторе на изолирующей прокладке. Кроме ключей в модуль входят шесть электролитических конденсаторов сглаживающего фильтра выпрямителя, питающего преобразователь (входного выпрямителя).
Чаще всего неисправный транзистор сразу виден: треснутый или взломанный корпус, прогоревшие выводы, но иногда внешних признаков неисправности нет и тогда для выявления неисправного транзистора следует применить стрелочный авометр. Включаем его в режим измерения сопротивления на предел Ком х1 и выбираем любую группу. Я думаю, не лишним будет напомнить, что все измерения следует проводить на выключенном из сети аппарате. Измеряем сопротивление между стоком и истоком. Для тех, кто не знает цоколёвки транзистора IRFP460: если расположить корпус выводами вниз и маркировкой к себе, то слева направо будут затвор, сток, исток. Между стоком и истоком есть встречно-параллельный диод, он и должен звониться, т.е. в одну сторону высокое, в другую низкое сопротивление. Короткое замыкание – неисправность одного или нескольких транзисторов в группе и если таковое есть, то неисправный транзистор выявляется только путём выпаивания.
Если группа звонится как положено (в одну сторону), то это не всегда означает, что все транзисторы в группе исправны. Их надо по отдельности проверить на «открываемость”. Это можно сделать не выпаивая каждый транзистор. Сначала отпаиваем по одному концу выравнивающих резисторов от каждого затвора, ставим минусовой щуп на исток первого транзистора, плюсовой на сток. Тестер должен показать высокое сопротивление. Теперь на мгновение прикасаемся плюсовым щупом (не снимая минусового) к затвору и снова перекидываем его на сток. Сопротивление должно упасть почти до нуля и это означает, что транзистор открылся. Пинцетом или скальпелем замыкаем затвор со стоком или истоком и снова замеряем сопротивление сток-исток, которое должно увеличиться почти до бесконечности (но надёжнее для запирания транзистора подать но затвор обратное напряжение, т.е. минус на затвор, плюс на сток) и это означает, что транзистор закрылся. Если это так, переходим к другому транзистору, в противном случае перепроверяем и выкусываем неисправный транзистор, поскольку так легче подготовить место для монтажа исправного транзистора.
Если все транзисторы в группе исправны, припаиваем к затворам концы выравнивающих резисторов, помечаем группу как исправную и переходим к следующей группе. Для ремонта, проверки и поиска возможных аналогов радиоэлементов, изучите их даташиты.
Когда все транзисторы проверены и неисправные заменены исправными, модуль ключей можно условно считать исправным. Условно – это потому, что окончательная проверка будет при наличии управляющих сигналов. В недавнем времени ключи стали снабжать снабберами (конденсаторами, впаянными между стоком и истоком каждого транзистора), которые защищают транзисторы от пробоя. Экономичность аппарата при этом несколько снижается, зато надёжность возрастает многократно. При прозвонке транзисторов конденсаторы можно не отпаивать, т.к. на результаты измерений они не влияют.
Модуль выходного выпрямителя. Модуль выходного выпрямителя состоит из платы с двумя радиаторами, на которых смонтированы силовые диодные сборки. В зависимости от применяемых сборок, их количество на радиаторе может быть разным – две или четыре. Также, в модуль входят дроссель и трансформатор. Диодные сборки выходного выпрямителя выходят из строя крайне редко. В двухсотой модели применяются две сборки 60CPQ150 или четыре 30CPQ150, а в каждой сборке по два диода по 60 и 30 ампер (соответственно) максимального тока каждый. В сумме это 240 ампер постоянного тока. Запас в 40 ампер довольно надёжен, к тому же максимальный импульсный ток едва ли не на порядок больше.
Все знают как звонятся диоды. Если группа звонится накоротко, нужно искать пробитый диод. Без выпаивания здесь не обойтись и для этого удобно использовать паяльник с отсосом. Когда все диоды проверены и неисправные заменены, модуль можно пометить как исправный и приступить к проверке платы управления.
Плата управления ключами – это самый сложный из всех блоков аппарата и от его правильной работы зависит надёжность аппарата и целостность его компонентов. Предварительную проверку работоспособности платы управления можно произвести без её демонтажа, т.е. прямо по месту. Первым делом отключаем питание преобразователя, для чего отпаиваем от входного моста один из толстых проводов идущих от платы управления (переменное 220в) и изолируем его оголённый конец изолентой.
Поскольку для оценки работоспособности платы управления необходимо оценивать быстроменяющиеся сигналы, без осциллографа (и навыка работы с ним) здесь не обойтись. Вставляем вилку питания в розетку и внимательно слушаем. Вращается вентилятор и через 3-5 секунд слышится щелчок. Его издаёт реле схемы «мягкого” включения. Если щелчка нет или он слышен сразу после включения, значит схема «мягкого” включения неисправна. Также, если щелчка не последовало, стоит проверить наличие питающего напряжения +15в. Источник этого питания приклеен к плате управления и подпаян к ней четырьмя проводами: два из которых – переменное 220в и другие два – плюс и минус 15в. Если питания нет, демонтируем источник питания и ремонтируем или заменяем его, поскольку он стандартный.
Схема «мягкого” включения очень проста и основана на срабатывании эм. реле K2 в результате открывания транзистора VT5 после заряда конденсатора C22 в его базовой цепи. Контакты реле S3 закорачивают резистор R40, который гасит ток заряда конденсаторов фильтра входного выпрямителя. Этот резистор очень слаб и часто выходит из строя. Этот резистор, даже если он исправен, я заменяю на более мощный для повышения надёжности аппарата. Отсутствие задержки срабатывания реле может быть вызвано обрывом ёмкости заряда C22, пробоем транзистора VT5 и пробоем аналога динистора VD4 в цепи базы транзистора.
Далее проверяем наличие сигналов управления ключами. Эти сигналы поступают по четырём витым парам проводов на шинки затворов модуля ключей. Устанавливаем развёртку осциллографа на 5 мкс\дел, а аттенюатор на 5 или 2в\дел. Общий провод осциллографа соединяем с общим проводом платы управления (занимает заметную часть площади лицевой стороны), а щупом проверяем сигналы на ногах 1 и 7 микросхем DD2 и DD3. В норме там должны быть прямоугольные с закруглённым фронтом импульсы амплитудой около 15в с частотой около 100Кгц. Если импульсы есть, следует проверить их прохождение до каждого затвора.
Если аппарат до Вас побывал в чьих-то «умелых” руках не лишнее проверить фазировку управляющих сигналов: если витые пары перепутаны местами, то есть угроза нарваться на сквозной ток, а если перепутаны провода в паре, то ключ не будет открываться. Мне попадались аппараты буквально «перепаханные” «умельцами” и эти аппараты пришлось проверять досконально. Ситуация усложнена ещё и тем, что качество сборки аппаратов полукустарное и не всегда можно отличить пайку производителя от пайки «умельца”.
Для несведущих могу уточнить: на затвор должны поступать положительные (относительно истока) импульсы амплитудой около 15в. Одновременно должны открываться группы 1 и 4 в одном такте и 2 и 3 в другом такте. Синфазность сигналов можно определить при помощи двухканального осциллографа.
Если сигналы управления с платы управления приходят на каждый затвор с нужной амплитудой и в нужной фазе, можно попробовать включить аппарат. Для того, чтобы подстраховаться от последствий невыявленной неисправности, питание преобразователя включим через лампу накаливания 150-200вт — удобнее включить её в разрыв переменной цепи моста входного выпрямителя. Подпаиваем все провода, отпаянные ранее с учётом лампы и включаем аппарат в сеть и смотрим на лампу. В первый момент лампа может ярко вспыхнуть (заряжаются ёмкости фильтра), но постоянно она должна светиться слабо. Яркое свечение свидетельствует о коротком замыкании в схеме или цепи нагрузки. .Когда все неисправности устранены, лампу отпаиваем, припаиваем к мосту провод питания и включаем аппарат в сеть. Измеряем напряжение на выходных клеммах – нормальный уровень напряжения должен быть около 60 постоянных вольт.
В случае, когда плата управления не выдаёт запускающих импульсов, её для удобства работы лучше отделить от всех узлов, т.е.отпаять витые пары от ключей, предварительно промаркировав группы и провода, отпаять датчики перегрева и заизолировать концы проводов, отпаять и отсоединить мост входного выпрямителя, отпаять шнур сетевого питания.
Далее припаиваем шнур сетевого питания, лучше через лампочку 50-100вт и включаем его в розетку. В первую очередь следует проверить наличие питания +15в на ножках 3,6,9 микросхем DD2 и DD3 и прямоугольных тактовых импульсов на ножках 10 и 12 тех же микросхем. Я пару раз сталкивался с выгоранием резистора в цепи питания DD3, правда после этого и саму микросхему пришлось заменить. Если тактовые импульсы на ногах 10 и 12 (т.е. на входах) есть, но нет импульсов на ножках 1 и 7 (т.е. на выходах) нужно ногу 11 посадить на общий провод и если микросхема исправна, импульсы на выходах должны появиться. Нет импульсов – смело заменяй микросхему. В нормальном состоянии на ноге 11 микросхем DD2 и DD3 может быть не точный ноль (т.е. микросхема закрыта) и чтобы проверить неисправна микросхема или закрыта, нужно подать на ногу 11 точный ноль.
Если на входы драйверов (DD2 и DD3) не поступает тактовых импульсов, то их нужно искать на выводах 9 и 10 микросхемы ШИМ — DD4. В случае их отсутствия проверяем питание +15в на выводах 8, 11, 12. Можно проверить, не светится ли красный индикатор на передней панели аппарата и если это так, то скорее всего выключен тумблер рабочего режима. Также, можно проверить, не замкнут ли один из двух датчиков перегрева (на радиаторе выходного выпрямителя и на дросселе). Если все усилия тщетны – заменяем микросхему.
Вы добились управляющих импульсов на выходах обоих драйверов. Казалось бы – вот оно, счастье, но за этим счастьем может последовать фейерверк, когда Вы попробуете зажечь дугу. Дело в том, что ещё есть схема регулировки тока и защиты по току и если эта защита не работает, то Вы рискуете пойти по второму кругу поиска неисправностей.
Схема регулировки и защиты реализована на микросхеме DD1 и её обвязке. Датчиком тока является кольцевая катушка L1 сквозь которую проходит толстый провод питания преобразователя. На выводах 1 и 7 микросхемы DD1 формируются прямоугольные импульсы закрытия драйверов. Проверить работу схемы можно разными способами. Я пользуюсь следующим: отпаиваю один конец катушки L1 и вместо неё припаиваю источник переменного напряжения 3в. Это может быть трансформатор от сетевого адаптера или что-нибудь оригинальное. Подаю переменные 3в и смотрю сигналы на выводах 1 и 7 микросхемы DD1 – короткие прямоугольные импульсы с частотой 50гц. При этом кольцевые трансформаторы издают тихие звуки (отдалённо напоминающие голос кузнечика), а запускающие импульсы прерываются с частотой 50гц. Автор статьи: В.А. Третьяков.
Электрические Схемы Сварочных Инверторов
Причем использование последнего сейчас признается более разумным. Устанавливаются на радиатор.
Получаемый результат связан с выходом постоянного сварочного тока, сила которого является очень высокой, а напряжение низким. Мост модифицирует ток из переменного в постоянный.
Получить на выходе устройства ток достаточной силы для того, чтобы можно было с его помощью эффективно выполнять сварочные работы, позволяет понижающий напряжение трансформатор, установленный за инверторным блоком.
Схемы сварочных инверторов самодельных и заводских.
Сопротивление резистора — 47 ом. У новой версии три импульсных трансформатора, в то время как у старой только два.
Возможные неисправности и способы их устранения Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов. Одновременно происходит возрастание силы сварочного тока, которая превышает А.
Вот схема.
Для обеспечения циркуляции воздуха между обмотками оставляется воздушный зазор.
Датчик срабатывает при достижении критической температуры нагрева какого-либо элемента.
РЕМОНТ СВАРОЧНОГО ИНВЕРТОРА ИНТЕРСКОЛ ИСА 250/10, 6
Типовая схема и принцип работы инвертора
В этом и заключается основная роль трансформатора T3. Читать далее. Для питания микросхем и элементов, которые расположены на плате управления, используется интегральный стабилизатор на 15 вольт — LMA. По принципу действия он очень схож с импульсными блоками питания, например, компьютерными блоками питания AT и ATX.
Проверка работоспособности После сборочных и отладочных работ проверяется работоспособность сварочного аппарата. Модуль ключей представлен четырьмя транзисторами в каждой из четырех групп.
Дополнительное расположение конденсаторов 0,15 мкФ позволяет сбрасывать избыток мощности обратно в цепь.
При этом принцип функционирования последнего является неизменным.
Трансформатор понижает ток до уровня напряжения, равного В.
Вот тут и вступает в работу выпрямитель, как раз занимающийся тем, чтобы поступающий ток имел постоянные параметры.
Сопротивление резистора — 47 ом. Показатель напряжения холостого хода 62 В.
ДВА в ОДНОМ. СВАРКА + ИНДУКЦИОННАЯ ПЕЧЬ. Краткий обзор. Сварочный аппарат — нагреватель 2 в 1
Виды инверторных источников сварочного тока
Корпус с вентилятором системы охлаждения.
Принципиальная схема аппаратов инверторного типа Для того чтобы понимать суть работы современного сварочного агрегата, необходимо знать из каких блоков состоит принципиальная схема сварочного инвертора, который обеспечивает энергией дугу короткого замыкания при сварочном процессе.
Оно состоит из 2—4 конденсаторов и дросселя.
Эти ситуации могут происходить по причине недостаточного охлаждения силовых элементов при высокой температуре окружающего воздуха, а также при работе в условиях запылённой или слишком влажной атмосферы. Причем использование последнего сейчас признается более разумным. Как работает сварочный инвертор Формирование тока большой силы, при помощи которого создается электрическая дуга для расплавления кромок соединяемых деталей и присадочного материала, — это то, для чего предназначен любой сварочный аппарат.
Этот элемент подает на силовую часть сварочного агрегата электроток. Давайте немного подробнее разберемся с описанной схемой.
В условиях повышенной влажности могут возникать утечки, которые также могут привести к неисправности. Электрическая схема инвертора включает в себя следующие обязательные компоненты: Питающий блок.
Важным этапом является решение задачи, связанной с выбором необходимой технологии, оптимизирующей работу силовой части. В устройство входит силовой трансформатор. Для улучшения теплового контакта нужно использовать кремнийорганическую термопасту.
Если он попросту закипает, значит, в схеме есть недочеты и работу лучше не продолжать. Понижение высокочастотного напряжения; 4. Исключительная стабильность напряжения, подаваемого на сварочную дугу, обеспечивается за счет автоматических элементов электрической схемы инвертора. Поэтому в случае ремонта заменять диоды в выходном выпрямителе следует именно быстродействующими.
Ремонт сварочного инвертора Ресанта 190А. Не включается .Repair welding inverter 190A Resanta
Cхемы сварочных инверторов
Возможные неисправности и способы их устранения Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов.
Все сварочные аппараты делятся на несколько основных групп: Для проведения электродуговой сварки при применении покрытых специальным составом электродов применяется оборудование типа ММА. Далее мы приводим блок-схему функционирования стандартного инвертора, которая наглядно демонстрирует принцип его применения. Возможные неисправности и способы их устранения Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов.
Выводы Инвертор — сложное электронное устройство, но простое в использовании, его подключают к электрической цепи с напряжением V и без опасения проводить сварочные работы. При испытаниях следует добавлять витки до тех пор, пока дуга не начнёт ощутимо сильно тянуться, мешая отрыву.
Схемы аппаратов Сварис
Конденсаторы, установленные в фильтре, после активации зарядки способны выдавать большой силы ток, который сжигает, поэтому инвертор обеспечивается плавным пуском. Несмотря на применение схожей схемы при создании практически всех инверторов, они существенно отличаются друг от друга. Электрическая схема предполагает работу агрегата на основе импульсных преобразователей высокой частоты. Обычные выпрямительные диоды с такой задачей бы не справились — они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя.
Возможные неисправности и способы их устранения Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов. Модуль ключей представлен четырьмя транзисторами в каждой из четырех групп. Затем происходит выравнивание тока при наличии конденсатора и его поступление к блоку транзистора.
Принципиальная электрическая схема в деталях: составляющие
Таким образом, на первом этапе мы получаем на выходе с выпрямителя постоянный ток, имеющий значение более V. Ранее в сварочных инверторах использовались трансформаторы, очень мощные, работающие за счет обмотки трансформатора и имеющие, из-за этого, размеры и вес, делающие сварочные аппараты громоздкими и неудобными в применении. Инверторное устройство еще раз преобразовывает электроток теперь уже в переменный , увеличивая при этом его частоту.
Через них протекают огромные токи. Часть 1. При устройстве вторичной обмотки витки наматываются в несколько слоев. Если напряжение провода меньше В, значит, устройство неисправно.
Схема китайского инвертора
Сварной форум
Описание: |
---|
Сварочный аппарат Торус-200 КЛАССИК, имеющий аттестацию НАКС, подходит для различных сварочных работ на любых разновидностях стали, имеет разные режимы работы (MMA и TIG), позволяет выполнять работу даже неопытному сварщику, швы получаются очень качественными.
Этот простой в обращении, легкий и экономичный сварочный инвертор, способный работать даже при нестабильной электрической сети, подходит для самых разных условий: авто мастерские, коммунальное хозяйство, дача или загородный дом.
"Торус-200", как и другие инверторные сварочные аппараты, позволяет получать сварку со стабильными параметрами. Для него характерны: небольшой вес 5 кг, большой коэффициент полезного действия и возможность работы с электродами диаметром от 1,6 до 5 миллиметров (даже без трехфазной сети). Сварочный инвертор ТОРУС-200 оснащен цифровым управлением для надежности в эксплуатации. При коротком замыкании ТОРУС-200 почти не потребляет электричества: это позволяет осуществлять питание аппарата от бензогенераторов с номинальной мощностью от 4 кВт (6 кВА) и бытовой сети с просадками (до 165 Вольт).
Сварочный инвертор данного типа может располагаться вблизи сварочных работ и поэтому позволяет отказаться от длинного сварочного кабеля (за счет своего маленького веса). Кроме того он предназначен для продолжительной работы не только в помещениях, но и на улице.
IGBT модули
Комплектуется производителем:
Сварочный инвертор «ТОРУС-200 Классик»
Паспорт
*Комплект сварочных проводов опционально(см. скриншот)
Технические характеристики: |
---|
Питающая сеть 165. 242 В, 50 Гц
Максимальный сварочный ток 200 А
Род сварочного тока постоянный
Регулировка сварочного тока плавная
Возможность режима TIG есть
Цифровая индикация сварочного тока нет
Диаметр электрода 1,6-5,0 мм
Процент времени работы, ПВ 60% при токе до 200 А
Напряжение холостого хода, U xx 60 В
Класс изоляции В
Степень защиты IP21
Габариты 125 х 190 х 300 мм
Масса 5,3 кг
Важно! |
---|
Если у Вас есть опыт использования данного аппарата, мы будем
признательны Вам за объективный и развернутый отзыв, который поможет
разобраться в достоинствах и недостатках представленного аппарата.
Отзывы и обсуждение сварочного инвертора Торус-200 Классик: |
---|
Сварочные аппараты "Торус" производит отечественное предприятие ООО "ТОР".
Около 2-х лет назад на заре нашей деятельности по изготовлению металлоконструкций довелось поработать пару месяцев арендованным Торус-200. Впечатления остались исключительно положительные. За несколько лет накопился опыт работы и с другими аппаратами так что есть с чем сравнить и скажу сразу что Торус пока что №1 в рейтинге инверторных аппаратов побывавших в руках. Итак по порядку.
Чем хорош:
1. Полностью металлический корпус - очень прочный. Пластика нет нигде вообще (ручка регулятора тока и корпуса розеток не в счёт), колоть и ломать просто нечего. При всём этом корпус отлично защищён от пыли, не сравнить с теми же Ресантами, которые пыли боятся панически.
2. Огромный вентилятор системы охлаждения, сварочник охлаждается очень хорошо, не смотря на то что вентиляционных отверстий на корпусе не так много.
3. Варит от низкого напряжения. По началу работали в металлическом гараже на отшибе и скачки напряжения, а чаще всё таки просадки были не редкость. Варил хорошо, чисто особо не изводя залипаниями электрода. Производитель заявляет что Торус 200 может работать от 165 вольт. Реальное напряжение в розетке тогда никто не мерял, но смею предположить что заявление не далеко от истины.
4. Долговечен. Не известно точно сколько он ходил до того как попал к нам, при чём ходил по рукам так как был прокатный, мы варили каждый день месяца два и не на прихваточки и на сколько я знаю он до сих пор жив и здоров.
Чем не очень хорош:
1. Нет индикации сварочного тока, при работе разными электродами приходится запоминать положения регулятора, что бы не подгонять каждый раз.
2. Цена. Он ощутимо дороже большинства аналогов, но не забывайте что это сварочник промышленного уровня, созданный для интенсивной работы в тяжёлых условиях, так что цена в общем то оправдана.
На инструкции-паспорте впечатан серийный номер, если он не совпадает с номером на корпусе - гарантия не работает:
Шнур питания толстый и прочный, крепкая вилка
Плечевой ремень длинный, можно повесить аппарат хоть подмышку хоть на бедро
Оказался экземпляр с помятым при транспортировке углом, торовцы без вопросов прислали новый корпус с новой пломбой (кто бы поменял хе-хе):
Собираясь в магазин за новым аппаратом Торус, прихватите с собой лишние пару тысяч, аппараты не комплектуются сварочными кабелями, в коробке только сварочник и инструкция. Если собирать всё это самостоятельно стоить будет примерно столько: сварочный кабель 120-150 рублей за метр, клемма заземления около 300 рублей, держак 500 - 600 рублей, вставки около 200 рублей за штуку, готовые комплекты кабелей стоят в районе 2-х тысяч.
Как видите инструмент профессиональный, серьёзный и назначение понятно: большие объёмы, сложные условия, интенсивная эксплуатация, со всем этим он легко справится.
Читайте также: